{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeFamilies #-}
module HaskellWorks.Data.FingerTree
( FingerTree(..)
, Digit(..)
, Node(..)
, deep
, node2
, node3
, Measured(..)
, empty
, singleton
, append
, fromList
, null
, ViewL(..)
, ViewR(..)
, viewl
, viewr
, split
, takeUntil
, dropUntil
, reverse
, fmap'
, fmapWithPos
, unsafeFmap
, traverse'
, traverseWithPos
, unsafeTraverse
, (><)
, (<|)
, (|>)
) where
import Control.DeepSeq
import Data.Foldable (toList)
import GHC.Generics (Generic)
import HaskellWorks.Data.Container
import HaskellWorks.Data.Cons
import HaskellWorks.Data.Snoc
import HaskellWorks.Data.Ops
import Prelude hiding (null, reverse)
import qualified Data.Semigroup as S
#if !MIN_VERSION_base(4,13,0)
import Control.Applicative (Applicative (pure, (<*>)), (<$>))
#endif
infixr 5 :<
infixl 5 :>
data ViewL s a
= EmptyL
| a :< s a
deriving (ViewL s a -> ViewL s a -> Bool
(ViewL s a -> ViewL s a -> Bool)
-> (ViewL s a -> ViewL s a -> Bool) -> Eq (ViewL s a)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall (s :: * -> *) a.
(Eq a, Eq (s a)) =>
ViewL s a -> ViewL s a -> Bool
/= :: ViewL s a -> ViewL s a -> Bool
$c/= :: forall (s :: * -> *) a.
(Eq a, Eq (s a)) =>
ViewL s a -> ViewL s a -> Bool
== :: ViewL s a -> ViewL s a -> Bool
$c== :: forall (s :: * -> *) a.
(Eq a, Eq (s a)) =>
ViewL s a -> ViewL s a -> Bool
Eq, Eq (ViewL s a)
Eq (ViewL s a)
-> (ViewL s a -> ViewL s a -> Ordering)
-> (ViewL s a -> ViewL s a -> Bool)
-> (ViewL s a -> ViewL s a -> Bool)
-> (ViewL s a -> ViewL s a -> Bool)
-> (ViewL s a -> ViewL s a -> Bool)
-> (ViewL s a -> ViewL s a -> ViewL s a)
-> (ViewL s a -> ViewL s a -> ViewL s a)
-> Ord (ViewL s a)
ViewL s a -> ViewL s a -> Bool
ViewL s a -> ViewL s a -> Ordering
ViewL s a -> ViewL s a -> ViewL s a
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall (s :: * -> *) a. (Ord a, Ord (s a)) => Eq (ViewL s a)
forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewL s a -> ViewL s a -> Bool
forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewL s a -> ViewL s a -> Ordering
forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewL s a -> ViewL s a -> ViewL s a
min :: ViewL s a -> ViewL s a -> ViewL s a
$cmin :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewL s a -> ViewL s a -> ViewL s a
max :: ViewL s a -> ViewL s a -> ViewL s a
$cmax :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewL s a -> ViewL s a -> ViewL s a
>= :: ViewL s a -> ViewL s a -> Bool
$c>= :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewL s a -> ViewL s a -> Bool
> :: ViewL s a -> ViewL s a -> Bool
$c> :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewL s a -> ViewL s a -> Bool
<= :: ViewL s a -> ViewL s a -> Bool
$c<= :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewL s a -> ViewL s a -> Bool
< :: ViewL s a -> ViewL s a -> Bool
$c< :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewL s a -> ViewL s a -> Bool
compare :: ViewL s a -> ViewL s a -> Ordering
$ccompare :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewL s a -> ViewL s a -> Ordering
$cp1Ord :: forall (s :: * -> *) a. (Ord a, Ord (s a)) => Eq (ViewL s a)
Ord, Int -> ViewL s a -> ShowS
[ViewL s a] -> ShowS
ViewL s a -> String
(Int -> ViewL s a -> ShowS)
-> (ViewL s a -> String)
-> ([ViewL s a] -> ShowS)
-> Show (ViewL s a)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall (s :: * -> *) a.
(Show a, Show (s a)) =>
Int -> ViewL s a -> ShowS
forall (s :: * -> *) a.
(Show a, Show (s a)) =>
[ViewL s a] -> ShowS
forall (s :: * -> *) a. (Show a, Show (s a)) => ViewL s a -> String
showList :: [ViewL s a] -> ShowS
$cshowList :: forall (s :: * -> *) a.
(Show a, Show (s a)) =>
[ViewL s a] -> ShowS
show :: ViewL s a -> String
$cshow :: forall (s :: * -> *) a. (Show a, Show (s a)) => ViewL s a -> String
showsPrec :: Int -> ViewL s a -> ShowS
$cshowsPrec :: forall (s :: * -> *) a.
(Show a, Show (s a)) =>
Int -> ViewL s a -> ShowS
Show, ReadPrec [ViewL s a]
ReadPrec (ViewL s a)
Int -> ReadS (ViewL s a)
ReadS [ViewL s a]
(Int -> ReadS (ViewL s a))
-> ReadS [ViewL s a]
-> ReadPrec (ViewL s a)
-> ReadPrec [ViewL s a]
-> Read (ViewL s a)
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
forall (s :: * -> *) a.
(Read a, Read (s a)) =>
ReadPrec [ViewL s a]
forall (s :: * -> *) a.
(Read a, Read (s a)) =>
ReadPrec (ViewL s a)
forall (s :: * -> *) a.
(Read a, Read (s a)) =>
Int -> ReadS (ViewL s a)
forall (s :: * -> *) a. (Read a, Read (s a)) => ReadS [ViewL s a]
readListPrec :: ReadPrec [ViewL s a]
$creadListPrec :: forall (s :: * -> *) a.
(Read a, Read (s a)) =>
ReadPrec [ViewL s a]
readPrec :: ReadPrec (ViewL s a)
$creadPrec :: forall (s :: * -> *) a.
(Read a, Read (s a)) =>
ReadPrec (ViewL s a)
readList :: ReadS [ViewL s a]
$creadList :: forall (s :: * -> *) a. (Read a, Read (s a)) => ReadS [ViewL s a]
readsPrec :: Int -> ReadS (ViewL s a)
$creadsPrec :: forall (s :: * -> *) a.
(Read a, Read (s a)) =>
Int -> ReadS (ViewL s a)
Read, (forall x. ViewL s a -> Rep (ViewL s a) x)
-> (forall x. Rep (ViewL s a) x -> ViewL s a)
-> Generic (ViewL s a)
forall x. Rep (ViewL s a) x -> ViewL s a
forall x. ViewL s a -> Rep (ViewL s a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (s :: * -> *) a x. Rep (ViewL s a) x -> ViewL s a
forall (s :: * -> *) a x. ViewL s a -> Rep (ViewL s a) x
$cto :: forall (s :: * -> *) a x. Rep (ViewL s a) x -> ViewL s a
$cfrom :: forall (s :: * -> *) a x. ViewL s a -> Rep (ViewL s a) x
Generic, ViewL s a -> ()
(ViewL s a -> ()) -> NFData (ViewL s a)
forall a. (a -> ()) -> NFData a
forall (s :: * -> *) a. (NFData a, NFData (s a)) => ViewL s a -> ()
rnf :: ViewL s a -> ()
$crnf :: forall (s :: * -> *) a. (NFData a, NFData (s a)) => ViewL s a -> ()
NFData)
data ViewR s a
= EmptyR
| s a :> a
deriving (ViewR s a -> ViewR s a -> Bool
(ViewR s a -> ViewR s a -> Bool)
-> (ViewR s a -> ViewR s a -> Bool) -> Eq (ViewR s a)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall (s :: * -> *) a.
(Eq a, Eq (s a)) =>
ViewR s a -> ViewR s a -> Bool
/= :: ViewR s a -> ViewR s a -> Bool
$c/= :: forall (s :: * -> *) a.
(Eq a, Eq (s a)) =>
ViewR s a -> ViewR s a -> Bool
== :: ViewR s a -> ViewR s a -> Bool
$c== :: forall (s :: * -> *) a.
(Eq a, Eq (s a)) =>
ViewR s a -> ViewR s a -> Bool
Eq, Eq (ViewR s a)
Eq (ViewR s a)
-> (ViewR s a -> ViewR s a -> Ordering)
-> (ViewR s a -> ViewR s a -> Bool)
-> (ViewR s a -> ViewR s a -> Bool)
-> (ViewR s a -> ViewR s a -> Bool)
-> (ViewR s a -> ViewR s a -> Bool)
-> (ViewR s a -> ViewR s a -> ViewR s a)
-> (ViewR s a -> ViewR s a -> ViewR s a)
-> Ord (ViewR s a)
ViewR s a -> ViewR s a -> Bool
ViewR s a -> ViewR s a -> Ordering
ViewR s a -> ViewR s a -> ViewR s a
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall (s :: * -> *) a. (Ord a, Ord (s a)) => Eq (ViewR s a)
forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewR s a -> ViewR s a -> Bool
forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewR s a -> ViewR s a -> Ordering
forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewR s a -> ViewR s a -> ViewR s a
min :: ViewR s a -> ViewR s a -> ViewR s a
$cmin :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewR s a -> ViewR s a -> ViewR s a
max :: ViewR s a -> ViewR s a -> ViewR s a
$cmax :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewR s a -> ViewR s a -> ViewR s a
>= :: ViewR s a -> ViewR s a -> Bool
$c>= :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewR s a -> ViewR s a -> Bool
> :: ViewR s a -> ViewR s a -> Bool
$c> :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewR s a -> ViewR s a -> Bool
<= :: ViewR s a -> ViewR s a -> Bool
$c<= :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewR s a -> ViewR s a -> Bool
< :: ViewR s a -> ViewR s a -> Bool
$c< :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewR s a -> ViewR s a -> Bool
compare :: ViewR s a -> ViewR s a -> Ordering
$ccompare :: forall (s :: * -> *) a.
(Ord a, Ord (s a)) =>
ViewR s a -> ViewR s a -> Ordering
$cp1Ord :: forall (s :: * -> *) a. (Ord a, Ord (s a)) => Eq (ViewR s a)
Ord, Int -> ViewR s a -> ShowS
[ViewR s a] -> ShowS
ViewR s a -> String
(Int -> ViewR s a -> ShowS)
-> (ViewR s a -> String)
-> ([ViewR s a] -> ShowS)
-> Show (ViewR s a)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall (s :: * -> *) a.
(Show a, Show (s a)) =>
Int -> ViewR s a -> ShowS
forall (s :: * -> *) a.
(Show a, Show (s a)) =>
[ViewR s a] -> ShowS
forall (s :: * -> *) a. (Show a, Show (s a)) => ViewR s a -> String
showList :: [ViewR s a] -> ShowS
$cshowList :: forall (s :: * -> *) a.
(Show a, Show (s a)) =>
[ViewR s a] -> ShowS
show :: ViewR s a -> String
$cshow :: forall (s :: * -> *) a. (Show a, Show (s a)) => ViewR s a -> String
showsPrec :: Int -> ViewR s a -> ShowS
$cshowsPrec :: forall (s :: * -> *) a.
(Show a, Show (s a)) =>
Int -> ViewR s a -> ShowS
Show, ReadPrec [ViewR s a]
ReadPrec (ViewR s a)
Int -> ReadS (ViewR s a)
ReadS [ViewR s a]
(Int -> ReadS (ViewR s a))
-> ReadS [ViewR s a]
-> ReadPrec (ViewR s a)
-> ReadPrec [ViewR s a]
-> Read (ViewR s a)
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
forall (s :: * -> *) a.
(Read a, Read (s a)) =>
ReadPrec [ViewR s a]
forall (s :: * -> *) a.
(Read a, Read (s a)) =>
ReadPrec (ViewR s a)
forall (s :: * -> *) a.
(Read a, Read (s a)) =>
Int -> ReadS (ViewR s a)
forall (s :: * -> *) a. (Read a, Read (s a)) => ReadS [ViewR s a]
readListPrec :: ReadPrec [ViewR s a]
$creadListPrec :: forall (s :: * -> *) a.
