| Stability | unstable |
|---|---|
| Safe Haskell | None |
| Language | Haskell2010 |
Test.Hspec.Core.Spec
Contents
Description
This module provides access to Hspec's internals. It is less stable than
other parts of the API. For most users Test.Hspec is more suitable!
- it :: (HasCallStack, Example a) => String -> a -> SpecWith (Arg a)
- specify :: (HasCallStack, Example a) => String -> a -> SpecWith (Arg a)
- describe :: String -> SpecWith a -> SpecWith a
- context :: String -> SpecWith a -> SpecWith a
- pending :: Expectation
- pendingWith :: String -> Expectation
- xit :: (HasCallStack, Example a) => String -> a -> SpecWith (Arg