(Read a, Read (s a)) =>
ReadPrec [ViewR s a]
readPrec :: ReadPrec (ViewR s a)
$creadPrec :: forall (s :: * -> *) a.
(Read a, Read (s a)) =>
ReadPrec (ViewR s a)
readList :: ReadS [ViewR s a]
$creadList :: forall (s :: * -> *) a. (Read a, Read (s a)) => ReadS [ViewR s a]
readsPrec :: Int -> ReadS (ViewR s a)
$creadsPrec :: forall (s :: * -> *) a.
(Read a, Read (s a)) =>
Int -> ReadS (ViewR s a)
Read, (forall x. ViewR s a -> Rep (ViewR s a) x)
-> (forall x. Rep (ViewR s a) x -> ViewR s a)
-> Generic (ViewR s a)
forall x. Rep (ViewR s a) x -> ViewR s a
forall x. ViewR s a -> Rep (ViewR s a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (s :: * -> *) a x. Rep (ViewR s a) x -> ViewR s a
forall (s :: * -> *) a x. ViewR s a -> Rep (ViewR s a) x
$cto :: forall (s :: * -> *) a x. Rep (ViewR s a) x -> ViewR s a
$cfrom :: forall (s :: * -> *) a x. ViewR s a -> Rep (ViewR s a) x
Generic, ViewR s a -> ()
(ViewR s a -> ()) -> NFData (ViewR s a)
forall a. (a -> ()) -> NFData a
forall (s :: * -> *) a. (NFData a, NFData (s a)) => ViewR s a -> ()
rnf :: ViewR s a -> ()
$crnf :: forall (s :: * -> *) a. (NFData a, NFData (s a)) => ViewR s a -> ()
NFData)
instance Functor s => Functor (ViewL s) where
fmap :: (a -> b) -> ViewL s a -> ViewL s b
fmap a -> b
_ ViewL s a
EmptyL = ViewL s b
forall (s :: * -> *) a. ViewL s a
EmptyL
fmap a -> b
f (a
x :< s a
xs) = a -> b
f a
x b -> s b -> ViewL s b
forall (s :: * -> *) a. a -> s a -> ViewL s a
:< (a -> b) -> s a -> s b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f s a
xs
instance Functor s => Functor (ViewR s) where
fmap :: (a -> b) -> ViewR s a -> ViewR s b
fmap a -> b
_ ViewR s a
EmptyR = ViewR s b
forall (s :: * -> *) a. ViewR s a
EmptyR
fmap a -> b
f (s a
xs :> a
x) = (a -> b) -> s a -> s b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f s a
xs s b -> b -> ViewR s b
forall (s :: * -> *) a. s a -> a -> ViewR s a
:> a -> b
f a
x
instance Measured v a => S.Semigroup (FingerTree v a) where
<> :: FingerTree v a -> FingerTree v a -> FingerTree v a
(<>) = FingerTree v a -> FingerTree v a -> FingerTree v a
forall v a.
Measured v a =>
FingerTree v a -> FingerTree v a -> FingerTree v a
append
{-# INLINE (<>) #-}
instance Measured v a => Monoid (FingerTree v a) where
mempty :: FingerTree v a
mempty = FingerTree v a
forall v a. Measured v a => FingerTree v a
empty
{-# INLINE mempty #-}
instance Container (FingerTree v a) where
type Elem (FingerTree v a) = a
data Digit a
= One a
| Two a a
| Three a a a
| Four a a a a
deriving (Int -> Digit a -> ShowS
[Digit a] -> ShowS
Digit a -> String
(Int -> Digit a -> ShowS)
-> (Digit a -> String) -> ([Digit a] -> ShowS) -> Show (Digit a)
forall a. Show a => Int -> Digit a -> ShowS
forall a. Show a => [Digit a] -> ShowS
forall a. Show a => Digit a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Digit a] -> ShowS
$cshowList :: forall a. Show a => [Digit a] -> ShowS
show :: Digit a -> String
$cshow :: forall a. Show a => Digit a -> String
showsPrec :: Int -> Digit a -> ShowS
$cshowsPrec :: forall a. Show a => Int -> Digit a -> ShowS
Show, (forall x. Digit a -> Rep (Digit a) x)
-> (forall x. Rep (Digit a) x -> Digit a) -> Generic (Digit a)
forall x. Rep (Digit a) x -> Digit a
forall x. Digit a -> Rep (Digit a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall a x. Rep (Digit a) x -> Digit a
forall a x. Digit a -> Rep (Digit a) x
$cto :: forall a x. Rep (Digit a) x -> Digit a
$cfrom :: forall a x. Digit a -> Rep (Digit a) x
Generic, Digit a -> ()
(Digit a -> ()) -> NFData (Digit a)
forall a. NFData a => Digit a -> ()
forall a. (a -> ()) -> NFData a
rnf :: Digit a -> ()
$crnf :: forall a. NFData a => Digit a -> ()
NFData, a -> Digit b -> Digit a
(a -> b) -> Digit a -> Digit b
(forall a b. (a -> b) -> Digit a -> Digit b)
-> (forall a b. a -> Digit b -> Digit a) -> Functor Digit
forall a b. a -> Digit b -> Digit a
forall a b. (a -> b) -> Digit a -> Digit b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> Digit b -> Digit a
$c<$ :: forall a b. a -> Digit b -> Digit a
fmap :: (a -> b) -> Digit a -> Digit b
$cfmap :: forall a b. (a -> b) -> Digit a -> Digit b
Functor)
instance Foldable Digit where
foldMap :: (a -> m) -> Digit a -> m
foldMap a -> m
f (One a
a) = a -> m
f a
a
foldMap a -> m
f (Two a
a a
b) = a -> m
f a
a m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` a -> m
f a
b
foldMap a -> m
f (Three a
a a
b a
c) = a -> m
f a
a m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` a -> m
f a
b m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` a -> m
f a
c
foldMap a -> m
f (Four a
a a
b a
c a
d) = a -> m
f a
a m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` a -> m
f a
b m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` a -> m
f a
c m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` a -> m
f a
d
class (Monoid v) => Measured v a | a -> v where
measure :: a -> v
instance (Measured v a) => Measured v (Digit a) where
measure :: Digit a -> v
measure = (a -> v) -> Digit a -> v
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap a -> v
forall v a. Measured v a => a -> v
measure
data Node v a = Node2 !v a a | Node3 !v a a a
deriving (Int -> Node v a -> ShowS
[Node v a] -> ShowS
Node v a -> String
(Int -> Node v a -> ShowS)
-> (Node v a -> String) -> ([Node v a] -> ShowS) -> Show (Node v a)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall v a. (Show v, Show a) => Int -> Node v a -> ShowS
forall v a. (Show v, Show a) => [Node v a] -> ShowS
forall v a. (Show v, Show a) => Node v a -> String
showList :: [Node v a] -> ShowS
$cshowList :: forall v a. (Show v, Show a) => [Node v a] -> ShowS
show :: Node v a -> String
$cshow :: forall v a. (Show v, Show a) => Node v a -> String
showsPrec :: Int -> Node v a -> ShowS
$cshowsPrec :: forall v a. (Show v, Show a) => Int -> Node v a -> ShowS
Show, (forall x. Node v a -> Rep (Node v a) x)
-> (forall x. Rep (Node v a) x -> Node v a) -> Generic (Node v a)
forall x. Rep (Node v a) x -> Node v a
forall x. Node v a -> Rep (Node v a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall v a x. Rep (Node v a) x -> Node v a
forall v a x. Node v a -> Rep (Node v a) x
$cto :: forall v a x. Rep (Node v a) x -> Node v a
$cfrom :: forall v a x. Node v a -> Rep (Node v a) x
Generic, Node v a -> ()
(Node v a -> ()) -> NFData (Node v a)
forall a. (a -> ()) -> NFData a
forall v a. (NFData v, NFData a) => Node v a -> ()
rnf :: Node v a -> ()
$crnf :: forall v a. (NFData v, NFData a) => Node v a -> ()
NFData)
instance Foldable (Node v) where
foldMap :: (a -> m) -> Node v a -> m
foldMap a -> m
f (Node2 v
_ a
a a
b) = a -> m
f a
a m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` a -> m
f a
b
foldMap a -> m
f (Node3 v
_ a
a a
b a
c) = a -> m
f a
a m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` a -> m
f a
b m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` a -> m
f a
c
node2 :: (Measured v a) => a -> a -> Node v a
node2 :: a -> a -> Node v a
node2 a
a a
b = v -> a -> a -> Node v a
forall v a. v -> a -> a -> Node v a
Node2 (a -> v
forall v a. Measured v a => a -> v
measure a
a v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
b) a
a a
b
node3 :: (Measured v a) => a -> a -> a -> Node v a
node3 :: a -> a -> a -> Node v a
node3 a
a a
b a
c = v -> a -> a -> a -> Node v a
forall v a. v -> a -> a -> a -> Node v a
Node3 (a -> v
forall v a. Measured v a => a -> v
measure a
a v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
b v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
c) a
a a
b a
c
instance (Monoid v) => Measured v (Node v a) where
measure :: Node v a -> v
measure (Node2 v
v a
_ a
_) = v
v
measure (Node3 v
v a
_ a
_ a
_) = v
v
nodeToDigit :: Node v a -> Digit a
nodeToDigit :: Node v a -> Digit a
nodeToDigit (Node2 v
_ a
a a
b) = a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
a a
b
nodeToDigit (Node3 v
_ a
a a
b a
c) = a -> a -> a -> Digit a
forall a. a -> a -> a -> Digit a
Three a
a a
b a
c
data FingerTree v a
= Empty
| Single a
| Deep !v !(Digit a) (FingerTree v (Node v a)) !(Digit a)
deriving ((forall x. FingerTree v a -> Rep (FingerTree v a) x)
-> (forall x. Rep (FingerTree v a) x -> FingerTree v a)
-> Generic (FingerTree v a)
forall x. Rep (FingerTree v a) x -> FingerTree v a
forall x. FingerTree v a -> Rep (FingerTree v a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall v a x. Rep (FingerTree v a) x -> FingerTree v a
forall v a x. FingerTree v a -> Rep (FingerTree v a) x
$cto :: forall v a x. Rep (FingerTree v a) x -> FingerTree v a
$cfrom :: forall v a x. FingerTree v a -> Rep (FingerTree v a) x
Generic, FingerTree v a -> ()
(FingerTree v a -> ()) -> NFData (FingerTree v a)
forall a. (a -> ()) -> NFData a
forall v a. (NFData a, NFData v) => FingerTree v a -> ()
rnf :: FingerTree v a -> ()
$crnf :: forall v a. (NFData a, NFData v) => FingerTree v a -> ()
NFData)
deep :: (Measured v a) => Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep :: Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep Digit a
pr FingerTree v (Node v a)
m Digit a
sf = v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
Deep ((Digit a -> v
forall v a. Measured v a => a -> v
measure Digit a
pr v -> FingerTree v (Node v a) -> v
forall v a. Measured v a => v -> FingerTree v a -> v
`mappendVal` FingerTree v (Node v a)
m) v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` Digit a -> v
forall v a. Measured v a => a -> v
measure Digit a
sf) Digit a
pr FingerTree v (Node v a)
m Digit a
sf
instance (Measured v a) => Measured v (FingerTree v a) where
measure :: FingerTree v a -> v
measure FingerTree v a
Empty = v
forall a. Monoid a => a
mempty
measure (Single a
x) = a -> v
forall v a. Measured v a => a -> v
measure a
x
measure (Deep v
v Digit a
_ FingerTree v (Node v a)
_ Digit a
_) = v
v
instance Foldable (FingerTree v) where
foldMap :: (a -> m) -> FingerTree v a -> m
foldMap a -> m
_ FingerTree v a
Empty = m
forall a. Monoid a => a
mempty
foldMap a -> m
f (Single a
x) = a -> m
f a
x
foldMap a -> m
f (Deep v
_ Digit a
pr FingerTree v (Node v a)
m Digit a
sf) = (a -> m) -> Digit a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap a -> m
f Digit a
pr m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (Node v a -> m) -> FingerTree v (Node v a) -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap ((a -> m) -> Node v a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap a -> m
f) FingerTree v (Node v a)
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (a -> m) -> Digit a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap a -> m
f Digit a
sf
instance Eq a => Eq (FingerTree v a) where
FingerTree v a
xs == :: FingerTree v a -> FingerTree v a -> Bool
== FingerTree v a
ys = FingerTree v a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
toList FingerTree v a
xs [a] -> [a] -> Bool
forall a. Eq a => a -> a -> Bool
== FingerTree v a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
toList FingerTree v a
ys
instance Ord a => Ord (FingerTree v a) where
compare :: FingerTree v a -> FingerTree v a -> Ordering
compare FingerTree v a
xs FingerTree v a
ys = [a] -> [a] -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (FingerTree v a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
toList FingerTree v a
xs) (FingerTree v a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
toList FingerTree v a
ys)
instance Show a => Show (FingerTree v a) where
showsPrec :: Int -> FingerTree v a -> ShowS
showsPrec Int
p FingerTree v a
xs = Bool -> ShowS -> ShowS
showParen (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ String -> ShowS
showString String
"fromList " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> ShowS
forall a. Show a => a -> ShowS
shows (FingerTree v a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
toList FingerTree v a
xs)
fmap' :: (Measured v1 a1, Measured v2 a2) => (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
fmap' :: (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
fmap' = (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
forall v2 a2 a1 v1.
Measured v2 a2 =>
(a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
mapTree
mapTree :: (Measured v2 a2) => (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
mapTree :: (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
mapTree a1 -> a2
_ FingerTree v1 a1
Empty = FingerTree v2 a2
forall v a. FingerTree v a
Empty
mapTree a1 -> a2
f (Single a1
x) = a2 -> FingerTree v2 a2
forall v a. a -> FingerTree v a
Single (a1 -> a2
f a1
x)
mapTree a1 -> a2
f (Deep v1
_ Digit a1
pr FingerTree v1 (Node v1 a1)
m Digit a1
sf) = Digit a2
-> FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep ((a1 -> a2) -> Digit a1 -> Digit a2
forall a b. (a -> b) -> Digit a -> Digit b
mapDigit a1 -> a2
f Digit a1
pr) ((Node v1 a1 -> Node v2 a2)
-> FingerTree v1 (Node v1 a1) -> FingerTree v2 (Node v2 a2)
forall v2 a2 a1 v1.
Measured v2 a2 =>
(a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
mapTree ((a1 -> a2) -> Node v1 a1 -> Node v2 a2
forall v2 a2 a1 v1.
Measured v2 a2 =>
(a1 -> a2) -> Node v1 a1 -> Node v2 a2
mapNode a1 -> a2
f) FingerTree v1 (Node v1 a1)
m) ((a1 -> a2) -> Digit a1 -> Digit a2
forall a b. (a -> b) -> Digit a -> Digit b
mapDigit a1 -> a2
f Digit a1
sf)
mapNode :: (Measured v2 a2) => (a1 -> a2) -> Node v1 a1 -> Node v2 a2
mapNode :: (a1 -> a2) -> Node v1 a1 -> Node v2 a2
mapNode a1 -> a2
f (Node2 v1
_ a1
a a1
b) = a2 -> a2 -> Node v2 a2
forall v a. Measured v a => a -> a -> Node v a
node2 (a1 -> a2
f a1
a) (a1 -> a2
f a1
b)
mapNode a1 -> a2
f (Node3 v1
_ a1
a a1
b a1
c) = a2 -> a2 -> a2 -> Node v2 a2
forall v a. Measured v a => a -> a -> a -> Node v a
node3 (a1 -> a2
f a1
a) (a1 -> a2
f a1
b) (a1 -> a2
f a1
c)
mapDigit :: (a -> b) -> Digit a -> Digit b
mapDigit :: (a -> b) -> Digit a -> Digit b
mapDigit a -> b
f (One a
a) = b -> Digit b
forall a. a -> Digit a
One (a -> b
f a
a)
mapDigit a -> b
f (Two a
a a
b) = b -> b -> Digit b
forall a. a -> a -> Digit a
Two (a -> b
f a
a) (a -> b
f a
b)
mapDigit a -> b
f (Three a
a a
b a
c) = b -> b -> b -> Digit b
forall a. a -> a -> a -> Digit a
Three (a -> b
f a
a) (a -> b
f a
b) (a -> b
f a
c)
mapDigit a -> b
f (Four a
a a
b a
c a
d) = b -> b -> b -> b -> Digit b
forall a. a -> a -> a -> a -> Digit a
Four (a -> b
f a
a) (a -> b
f a
b) (a -> b
f a
c) (a -> b
f a
d)
fmapWithPos :: (Measured v1 a1, Measured v2 a2) => (v1 -> a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
fmapWithPos :: (v1 -> a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
fmapWithPos v1 -> a1 -> a2
f = (v1 -> a1 -> a2) -> v1 -> FingerTree v1 a1 -> FingerTree v2 a2
forall v1 a1 v2 a2.
(Measured v1 a1, Measured v2 a2) =>
(v1 -> a1 -> a2) -> v1 -> FingerTree v1 a1 -> FingerTree v2 a2
mapWPTree v1 -> a1 -> a2
f v1
forall a. Monoid a => a
mempty
mapWPTree :: (Measured v1 a1, Measured v2 a2) => (v1 -> a1 -> a2) -> v1 -> FingerTree v1 a1 -> FingerTree v2 a2
mapWPTree :: (v1 -> a1 -> a2) -> v1 -> FingerTree v1 a1 -> FingerTree v2 a2
mapWPTree v1 -> a1 -> a2
_ v1
_ FingerTree v1 a1
Empty = FingerTree v2 a2
forall v a. FingerTree v a
Empty
mapWPTree v1 -> a1 -> a2
f v1
v (Single a1
x) = a2 -> FingerTree v2 a2
forall v a. a -> FingerTree v a
Single (v1 -> a1 -> a2
f v1
v a1
x)
mapWPTree v1 -> a1 -> a2
f v1
v (Deep v1
_ Digit a1
pr FingerTree v1 (Node v1 a1)
m Digit a1
sf) = Digit a2
-> FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep
((v1 -> a1 -> a2) -> v1 -> Digit a1 -> Digit a2
forall v a b.
Measured v a =>
(v -> a -> b) -> v -> Digit a -> Digit b
mapWPDigit v1 -> a1 -> a2
f v1
v Digit a1
pr)
((v1 -> Node v1 a1 -> Node v2 a2)
-> v1 -> FingerTree v1 (Node v1 a1) -> FingerTree v2 (Node v2 a2)
forall v1 a1 v2 a2.
(Measured v1 a1, Measured v2 a2) =>
(v1 -> a1 -> a2) -> v1 -> FingerTree v1 a1 -> FingerTree v2 a2
mapWPTree ((v1 -> a1 -> a2) -> v1 -> Node v1 a1 -> Node v2 a2
forall v1 a1 v2 a2.
(Measured v1 a1, Measured v2 a2) =>
(v1 -> a1 -> a2) -> v1 -> Node v1 a1 -> Node v2 a2
mapWPNode v1 -> a1 -> a2
f) v1
vpr FingerTree v1 (Node v1 a1)
m)
((v1 -> a1 -> a2) -> v1 -> Digit a1 -> Digit a2
forall v a b.
Measured v a =>
(v -> a -> b) -> v -> Digit a -> Digit b
mapWPDigit v1 -> a1 -> a2
f v1
vm Digit a1
sf)
where vpr :: v1
vpr = v1
v v1 -> v1 -> v1
forall a. Monoid a => a -> a -> a
`mappend` Digit a1 -> v1
forall v a. Measured v a => a -> v
measure Digit a1
pr
vm :: v1
vm = v1
vpr v1 -> FingerTree v1 (Node v1 a1) -> v1
forall v a. Measured v a => v -> FingerTree v a -> v
`mappendVal` FingerTree v1 (Node v1 a1)
m
mapWPNode :: (Measured v1 a1, Measured v2 a2) => (v1 -> a1 -> a2) -> v1 -> Node v1 a1 -> Node v2 a2
mapWPNode :: (v1 -> a1 -> a2) -> v1 -> Node v1 a1 -> Node v2 a2
mapWPNode v1 -> a1 -> a2
f v1
v (Node2 v1
_ a1
a a1
b) = a2 -> a2 -> Node v2 a2
forall v a. Measured v a => a -> a -> Node v a
node2 (v1 -> a1 -> a2
f v1
v a1
a) (v1 -> a1 -> a2
f v1
va a1
b)
where va :: v1
va = v1
v v1 -> v1 -> v1
forall a. Monoid a => a -> a -> a
`mappend` a1 -> v1
forall v a. Measured v a => a -> v
measure a1
a
mapWPNode v1 -> a1 -> a2
f v1
v (Node3 v1
_ a1
a a1
b a1
c) = a2 -> a2 -> a2 -> Node v2 a2
forall v a. Measured v a => a -> a -> a -> Node v a
node3 (v1 -> a1 -> a2
f v1
v a1
a) (v1 -> a1 -> a2
f v1
va a1
b) (v1 -> a1 -> a2
f v1
vab a1
c)
where va :: v1
va = v1
v v1 -> v1 -> v1
forall a. Monoid a => a -> a -> a
`mappend` a1 -> v1
forall v a. Measured v a => a -> v
measure a1
a
vab :: v1
vab = v1
va v1 -> v1 -> v1
forall a. Monoid a => a -> a -> a
`mappend` a1 -> v1
forall v a. Measured v a => a -> v
measure a1
b
mapWPDigit :: (Measured v a) => (v -> a -> b) -> v -> Digit a -> Digit b
mapWPDigit :: (v -> a -> b) -> v -> Digit a -> Digit b
mapWPDigit v -> a -> b
f v
v (One a
a ) = b -> Digit b
forall a. a -> Digit a
One (v -> a -> b
f v
v a
a)
mapWPDigit v -> a -> b
f v
v (Two a
a a
b) = b -> b -> Digit b
forall a. a -> a -> Digit a
Two (v -> a -> b
f v
v a
a) (v -> a -> b
f v
va a
b)
where va :: v
va = v
v v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
mapWPDigit v -> a -> b
f v
v (Three a
a a
b a
c) = b -> b -> b -> Digit b
forall a. a -> a -> a -> Digit a
Three (v -> a -> b
f v
v a
a) (v -> a -> b
f v
va a
b) (v -> a -> b
f v
vab a
c)
where va :: v
va = v
v v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
vab :: v
vab = v
va v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
b
mapWPDigit v -> a -> b
f v
v (Four a
a a
b a
c a
d) = b -> b -> b -> b -> Digit b
forall a. a -> a -> a -> a -> Digit a
Four (v -> a -> b
f v
v a
a) (v -> a -> b
f v
va a
b) (v -> a -> b
f v
vab a
c) (v -> a -> b
f v
vabc a
d)
where va :: v
va = v
v v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
vab :: v
vab = v
va v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
b
vabc :: v
vabc = v
vab v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
c
unsafeFmap :: (a -> b) -> FingerTree v a -> FingerTree v b
unsafeFmap :: (a -> b) -> FingerTree v a -> FingerTree v b
unsafeFmap a -> b
_ FingerTree v a
Empty = FingerTree v b
forall v a. FingerTree v a
Empty
unsafeFmap a -> b
f (Single a
x) = b -> FingerTree v b
forall v a. a -> FingerTree v a
Single (a -> b
f a
x)
unsafeFmap a -> b
f (Deep v
v Digit a
pr FingerTree v (Node v a)
m Digit a
sf) = v
-> Digit b -> FingerTree v (Node v b) -> Digit b -> FingerTree v b
forall v a.
v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
Deep v
v ((a -> b) -> Digit a -> Digit b
forall a b. (a -> b) -> Digit a -> Digit b
mapDigit a -> b
f Digit a
pr) ((Node v a -> Node v b)
-> FingerTree v (Node v a) -> FingerTree v (Node v b)
forall a b v. (a -> b) -> FingerTree v a -> FingerTree v b
unsafeFmap ((a -> b) -> Node v a -> Node v b
forall a b v. (a -> b) -> Node v a -> Node v b
unsafeFmapNode a -> b
f) FingerTree v (Node v a)
m) ((a -> b) -> Digit a -> Digit b
forall a b. (a -> b) -> Digit a -> Digit b
mapDigit a -> b
f Digit a
sf)
unsafeFmapNode :: (a -> b) -> Node v a -> Node v b
unsafeFmapNode :: (a -> b) -> Node v a -> Node v b
unsafeFmapNode a -> b
f (Node2 v
v a
a a
b) = v -> b -> b -> Node v b
forall v a. v -> a -> a -> Node v a
Node2 v
v (a -> b
f a
a) (a -> b
f a
b)
unsafeFmapNode a -> b
f (Node3 v
v a
a a
b a
c) = v -> b -> b -> b -> Node v b
forall v a. v -> a -> a -> a -> Node v a
Node3 v
v (a -> b
f a
a) (a -> b
f a
b) (a -> b
f a
c)
traverse' :: (Measured v1 a1, Measured v2 a2, Applicative f) => (a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverse' :: (a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverse' = (a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
forall v2 a2 (f :: * -> *) a1 v1.
(Measured v2 a2, Applicative f) =>
(a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseTree
traverseTree :: (Measured v2 a2, Applicative f) => (a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseTree :: (a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseTree a1 -> f a2
_ FingerTree v1 a1
Empty = FingerTree v2 a2 -> f (FingerTree v2 a2)
forall (f :: * -> *) a. Applicative f => a -> f a
pure FingerTree v2 a2
forall v a. FingerTree v a
Empty
traverseTree a1 -> f a2
f (Single a1
x) = a2 -> FingerTree v2 a2
forall v a. a -> FingerTree v a
Single (a2 -> FingerTree v2 a2) -> f a2 -> f (FingerTree v2 a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a1 -> f a2
f a1
x
traverseTree a1 -> f a2
f (Deep v1
_ Digit a1
pr FingerTree v1 (Node v1 a1)
m Digit a1
sf) = Digit a2
-> FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep
(Digit a2
-> FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2)
-> f (Digit a2)
-> f (FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a1 -> f a2) -> Digit a1 -> f (Digit a2)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Digit a -> f (Digit b)
traverseDigit a1 -> f a2
f Digit a1
pr
f (FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2)
-> f (FingerTree v2 (Node v2 a2))
-> f (Digit a2 -> FingerTree v2 a2)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Node v1 a1 -> f (Node v2 a2))
-> FingerTree v1 (Node v1 a1) -> f (FingerTree v2 (Node v2 a2))
forall v2 a2 (f :: * -> *) a1 v1.
(Measured v2 a2, Applicative f) =>
(a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseTree ((a1 -> f a2) -> Node v1 a1 -> f (Node v2 a2)
forall v2 a2 (f :: * -> *) a1 v1.
(Measured v2 a2, Applicative f) =>
(a1 -> f a2) -> Node v1 a1 -> f (Node v2 a2)
traverseNode a1 -> f a2
f) FingerTree v1 (Node v1 a1)
m
f (Digit a2 -> FingerTree v2 a2)
-> f (Digit a2) -> f (FingerTree v2 a2)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (a1 -> f a2) -> Digit a1 -> f (Digit a2)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Digit a -> f (Digit b)
traverseDigit a1 -> f a2
f Digit a1
sf
traverseNode :: (Measured v2 a2, Applicative f) => (a1 -> f a2) -> Node v1 a1 -> f (Node v2 a2)
traverseNode :: (a1 -> f a2) -> Node v1 a1 -> f (Node v2 a2)
traverseNode a1 -> f a2
f (Node2 v1
_ a1
a a1
b) = a2 -> a2 -> Node v2 a2
forall v a. Measured v a => a -> a -> Node v a
node2 (a2 -> a2 -> Node v2 a2) -> f a2 -> f (a2 -> Node v2 a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a1 -> f a2
f a1
a f (a2 -> Node v2 a2) -> f a2 -> f (Node v2 a2)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a1 -> f a2
f a1
b
traverseNode a1 -> f a2
f (Node3 v1
_ a1
a a1
b a1
c) = a2 -> a2 -> a2 -> Node v2 a2
forall v a. Measured v a => a -> a -> a -> Node v a
node3 (a2 -> a2 -> a2 -> Node v2 a2)
-> f a2 -> f (a2 -> a2 -> Node v2 a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a1 -> f a2
f a1
a f (a2 -> a2 -> Node v2 a2) -> f a2 -> f (a2 -> Node v2 a2)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a1 -> f a2
f a1
b f (a2 -> Node v2 a2) -> f a2 -> f (Node v2 a2)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a1 -> f a2
f a1
c
traverseDigit :: (Applicative f) => (a -> f b) -> Digit a -> f (Digit b)
traverseDigit :: (a -> f b) -> Digit a -> f (Digit b)
traverseDigit a -> f b
f (One a
a) = b -> Digit b
forall a. a -> Digit a
One (b -> Digit b) -> f b -> f (Digit b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
traverseDigit a -> f b
f (Two a
a a
b) = b -> b -> Digit b
forall a. a -> a -> Digit a
Two (b -> b -> Digit b) -> f b -> f (b -> Digit b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a f (b -> Digit b) -> f b -> f (Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> f b
f a
b
traverseDigit a -> f b
f (Three a
a a
b a
c) = b -> b -> b -> Digit b
forall a. a -> a -> a -> Digit a
Three (b -> b -> b -> Digit b) -> f b -> f (b -> b -> Digit b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a f (b -> b -> Digit b) -> f b -> f (b -> Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> f b
f a
b f (b -> Digit b) -> f b -> f (Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> f b
f a
c
traverseDigit a -> f b
f (Four a
a a
b a
c a
d) = b -> b -> b -> b -> Digit b
forall a. a -> a -> a -> a -> Digit a
Four (b -> b -> b -> b -> Digit b) -> f b -> f (b -> b -> b -> Digit b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a f (b -> b -> b -> Digit b) -> f b -> f (b -> b -> Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> f b
f a
b f (b -> b -> Digit b) -> f b -> f (b -> Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> f b
f a
c f (b -> Digit b) -> f b -> f (Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> f b
f a
d
traverseWithPos :: (Measured v1 a1, Measured v2 a2, Applicative f) => (v1 -> a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseWithPos :: (v1 -> a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseWithPos v1 -> a1 -> f a2
f = (v1 -> a1 -> f a2)
-> v1 -> FingerTree v1 a1 -> f (FingerTree v2 a2)
forall v1 a1 v2 a2 (f :: * -> *).
(Measured v1 a1, Measured v2 a2, Applicative f) =>
(v1 -> a1 -> f a2)
-> v1 -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseWPTree v1 -> a1 -> f a2
f v1
forall a. Monoid a => a
mempty
traverseWPTree :: (Measured v1 a1, Measured v2 a2, Applicative f) => (v1 -> a1 -> f a2) -> v1 -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseWPTree :: (v1 -> a1 -> f a2)
-> v1 -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseWPTree v1 -> a1 -> f a2
_ v1
_ FingerTree v1 a1
Empty = FingerTree v2 a2 -> f (FingerTree v2 a2)
forall (f :: * -> *) a. Applicative f => a -> f a
pure FingerTree v2 a2
forall v a. FingerTree v a
Empty
traverseWPTree v1 -> a1 -> f a2
f v1
v (Single a1
x) = a2 -> FingerTree v2 a2
forall v a. a -> FingerTree v a
Single (a2 -> FingerTree v2 a2) -> f a2 -> f (FingerTree v2 a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> v1 -> a1 -> f a2
f v1
v a1
x
traverseWPTree v1 -> a1 -> f a2
f v1
v (Deep v1
_ Digit a1
pr FingerTree v1 (Node v1 a1)
m Digit a1
sf) = Digit a2
-> FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep
(Digit a2
-> FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2)
-> f (Digit a2)
-> f (FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (v1 -> a1 -> f a2) -> v1 -> Digit a1 -> f (Digit a2)
forall v a (f :: * -> *) b.
(Measured v a, Applicative f) =>
(v -> a -> f b) -> v -> Digit a -> f (Digit b)
traverseWPDigit v1 -> a1 -> f a2
f v1
v Digit a1
pr
f (FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2)
-> f (FingerTree v2 (Node v2 a2))
-> f (Digit a2 -> FingerTree v2 a2)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (v1 -> Node v1 a1 -> f (Node v2 a2))
-> v1
-> FingerTree v1 (Node v1 a1)
-> f (FingerTree v2 (Node v2 a2))
forall v1 a1 v2 a2 (f :: * -> *).
(Measured v1 a1, Measured v2 a2, Applicative f) =>
(v1 -> a1 -> f a2)
-> v1 -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseWPTree ((v1 -> a1 -> f a2) -> v1 -> Node v1 a1 -> f (Node v2 a2)
forall v1 a1 v2 a2 (f :: * -> *).
(Measured v1 a1, Measured v2 a2, Applicative f) =>
(v1 -> a1 -> f a2) -> v1 -> Node v1 a1 -> f (Node v2 a2)
traverseWPNode v1 -> a1 -> f a2
f) v1
vpr FingerTree v1 (Node v1 a1)
m
f (Digit a2 -> FingerTree v2 a2)
-> f (Digit a2) -> f (FingerTree v2 a2)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (v1 -> a1 -> f a2) -> v1 -> Digit a1 -> f (Digit a2)
forall v a (f :: * -> *) b.
(Measured v a, Applicative f) =>
(v -> a -> f b) -> v -> Digit a -> f (Digit b)
traverseWPDigit v1 -> a1 -> f a2
f v1
vm Digit a1
sf
where vpr :: v1
vpr = v1
v v1 -> v1 -> v1
forall a. Monoid a => a -> a -> a
`mappend` Digit a1 -> v1
forall v a. Measured v a => a -> v
measure Digit a1
pr
vm :: v1
vm = v1
vpr v1 -> FingerTree v1 (Node v1 a1) -> v1
forall v a. Measured v a => v -> FingerTree v a -> v
`mappendVal` FingerTree v1 (Node v1 a1)
m
traverseWPNode :: (Measured v1 a1, Measured v2 a2, Applicative f) => (v1 -> a1 -> f a2) -> v1 -> Node v1 a1 -> f (Node v2 a2)
traverseWPNode :: (v1 -> a1 -> f a2) -> v1 -> Node v1 a1 -> f (Node v2 a2)
traverseWPNode v1 -> a1 -> f a2
f v1
v (Node2 v1
_ a1
a a1
b) = a2 -> a2 -> Node v2 a2
forall v a. Measured v a => a -> a -> Node v a
node2 (a2 -> a2 -> Node v2 a2) -> f a2 -> f (a2 -> Node v2 a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> v1 -> a1 -> f a2
f v1
v a1
a f (a2 -> Node v2 a2) -> f a2 -> f (Node v2 a2)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> v1 -> a1 -> f a2
f v1
va a1
b
where va :: v1
va = v1
v v1 -> v1 -> v1
forall a. Monoid a => a -> a -> a
`mappend` a1 -> v1
forall v a. Measured v a => a -> v
measure a1
a
traverseWPNode v1 -> a1 -> f a2
f v1
v (Node3 v1
_ a1
a a1
b a1
c) = a2 -> a2 -> a2 -> Node v2 a2
forall v a. Measured v a => a -> a -> a -> Node v a
node3 (a2 -> a2 -> a2 -> Node v2 a2)
-> f a2 -> f (a2 -> a2 -> Node v2 a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> v1 -> a1 -> f a2
f v1
v a1
a f (a2 -> a2 -> Node v2 a2) -> f a2 -> f (a2 -> Node v2 a2)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> v1 -> a1 -> f a2
f v1
va a1
b f (a2 -> Node v2 a2) -> f a2 -> f (Node v2 a2)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> v1 -> a1 -> f a2
f v1
vab a1
c
where va :: v1
va = v1
v v1 -> v1 -> v1
forall a. Monoid a => a -> a -> a
`mappend` a1 -> v1
forall v a. Measured v a => a -> v
measure a1
a
vab :: v1
vab = v1
va v1 -> v1 -> v1
forall a. Monoid a => a -> a -> a
`mappend` a1 -> v1
forall v a. Measured v a => a -> v
measure a1
b
traverseWPDigit :: (Measured v a, Applicative f) => (v -> a -> f b) -> v -> Digit a -> f (Digit b)
traverseWPDigit :: (v -> a -> f b) -> v -> Digit a -> f (Digit b)
traverseWPDigit v -> a -> f b
f v
v (One a
a) = b -> Digit b
forall a. a -> Digit a
One (b -> Digit b) -> f b -> f (Digit b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> v -> a -> f b
f v
v a
a
traverseWPDigit v -> a -> f b
f v
v (Two a
a a
b) = b -> b -> Digit b
forall a. a -> a -> Digit a
Two (b -> b -> Digit b) -> f b -> f (b -> Digit b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> v -> a -> f b
f v
v a
a f (b -> Digit b) -> f b -> f (Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> v -> a -> f b
f v
va a
b
where va :: v
va = v
v v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
traverseWPDigit v -> a -> f b
f v
v (Three a
a a
b a
c) = b -> b -> b -> Digit b
forall a. a -> a -> a -> Digit a
Three (b -> b -> b -> Digit b) -> f b -> f (b -> b -> Digit b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> v -> a -> f b
f v
v a
a f (b -> b -> Digit b) -> f b -> f (b -> Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> v -> a -> f b
f v
va a
b f (b -> Digit b) -> f b -> f (Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> v -> a -> f b
f v
vab a
c
where va :: v
va = v
v v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
vab :: v
vab = v
va v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
b
traverseWPDigit v -> a -> f b
f v
v (Four a
a a
b a
c a
d) = b -> b -> b -> b -> Digit b
forall a. a -> a -> a -> a -> Digit a
Four (b -> b -> b -> b -> Digit b) -> f b -> f (b -> b -> b -> Digit b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> v -> a -> f b
f v
v a
a f (b -> b -> b -> Digit b) -> f b -> f (b -> b -> Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> v -> a -> f b
f v
va a
b f (b -> b -> Digit b) -> f b -> f (b -> Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> v -> a -> f b
f v
vab a
c f (b -> Digit b) -> f b -> f (Digit b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> v -> a -> f b
f v
vabc a
d
where va :: v
va = v
v v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
vab :: v
vab = v
va v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
b
vabc :: v
vabc = v
vab v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
c
unsafeTraverse :: (Applicative f) => (a -> f b) -> FingerTree v a -> f (FingerTree v b)
unsafeTraverse :: (a -> f b) -> FingerTree v a -> f (FingerTree v b)
unsafeTraverse a -> f b
_ FingerTree v a
Empty = FingerTree v b -> f (FingerTree v b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure FingerTree v b
forall v a. FingerTree v a
Empty
unsafeTraverse a -> f b
f (Single a
x) = b -> FingerTree v b
forall v a. a -> FingerTree v a
Single (b -> FingerTree v b) -> f b -> f (FingerTree v b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
x
unsafeTraverse a -> f b
f (Deep v
v Digit a
pr FingerTree v (Node v a)
m Digit a
sf) = v
-> Digit b -> FingerTree v (Node v b) -> Digit b -> FingerTree v b
forall v a.
v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
Deep v
v
(Digit b -> FingerTree v (Node v b) -> Digit b -> FingerTree v b)
-> f (Digit b)
-> f (FingerTree v (Node v b) -> Digit b -> FingerTree v b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a -> f b) -> Digit a -> f (Digit b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Digit a -> f (Digit b)
traverseDigit a -> f b
f Digit a
pr
f (FingerTree v (Node v b) -> Digit b -> FingerTree v b)
-> f (FingerTree v (Node v b)) -> f (Digit b -> FingerTree v b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Node v a -> f (Node v b))
-> FingerTree v (Node v a) -> f (FingerTree v (Node v b))
forall (f :: * -> *) a b v.
Applicative f =>
(a -> f b) -> FingerTree v a -> f (FingerTree v b)
unsafeTraverse ((a -> f b) -> Node v a -> f (Node v b)
forall (f :: * -> *) a b v.
Applicative f =>
(a -> f b) -> Node v a -> f (Node v b)
unsafeTraverseNode a -> f b
f) FingerTree v (Node v a)
m
f (Digit b -> FingerTree v b) -> f (Digit b) -> f (FingerTree v b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (a -> f b) -> Digit a -> f (Digit b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Digit a -> f (Digit b)
traverseDigit a -> f b
f Digit a
sf
unsafeTraverseNode :: (Applicative f) => (a -> f b) -> Node v a -> f (Node v b)
unsafeTraverseNode :: (a -> f b) -> Node v a -> f (Node v b)
unsafeTraverseNode a -> f b
f (Node2 v
v a
a a
b) = v -> b -> b -> Node v b
forall v a. v -> a -> a -> Node v a
Node2 v
v (b -> b -> Node v b) -> f b -> f (b -> Node v b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a f (b -> Node v b) -> f b -> f (Node v b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> f b
f a
b
unsafeTraverseNode a -> f b
f (Node3 v
v a
a a
b a
c) = v -> b -> b -> b -> Node v b
forall v a. v -> a -> a -> a -> Node v a
Node3 v
v (b -> b -> b -> Node v b) -> f b -> f (b -> b -> Node v b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a f (b -> b -> Node v b) -> f b -> f (b -> Node v b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> f b
f a
b f (b -> Node v b) -> f b -> f (Node v b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> f b
f a
c
empty :: Measured v a => FingerTree v a
empty :: FingerTree v a
empty = FingerTree v a
forall v a. FingerTree v a
Empty
singleton :: Measured v a => a -> FingerTree v a
singleton :: a -> FingerTree v a
singleton = a -> FingerTree v a
forall v a. a -> FingerTree v a
Single
fromList :: (Measured v a) => [a] -> FingerTree v a
fromList :: [a] -> FingerTree v a
fromList = (a -> FingerTree v a -> FingerTree v a)
-> FingerTree v a -> [a] -> FingerTree v a
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr a -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
(<|) FingerTree v a
forall v a. FingerTree v a
Empty
instance Measured v a => Cons (FingerTree v a) where
cons :: Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
cons Elem (FingerTree v a)
a FingerTree v a
Empty = a -> FingerTree v a
forall v a. a -> FingerTree v a
Single a
Elem (FingerTree v a)
a
cons Elem (FingerTree v a)
a (Single a
b ) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep (a -> Digit a
forall a. a -> Digit a
One a
Elem (FingerTree v a)
a) FingerTree v (Node v a)
forall v a. FingerTree v a
Empty (a -> Digit a
forall a. a -> Digit a
One a
b)
cons Elem (FingerTree v a)
a (Deep v
v (Four a
b a
c a
d a
e) FingerTree v (Node v a)
m Digit a
sf) = FingerTree v (Node v a)
m FingerTree v (Node v a) -> FingerTree v a -> FingerTree v a
`seq` v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
Deep (a -> v
forall v a. Measured v a => a -> v
measure a
Elem (FingerTree v a)
a v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` v
v) (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
Elem (FingerTree v a)
a a
b) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
c a
d a
e Elem (FingerTree v (Node v a))
-> FingerTree v (Node v a) -> FingerTree v (Node v a)
forall v. Cons v => Elem v -> v -> v
<| FingerTree v (Node v a)
m) Digit a
sf
cons Elem (FingerTree v a)
a (Deep v
v Digit a
pr FingerTree v (Node v a)
m Digit a
sf ) = v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
Deep (a -> v
forall v a. Measured v a => a -> v
measure a
Elem (FingerTree v a)
a v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` v
v) (a -> Digit a -> Digit a
forall a. a -> Digit a -> Digit a
consDigit a
Elem (FingerTree v a)
a Digit a
pr) FingerTree v (Node v a)
m Digit a
sf
consDigit :: a -> Digit a -> Digit a
consDigit :: a -> Digit a -> Digit a
consDigit a
a (One a
b) = a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
a a
b
consDigit a
a (Two a
b a
c) = a -> a -> a -> Digit a
forall a. a -> a -> a -> Digit a
Three a
a a
b a
c
consDigit a
a (Three a
b a
c a
d) = a -> a -> a -> a -> Digit a
forall a. a -> a -> a -> a -> Digit a
Four a
a a
b a
c a
d
consDigit a
_ (Four a
_ a
_ a
_ a
_) = String -> Digit a
forall a. String -> a
illegalArgument String
"consDigit"
instance Measured v a => Snoc (FingerTree v a) where
snoc :: FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
snoc FingerTree v a
Empty Elem (FingerTree v a)
a = a -> FingerTree v a
forall v a. a -> FingerTree v a
Single a
Elem (FingerTree v a)
a
snoc (Single a
a ) Elem (FingerTree v a)
b = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep (a -> Digit a
forall a. a -> Digit a
One a
a) FingerTree v (Node v a)
forall v a. FingerTree v a
Empty (a -> Digit a
forall a. a -> Digit a
One a
Elem (FingerTree v a)
b)
snoc (Deep v
v Digit a
pr FingerTree v (Node v a)
m (Four a
a a
b a
c a
d)) Elem (FingerTree v a)
e = FingerTree v (Node v a)
m FingerTree v (Node v a) -> FingerTree v a -> FingerTree v a
`seq` v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
Deep (v
v v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
Elem (FingerTree v a)
e) Digit a
pr (FingerTree v (Node v a)
m FingerTree v (Node v a)
-> Elem (FingerTree v (Node v a)) -> FingerTree v (Node v a)
forall v. Snoc v => v -> Elem v -> v
|> a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
d a
Elem (FingerTree v a)
e)
snoc (Deep v
v Digit a
pr FingerTree v (Node v a)
m Digit a
sf ) Elem (FingerTree v a)
x = v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
Deep (v
v v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
Elem (FingerTree v a)
x) Digit a
pr FingerTree v (Node v a)
m (Digit a -> a -> Digit a
forall a. Digit a -> a -> Digit a
snocDigit Digit a
sf a
Elem (FingerTree v a)
x)
snocDigit :: Digit a -> a -> Digit a
snocDigit :: Digit a -> a -> Digit a
snocDigit (One a
a) a
b = a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
a a
b
snocDigit (Two a
a a
b) a
c = a -> a -> a -> Digit a
forall a. a -> a -> a -> Digit a
Three a
a a
b a
c
snocDigit (Three a
a a
b a
c) a
d = a -> a -> a -> a -> Digit a
forall a. a -> a -> a -> a -> Digit a
Four a
a a
b a
c a
d
snocDigit (Four a
_ a
_ a
_ a
_) a
_ = String -> Digit a
forall a. String -> a
illegalArgument String
"snocDigit"
null :: (Measured v a) => FingerTree v a -> Bool
null :: FingerTree v a -> Bool
null FingerTree v a
Empty = Bool
True
null FingerTree v a
_ = Bool
False
viewl :: (Measured v a) => FingerTree v a -> ViewL (FingerTree v) a
viewl :: FingerTree v a -> ViewL (FingerTree v) a
viewl FingerTree v a
Empty = ViewL (FingerTree v) a
forall (s :: * -> *) a. ViewL s a
EmptyL
viewl (Single a
x) = a
x a -> FingerTree v a -> ViewL (FingerTree v) a
forall (s :: * -> *) a. a -> s a -> ViewL s a
:< FingerTree v a
forall v a. FingerTree v a
Empty
viewl (Deep v
_ (One a
x) FingerTree v (Node v a)
m Digit a
sf) = a
x a -> FingerTree v a -> ViewL (FingerTree v) a
forall (s :: * -> *) a. a -> s a -> ViewL s a
:< FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
FingerTree v (Node v a) -> Digit a -> FingerTree v a
rotL FingerTree v (Node v a)
m Digit a
sf
viewl (Deep v
_ Digit a
pr FingerTree v (Node v a)
m Digit a
sf) = Digit a -> a
forall a. Digit a -> a
lheadDigit Digit a
pr a -> FingerTree v a -> ViewL (FingerTree v) a
forall (s :: * -> *) a. a -> s a -> ViewL s a
:< Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep (Digit a -> Digit a
forall a. Digit a -> Digit a
ltailDigit Digit a
pr) FingerTree v (Node v a)
m Digit a
sf
rotL :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> FingerTree v a
rotL :: FingerTree v (Node v a) -> Digit a -> FingerTree v a
rotL FingerTree v (Node v a)
m Digit a
sf = case FingerTree v (Node v a) -> ViewL (FingerTree v) (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> ViewL (FingerTree v) a
viewl FingerTree v (Node v a)
m of
ViewL (FingerTree v) (Node v a)
EmptyL -> Digit a -> FingerTree v a
forall v a. Measured v a => Digit a -> FingerTree v a
digitToTree Digit a
sf
Node v a
a :< FingerTree v (Node v a)
m' -> v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
Deep (FingerTree v (Node v a) -> v
forall v a. Measured v a => a -> v
measure FingerTree v (Node v a)
m v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` Digit a -> v
forall v a. Measured v a => a -> v
measure Digit a
sf) (Node v a -> Digit a
forall v a. Node v a -> Digit a
nodeToDigit Node v a
a) FingerTree v (Node v a)
m' Digit a
sf
lheadDigit :: Digit a -> a
lheadDigit :: Digit a -> a
lheadDigit (One a
a) = a
a
lheadDigit (Two a
a a
_) = a
a
lheadDigit (Three a
a a
_ a
_) = a
a
lheadDigit (Four a
a a
_ a
_ a
_) = a
a
ltailDigit :: Digit a -> Digit a
ltailDigit :: Digit a -> Digit a
ltailDigit (One a
_) = String -> Digit a
forall a. String -> a
illegalArgument String
"ltailDigit"
ltailDigit (Two a
_ a
b) = a -> Digit a
forall a. a -> Digit a
One a
b
ltailDigit (Three a
_ a
b a
c) = a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
b a
c
ltailDigit (Four a
_ a
b a
c a
d) = a -> a -> a -> Digit a
forall a. a -> a -> a -> Digit a
Three a
b a
c a
d
viewr :: (Measured v a) => FingerTree v a -> ViewR (FingerTree v) a
viewr :: FingerTree v a -> ViewR (FingerTree v) a
viewr FingerTree v a
Empty = ViewR (FingerTree v) a
forall (s :: * -> *) a. ViewR s a
EmptyR
viewr (Single a
x) = FingerTree v a
forall v a. FingerTree v a
Empty FingerTree v a -> a -> ViewR (FingerTree v) a
forall (s :: * -> *) a. s a -> a -> ViewR s a
:> a
x
viewr (Deep v
_ Digit a
pr FingerTree v (Node v a)
m (One a
x)) = Digit a -> FingerTree v (Node v a) -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> FingerTree v a
rotR Digit a
pr FingerTree v (Node v a)
m FingerTree v a -> a -> ViewR (FingerTree v) a
forall (s :: * -> *) a. s a -> a -> ViewR s a
:> a
x
viewr (Deep v
_ Digit a
pr FingerTree v (Node v a)
m Digit a
sf) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep Digit a
pr FingerTree v (Node v a)
m (Digit a -> Digit a
forall a. Digit a -> Digit a
rtailDigit Digit a
sf) FingerTree v a -> a -> ViewR (FingerTree v) a
forall (s :: * -> *) a. s a -> a -> ViewR s a
:> Digit a -> a
forall a. Digit a -> a
rheadDigit Digit a
sf
rotR :: (Measured v a) => Digit a -> FingerTree v (Node v a) -> FingerTree v a
rotR :: Digit a -> FingerTree v (Node v a) -> FingerTree v a
rotR Digit a
pr FingerTree v (Node v a)
m = case FingerTree v (Node v a) -> ViewR (FingerTree v) (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> ViewR (FingerTree v) a
viewr FingerTree v (Node v a)
m of
ViewR (FingerTree v) (Node v a)
EmptyR -> Digit a -> FingerTree v a
forall v a. Measured v a => Digit a -> FingerTree v a
digitToTree Digit a
pr
FingerTree v (Node v a)
m' :> Node v a
a -> v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
v
-> Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
Deep (Digit a -> v
forall v a. Measured v a => a -> v
measure Digit a
pr v -> FingerTree v (Node v a) -> v
forall v a. Measured v a => v -> FingerTree v a -> v
`mappendVal` FingerTree v (Node v a)
m) Digit a
pr FingerTree v (Node v a)
m' (Node v a -> Digit a
forall v a. Node v a -> Digit a
nodeToDigit Node v a
a)
rheadDigit :: Digit a -> a
rheadDigit :: Digit a -> a
rheadDigit (One a
a) = a
a
rheadDigit (Two a
_ a
b) = a
b
rheadDigit (Three a
_ a
_ a
c) = a
c
rheadDigit (Four a
_ a
_ a
_ a
d) = a
d
rtailDigit :: Digit a -> Digit a
rtailDigit :: Digit a -> Digit a
rtailDigit (One a
_) = String -> Digit a
forall a. String -> a
illegalArgument String
"rtailDigit"
rtailDigit (Two a
a a
_) = a -> Digit a
forall a. a -> Digit a
One a
a
rtailDigit (Three a
a a
b a
_) = a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
a a
b
rtailDigit (Four a
a a
b a
c a
_) = a -> a -> a -> Digit a
forall a. a -> a -> a -> Digit a
Three a
a a
b a
c
digitToTree :: (Measured v a) => Digit a -> FingerTree v a
digitToTree :: Digit a -> FingerTree v a
digitToTree (One a
a) = a -> FingerTree v a
forall v a. a -> FingerTree v a
Single a
a
digitToTree (Two a
a a
b) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep (a -> Digit a
forall a. a -> Digit a
One a
a) FingerTree v (Node v a)
forall v a. FingerTree v a
Empty (a -> Digit a
forall a. a -> Digit a
One a
b)
digitToTree (Three a
a a
b a
c) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
a a
b) FingerTree v (Node v a)
forall v a. FingerTree v a
Empty (a -> Digit a
forall a. a -> Digit a
One a
c)
digitToTree (Four a
a a
b a
c a
d) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
a a
b) FingerTree v (Node v a)
forall v a. FingerTree v a
Empty (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
c a
d)
append :: (Measured v a) => FingerTree v a -> FingerTree v a -> FingerTree v a
append :: FingerTree v a -> FingerTree v a -> FingerTree v a
append = FingerTree v a -> FingerTree v a -> FingerTree v a
forall v a.
Measured v a =>
FingerTree v a -> FingerTree v a -> FingerTree v a
appendTree0
appendTree0 :: (Measured v a) => FingerTree v a -> FingerTree v a -> FingerTree v a
appendTree0 :: FingerTree v a -> FingerTree v a -> FingerTree v a
appendTree0 FingerTree v a
Empty FingerTree v a
xs = FingerTree v a
xs
appendTree0 FingerTree v a
xs FingerTree v a
Empty = FingerTree v a
xs
appendTree0 (Single a
x) FingerTree v a
xs = a
Elem (FingerTree v a)
x Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| FingerTree v a
xs
appendTree0 FingerTree v a
xs (Single a
x) = FingerTree v a
xs FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
x
appendTree0 (Deep v
_ Digit a
pr1 FingerTree v (Node v a)
m1 Digit a
sf1) (Deep v
_ Digit a
pr2 FingerTree v (Node v a)
m2 Digit a
sf2) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep Digit a
pr1 (FingerTree v (Node v a)
-> Digit a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v (Node v a)
-> Digit a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
addDigits0 FingerTree v (Node v a)
m1 Digit a
sf1 Digit a
pr2 FingerTree v (Node v a)
m2) Digit a
sf2
addDigits0 :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> Digit a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
addDigits0 :: FingerTree v (Node v a)
-> Digit a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
addDigits0 FingerTree v (Node v a)
m1 (One a
a ) (One a
b ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> FingerTree v a -> FingerTree v a
appendTree1 FingerTree v (Node v a)
m1 (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
a a
b ) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (One a
a ) (Two a
b a
c ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> FingerTree v a -> FingerTree v a
appendTree1 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (One a
a ) (Three a
b a
c a
d ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
a a
b ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
c a
d ) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (One a
a ) (Four a
b a
c a
d a
e ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Two a
a a
b ) (One a
c ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> FingerTree v a -> FingerTree v a
appendTree1 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Two a
a a
b ) (Two a
c a
d ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
a a
b ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
c a
d ) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Two a
a a
b ) (Three a
c a
d a
e ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Two a
a a
b ) (Four a
c a
d a
e a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) (One a
d ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
a a
b ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
c a
d ) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) (Two a
d a
e ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) (Three a
d a
e a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) (Four a
d a
e a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) (One a
e ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) (Two a
e a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) (Three a
e a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g) FingerTree v (Node v a)
m2
addDigits0 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) (Four a
e a
f a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h) FingerTree v (Node v a)
m2
appendTree1 :: (Measured v a) => FingerTree v a -> a -> FingerTree v a -> FingerTree v a
appendTree1 :: FingerTree v a -> a -> FingerTree v a -> FingerTree v a
appendTree1 FingerTree v a
Empty a
a FingerTree v a
xs = a
Elem (FingerTree v a)
a Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| FingerTree v a
xs
appendTree1 FingerTree v a
xs a
a FingerTree v a
Empty = FingerTree v a
xs FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
a
appendTree1 (Single a
x) a
a FingerTree v a
xs = a
Elem (FingerTree v a)
x Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
a Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| FingerTree v a
xs
appendTree1 FingerTree v a
xs a
a (Single a
x) = FingerTree v a
xs FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
a FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
x
appendTree1 (Deep v
_ Digit a
pr1 FingerTree v (Node v a)
m1 Digit a
sf1) a
a (Deep v
_ Digit a
pr2 FingerTree v (Node v a)
m2 Digit a
sf2) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep Digit a
pr1 (FingerTree v (Node v a)
-> Digit a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v (Node v a)
-> Digit a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
addDigits1 FingerTree v (Node v a)
m1 Digit a
sf1 a
a Digit a
pr2 FingerTree v (Node v a)
m2) Digit a
sf2
addDigits1 :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> a -> Digit a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
addDigits1 :: FingerTree v (Node v a)
-> Digit a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
addDigits1 FingerTree v (Node v a)
m1 (One a
a ) a
b (One a
c ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> FingerTree v a -> FingerTree v a
appendTree1 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (One a
a ) a
b (Two a
c a
d ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
a a
b ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
c a
d ) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (One a
a ) a
b (Three a
c a
d a
e ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (One a
a ) a
b (Four a
c a
d a
e a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c (One a
d ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
a a
b ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
c a
d ) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c (Two a
d a
e ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c (Three a
d a
e a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c (Four a
d a
e a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d (One a
e ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d (Two a
e a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d (Three a
e a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d (Four a
e a
f a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e (One a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e (Two a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e (Three a
f a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits1 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e (Four a
f a
g a
h a
i ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) FingerTree v (Node v a)
m2
appendTree2 :: (Measured v a) => FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 :: FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v a
Empty a
a a
b FingerTree v a
xs = a
Elem (FingerTree v a)
a Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
b Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| FingerTree v a
xs
appendTree2 FingerTree v a
xs a
a a
b FingerTree v a
Empty = FingerTree v a
xs FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
a FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
b
appendTree2 (Single a
x) a
a a
b FingerTree v a
xs = a
Elem (FingerTree v a)
x Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
a Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
b Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| FingerTree v a
xs
appendTree2 FingerTree v a
xs a
a a
b (Single a
x) = FingerTree v a
xs FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
a FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
b FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
x
appendTree2 (Deep v
_ Digit a
pr1 FingerTree v (Node v a)
m1 Digit a
sf1) a
a a
b (Deep v
_ Digit a
pr2 FingerTree v (Node v a)
m2 Digit a
sf2) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep Digit a
pr1 (FingerTree v (Node v a)
-> Digit a
-> a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v (Node v a)
-> Digit a
-> a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
addDigits2 FingerTree v (Node v a)
m1 Digit a
sf1 a
a a
b Digit a
pr2 FingerTree v (Node v a)
m2) Digit a
sf2
addDigits2 :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> a -> a -> Digit a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
addDigits2 :: FingerTree v (Node v a)
-> Digit a
-> a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
addDigits2 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c (One a
d ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
a a
b ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
c a
d ) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c (Two a
d a
e ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c (Three a
d a
e a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c (Four a
d a
e a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d (One a
e ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d (Two a
e a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d (Three a
e a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d (Four a
e a
f a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e (One a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e (Two a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e (Three a
f a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e (Four a
f a
g a
h a
i ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f (One a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f (Two a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f (Three a
g a
h a
i ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) FingerTree v (Node v a)
m2
addDigits2 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f (Four a
g a
h a
i a
j ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
i a
j) FingerTree v (Node v a)
m2
appendTree3 :: (Measured v a) => FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 :: FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v a
Empty a
a a
b a
c FingerTree v a
xs = a
Elem (FingerTree v a)
a Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
b Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
c Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| FingerTree v a
xs
appendTree3 FingerTree v a
xs a
a a
b a
c FingerTree v a
Empty = FingerTree v a
xs FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
a FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
b FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
c
appendTree3 (Single a
x) a
a a
b a
c FingerTree v a
xs = a
Elem (FingerTree v a)
x Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
a Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
b Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
c Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| FingerTree v a
xs
appendTree3 FingerTree v a
xs a
a a
b a
c (Single a
x) = FingerTree v a
xs FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
a FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
b FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
c FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
x
appendTree3 (Deep v
_ Digit a
pr1 FingerTree v (Node v a)
m1 Digit a
sf1) a
a a
b a
c (Deep v
_ Digit a
pr2 FingerTree v (Node v a)
m2 Digit a
sf2) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep Digit a
pr1 (FingerTree v (Node v a)
-> Digit a
-> a
-> a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v (Node v a)
-> Digit a
-> a
-> a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
addDigits3 FingerTree v (Node v a)
m1 Digit a
sf1 a
a a
b a
c Digit a
pr2 FingerTree v (Node v a)
m2) Digit a
sf2
addDigits3 :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> a -> a -> a -> Digit a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
addDigits3 :: FingerTree v (Node v a)
-> Digit a
-> a
-> a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
addDigits3 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c a
d (One a
e ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c a
d (Two a
e a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c a
d (Three a
e a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c a
d (Four a
e a
f a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d a
e (One a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d a
e (Two a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d a
e (Three a
f a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d a
e (Four a
f a
g a
h a
i ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e a
f (One a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e a
f (Two a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e a
f (Three a
g a
h a
i ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e a
f (Four a
g a
h a
i a
j ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
i a
j) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f a
g (One a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f a
g (Two a
h a
i ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f a
g (Three a
h a
i a
j ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
i a
j) FingerTree v (Node v a)
m2
addDigits3 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f a
g (Four a
h a
i a
j a
k ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
j a
k) FingerTree v (Node v a)
m2
appendTree4 :: (Measured v a) => FingerTree v a -> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 :: FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v a
Empty a
a a
b a
c a
d FingerTree v a
xs = a
Elem (FingerTree v a)
a Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
b Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
c Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
d Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| FingerTree v a
xs
appendTree4 FingerTree v a
xs a
a a
b a
c a
d FingerTree v a
Empty = FingerTree v a
xs FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
a FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
b FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
c FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
d
appendTree4 (Single a
x) a
a a
b a
c a
d FingerTree v a
xs = a
Elem (FingerTree v a)
x Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
a Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
b Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
c Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| a
Elem (FingerTree v a)
d Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| FingerTree v a
xs
appendTree4 FingerTree v a
xs a
a a
b a
c a
d (Single a
x) = FingerTree v a
xs FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
a FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
b FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
c FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
d FingerTree v a -> Elem (FingerTree v a) -> FingerTree v a
forall v. Snoc v => v -> Elem v -> v
|> a
Elem (FingerTree v a)
x
appendTree4 (Deep v
_ Digit a
pr1 FingerTree v (Node v a)
m1 Digit a
sf1) a
a a
b a
c a
d (Deep v
_ Digit a
pr2 FingerTree v (Node v a)
m2 Digit a
sf2) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep Digit a
pr1 (FingerTree v (Node v a)
-> Digit a
-> a
-> a
-> a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v (Node v a)
-> Digit a
-> a
-> a
-> a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
addDigits4 FingerTree v (Node v a)
m1 Digit a
sf1 a
a a
b a
c a
d Digit a
pr2 FingerTree v (Node v a)
m2) Digit a
sf2
addDigits4 :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> a -> a -> a -> a -> Digit a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
addDigits4 :: FingerTree v (Node v a)
-> Digit a
-> a
-> a
-> a
-> a
-> Digit a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
addDigits4 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c a
d a
e (One a
f ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c a
d a
e (Two a
f a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c a
d a
e (Three a
f a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (One a
a ) a
b a
c a
d a
e (Four a
f a
g a
h a
i ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d a
e a
f (One a
g ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
d a
e ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
f a
g ) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d a
e a
f (Two a
g a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d a
e a
f (Three a
g a
h a
i ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Two a
a a
b ) a
c a
d a
e a
f (Four a
g a
h a
i a
j ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
i a
j ) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e a
f a
g (One a
h ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e a
f a
g (Two a
h a
i ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e a
f a
g (Three a
h a
i a
j ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
i a
j ) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Three a
a a
b a
c ) a
d a
e a
f a
g (Four a
h a
i a
j a
k ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
j a
k ) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f a
g a
h (One a
i ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f a
g a
h (Two a
i a
j ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
g a
h ) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
i a
j ) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f a
g a
h (Three a
i a
j a
k ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) (a -> a -> Node v a
forall v a. Measured v a => a -> a -> Node v a
node2 a
j a
k ) FingerTree v (Node v a)
m2
addDigits4 FingerTree v (Node v a)
m1 (Four a
a a
b a
c a
d ) a
e a
f a
g a
h (Four a
i a
j a
k a
l ) FingerTree v (Node v a)
m2 = FingerTree v (Node v a)
-> Node v a
-> Node v a
-> Node v a
-> Node v a
-> FingerTree v (Node v a)
-> FingerTree v (Node v a)
forall v a.
Measured v a =>
FingerTree v a
-> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 FingerTree v (Node v a)
m1 (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
a a
b a
c) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
d a
e a
f) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
g a
h a
i) (a -> a -> a -> Node v a
forall v a. Measured v a => a -> a -> a -> Node v a
node3 a
j a
k a
l) FingerTree v (Node v a)
m2
split :: (Measured v a) => (v -> Bool) -> FingerTree v a -> (FingerTree v a, FingerTree v a)
split :: (v -> Bool) -> FingerTree v a -> (FingerTree v a, FingerTree v a)
split v -> Bool
_ FingerTree v a
Empty = (FingerTree v a
forall v a. FingerTree v a
Empty, FingerTree v a
forall v a. FingerTree v a
Empty)
split v -> Bool
p FingerTree v a
xs
| v -> Bool
p (FingerTree v a -> v
forall v a. Measured v a => a -> v
measure FingerTree v a
xs) = (FingerTree v a
l, a
Elem (FingerTree v a)
x Elem (FingerTree v a) -> FingerTree v a -> FingerTree v a
forall v. Cons v => Elem v -> v -> v
<| FingerTree v a
r)
| Bool
otherwise = (FingerTree v a
xs, FingerTree v a
forall v a. FingerTree v a
Empty)
where Split FingerTree v a
l a
x FingerTree v a
r = (v -> Bool) -> v -> FingerTree v a -> Split (FingerTree v a) a
forall v a.
Measured v a =>
(v -> Bool) -> v -> FingerTree v a -> Split (FingerTree v a) a
splitTree v -> Bool
p v
forall a. Monoid a => a
mempty FingerTree v a
xs
takeUntil :: (Measured v a) => (v -> Bool) -> FingerTree v a -> FingerTree v a
takeUntil :: (v -> Bool) -> FingerTree v a -> FingerTree v a
takeUntil v -> Bool
p = (FingerTree v a, FingerTree v a) -> FingerTree v a
forall a b. (a, b) -> a
fst ((FingerTree v a, FingerTree v a) -> FingerTree v a)
-> (FingerTree v a -> (FingerTree v a, FingerTree v a))
-> FingerTree v a
-> FingerTree v a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (v -> Bool) -> FingerTree v a -> (FingerTree v a, FingerTree v a)
forall v a.
Measured v a =>
(v -> Bool) -> FingerTree v a -> (FingerTree v a, FingerTree v a)
split v -> Bool
p
dropUntil :: (Measured v a) => (v -> Bool) -> FingerTree v a -> FingerTree v a
dropUntil :: (v -> Bool) -> FingerTree v a -> FingerTree v a
dropUntil v -> Bool
p = (FingerTree v a, FingerTree v a) -> FingerTree v a
forall a b. (a, b) -> b
snd ((FingerTree v a, FingerTree v a) -> FingerTree v a)
-> (FingerTree v a -> (FingerTree v a, FingerTree v a))
-> FingerTree v a
-> FingerTree v a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (v -> Bool) -> FingerTree v a -> (FingerTree v a, FingerTree v a)
forall v a.
Measured v a =>
(v -> Bool) -> FingerTree v a -> (FingerTree v a, FingerTree v a)
split v -> Bool
p
data Split t a = Split t a t
splitTree :: (Measured v a) => (v -> Bool) -> v -> FingerTree v a -> Split (FingerTree v a) a
splitTree :: (v -> Bool) -> v -> FingerTree v a -> Split (FingerTree v a) a
splitTree v -> Bool
_ v
_ FingerTree v a
Empty = String -> Split (FingerTree v a) a
forall a. String -> a
illegalArgument String
"splitTree"
splitTree v -> Bool
_ v
_ (Single a
x) = FingerTree v a -> a -> FingerTree v a -> Split (FingerTree v a) a
forall t a. t -> a -> t -> Split t a
Split FingerTree v a
forall v a. FingerTree v a
Empty a
x FingerTree v a
forall v a. FingerTree v a
Empty
splitTree v -> Bool
p v
i (Deep v
_ Digit a
pr FingerTree v (Node v a)
m Digit a
sf)
| v -> Bool
p v
vpr = let Split Maybe (Digit a)
l a
x Maybe (Digit a)
r = (v -> Bool) -> v -> Digit a -> Split (Maybe (Digit a)) a
forall v a.
Measured v a =>
(v -> Bool) -> v -> Digit a -> Split (Maybe (Digit a)) a
splitDigit v -> Bool
p v
i Digit a
pr
in FingerTree v a -> a -> FingerTree v a -> Split (FingerTree v a) a
forall t a. t -> a -> t -> Split t a
Split (FingerTree v a
-> (Digit a -> FingerTree v a) -> Maybe (Digit a) -> FingerTree v a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe FingerTree v a
forall v a. FingerTree v a
Empty Digit a -> FingerTree v a
forall v a. Measured v a => Digit a -> FingerTree v a
digitToTree Maybe (Digit a)
l) a
x (Maybe (Digit a)
-> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Maybe (Digit a)
-> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deepL Maybe (Digit a)
r FingerTree v (Node v a)
m Digit a
sf)
| v -> Bool
p v
vm = let Split FingerTree v (Node v a)
ml Node v a
xs FingerTree v (Node v a)
mr = (v -> Bool)
-> v
-> FingerTree v (Node v a)
-> Split (FingerTree v (Node v a)) (Node v a)
forall v a.
Measured v a =>
(v -> Bool) -> v -> FingerTree v a -> Split (FingerTree v a) a
splitTree v -> Bool
p v
vpr FingerTree v (Node v a)
m
Split Maybe (Digit a)
l a
x Maybe (Digit a)
r = (v -> Bool) -> v -> Node v a -> Split (Maybe (Digit a)) a
forall v a.
Measured v a =>
(v -> Bool) -> v -> Node v a -> Split (Maybe (Digit a)) a
splitNode v -> Bool
p (v
vpr v -> FingerTree v (Node v a) -> v
forall v a. Measured v a => v -> FingerTree v a -> v
`mappendVal` FingerTree v (Node v a)
ml) Node v a
xs
in FingerTree v a -> a -> FingerTree v a -> Split (FingerTree v a) a
forall t a. t -> a -> t -> Split t a
Split (Digit a
-> FingerTree v (Node v a) -> Maybe (Digit a) -> FingerTree v a
forall v a.
Measured v a =>
Digit a
-> FingerTree v (Node v a) -> Maybe (Digit a) -> FingerTree v a
deepR Digit a
pr FingerTree v (Node v a)
ml Maybe (Digit a)
l) a
x (Maybe (Digit a)
-> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Maybe (Digit a)
-> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deepL Maybe (Digit a)
r FingerTree v (Node v a)
mr Digit a
sf)
| Bool
otherwise = let Split Maybe (Digit a)
l a
x Maybe (Digit a)
r = (v -> Bool) -> v -> Digit a -> Split (Maybe (Digit a)) a
forall v a.
Measured v a =>
(v -> Bool) -> v -> Digit a -> Split (Maybe (Digit a)) a
splitDigit v -> Bool
p v
vm Digit a
sf
in FingerTree v a -> a -> FingerTree v a -> Split (FingerTree v a) a
forall t a. t -> a -> t -> Split t a
Split (Digit a
-> FingerTree v (Node v a) -> Maybe (Digit a) -> FingerTree v a
forall v a.
Measured v a =>
Digit a
-> FingerTree v (Node v a) -> Maybe (Digit a) -> FingerTree v a
deepR Digit a
pr FingerTree v (Node v a)
m Maybe (Digit a)
l) a
x (FingerTree v a
-> (Digit a -> FingerTree v a) -> Maybe (Digit a) -> FingerTree v a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe FingerTree v a
forall v a. FingerTree v a
Empty Digit a -> FingerTree v a
forall v a. Measured v a => Digit a -> FingerTree v a
digitToTree Maybe (Digit a)
r)
where vpr :: v
vpr = v
i v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` Digit a -> v
forall v a. Measured v a => a -> v
measure Digit a
pr
vm :: v
vm = v
vpr v -> FingerTree v (Node v a) -> v
forall v a. Measured v a => v -> FingerTree v a -> v
`mappendVal` FingerTree v (Node v a)
m
mappendVal :: (Measured v a) => v -> FingerTree v a -> v
mappendVal :: v -> FingerTree v a -> v
mappendVal v
v FingerTree v a
Empty = v
v
mappendVal v
v FingerTree v a
t = v
v v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` FingerTree v a -> v
forall v a. Measured v a => a -> v
measure FingerTree v a
t
deepL :: (Measured v a) => Maybe (Digit a) -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deepL :: Maybe (Digit a)
-> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deepL Maybe (Digit a)
Nothing FingerTree v (Node v a)
m Digit a
sf = FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
FingerTree v (Node v a) -> Digit a -> FingerTree v a
rotL FingerTree v (Node v a)
m Digit a
sf
deepL (Just Digit a
pr) FingerTree v (Node v a)
m Digit a
sf = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep Digit a
pr FingerTree v (Node v a)
m Digit a
sf
deepR :: (Measured v a) => Digit a -> FingerTree v (Node v a) -> Maybe (Digit a) -> FingerTree v a
deepR :: Digit a
-> FingerTree v (Node v a) -> Maybe (Digit a) -> FingerTree v a
deepR Digit a
pr FingerTree v (Node v a)
m Maybe (Digit a)
Nothing = Digit a -> FingerTree v (Node v a) -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> FingerTree v a
rotR Digit a
pr FingerTree v (Node v a)
m
deepR Digit a
pr FingerTree v (Node v a)
m (Just Digit a
sf) = Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep Digit a
pr FingerTree v (Node v a)
m Digit a
sf
splitNode :: (Measured v a) => (v -> Bool) -> v -> Node v a -> Split (Maybe (Digit a)) a
splitNode :: (v -> Bool) -> v -> Node v a -> Split (Maybe (Digit a)) a
splitNode v -> Bool
p v
i (Node2 v
_ a
a a
b)
| v -> Bool
p v
va = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split Maybe (Digit a)
forall a. Maybe a
Nothing a
a (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> Digit a
forall a. a -> Digit a
One a
b))
| Bool
otherwise = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> Digit a
forall a. a -> Digit a
One a
a)) a
b Maybe (Digit a)
forall a. Maybe a
Nothing
where va :: v
va = v
i v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
splitNode v -> Bool
p v
i (Node3 v
_ a
a a
b a
c)
| v -> Bool
p v
va = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split Maybe (Digit a)
forall a. Maybe a
Nothing a
a (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
b a
c))
| v -> Bool
p v
vab = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> Digit a
forall a. a -> Digit a
One a
a)) a
b (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> Digit a
forall a. a -> Digit a
One a
c))
| Bool
otherwise = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
a a
b)) a
c Maybe (Digit a)
forall a. Maybe a
Nothing
where va :: v
va = v
i v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
vab :: v
vab = v
va v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
b
splitDigit :: (Measured v a) => (v -> Bool) -> v -> Digit a -> Split (Maybe (Digit a)) a
splitDigit :: (v -> Bool) -> v -> Digit a -> Split (Maybe (Digit a)) a
splitDigit v -> Bool
_ v
i (One a
a) = v
i v -> Split (Maybe (Digit a)) a -> Split (Maybe (Digit a)) a
`seq` Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split Maybe (Digit a)
forall a. Maybe a
Nothing a
a Maybe (Digit a)
forall a. Maybe a
Nothing
splitDigit v -> Bool
p v
i (Two a
a a
b)
| v -> Bool
p v
va = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split Maybe (Digit a)
forall a. Maybe a
Nothing a
a (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> Digit a
forall a. a -> Digit a
One a
b))
| Bool
otherwise = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> Digit a
forall a. a -> Digit a
One a
a)) a
b Maybe (Digit a)
forall a. Maybe a
Nothing
where va :: v
va = v
i v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
splitDigit v -> Bool
p v
i (Three a
a a
b a
c)
| v -> Bool
p v
va = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split Maybe (Digit a)
forall a. Maybe a
Nothing a
a (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
b a
c))
| v -> Bool
p v
vab = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> Digit a
forall a. a -> Digit a
One a
a)) a
b (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> Digit a
forall a. a -> Digit a
One a
c))
| Bool
otherwise = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
a a
b)) a
c Maybe (Digit a)
forall a. Maybe a
Nothing
where va :: v
va = v
i v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
vab :: v
vab = v
va v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
b
splitDigit v -> Bool
p v
i (Four a
a a
b a
c a
d)
| v -> Bool
p v
va = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split Maybe (Digit a)
forall a. Maybe a
Nothing a
a (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> a -> a -> Digit a
forall a. a -> a -> a -> Digit a
Three a
b a
c a
d))
| v -> Bool
p v
vab = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> Digit a
forall a. a -> Digit a
One a
a)) a
b (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
c a
d))
| v -> Bool
p v
vabc = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> a -> Digit a
forall a. a -> a -> Digit a
Two a
a a
b)) a
c (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> Digit a
forall a. a -> Digit a
One a
d))
| Bool
otherwise = Maybe (Digit a)
-> a -> Maybe (Digit a) -> Split (Maybe (Digit a)) a
forall t a. t -> a -> t -> Split t a
Split (Digit a -> Maybe (Digit a)
forall a. a -> Maybe a
Just (a -> a -> a -> Digit a
forall a. a -> a -> a -> Digit a
Three a
a a
b a
c)) a
d Maybe (Digit a)
forall a. Maybe a
Nothing
where va :: v
va = v
i v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
a
vab :: v
vab = v
va v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
b
vabc :: v
vabc = v
vab v -> v -> v
forall a. Monoid a => a -> a -> a
`mappend` a -> v
forall v a. Measured v a => a -> v
measure a
c
reverse :: (Measured v a) => FingerTree v a -> FingerTree v a
reverse :: FingerTree v a -> FingerTree v a
reverse = (a -> a) -> FingerTree v a -> FingerTree v a
forall v2 a2 a1 v1.
Measured v2 a2 =>
(a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
reverseTree a -> a
forall a. a -> a
id
reverseTree :: (Measured v2 a2) => (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
reverseTree :: (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
reverseTree a1 -> a2
_ FingerTree v1 a1
Empty = FingerTree v2 a2
forall v a. FingerTree v a
Empty
reverseTree a1 -> a2
f (Single a1
x) = a2 -> FingerTree v2 a2
forall v a. a -> FingerTree v a
Single (a1 -> a2
f a1
x)
reverseTree a1 -> a2
f (Deep v1
_ Digit a1
pr FingerTree v1 (Node v1 a1)
m Digit a1
sf) = Digit a2
-> FingerTree v2 (Node v2 a2) -> Digit a2 -> FingerTree v2 a2
forall v a.
Measured v a =>
Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep ((a1 -> a2) -> Digit a1 -> Digit a2
forall a b. (a -> b) -> Digit a -> Digit b
reverseDigit a1 -> a2
f Digit a1
sf) ((Node v1 a1 -> Node v2 a2)
-> FingerTree v1 (Node v1 a1) -> FingerTree v2 (Node v2 a2)
forall v2 a2 a1 v1.
Measured v2 a2 =>
(a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
reverseTree ((a1 -> a2) -> Node v1 a1 -> Node v2 a2
forall v2 a2 a1 v1.
Measured v2 a2 =>
(a1 -> a2) -> Node v1 a1 -> Node v2 a2
reverseNode a1 -> a2
f) FingerTree v1 (Node v1 a1)
m) ((a1 -> a2) -> Digit a1 -> Digit a2
forall a b. (a -> b) -> Digit a -> Digit b
reverseDigit a1 -> a2
f Digit a1
pr)
reverseNode :: (Measured v2 a2) => (a1 -> a2) -> Node v1 a1 -> Node v2 a2
reverseNode :: (a1 -> a2) -> Node v1 a1 -> Node v2 a2
reverseNode a1 -> a2
f (Node2 v1
_ a1
a a1
b) = a2 -> a2 -> Node v2 a2
forall v a. Measured v a => a -> a -> Node v a
node2 (a1 -> a2
f a1
b) (a1 -> a2
f a1
a)
reverseNode a1 -> a2
f (Node3 v1
_ a1
a a1
b a1
c) = a2 -> a2 -> a2 -> Node v2 a2
forall v a. Measured v a => a -> a -> a -> Node v a
node3 (a1 -> a2
f a1
c) (a1 -> a2
f a1
b) (a1 -> a2
f a1
a)
reverseDigit :: (a -> b) -> Digit a -> Digit b
reverseDigit :: (a -> b) -> Digit a -> Digit b
reverseDigit a -> b
f (One a
a) = b -> Digit b
forall a. a -> Digit a
One (a -> b
f a
a)
reverseDigit a -> b
f (Two a
a a
b) = b -> b -> Digit b
forall a. a -> a -> Digit a
Two (a -> b
f a
b) (a -> b
f a
a)
reverseDigit a -> b
f (Three a
a a
b a
c) = b -> b -> b -> Digit b
forall a. a -> a -> a -> Digit a
Three (a -> b
f a
c) (a -> b
f a
b) (a -> b
f a
a)
reverseDigit a -> b
f (Four a
a a
b a
c a
d) = b -> b -> b -> b -> Digit b
forall a. a -> a -> a -> a -> Digit a
Four (a -> b
f a
d) (a -> b
f a
c) (a -> b
f a
b) (a -> b
f a
a)
illegalArgument :: String -> a
illegalArgument :: String -> a
illegalArgument String
name = String -> a
forall a. HasCallStack => String -> a
error (String -> a) -> String -> a
forall a b. (a -> b) -> a -> b
$ String
"Logic error: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
name String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
" called with illegal argument"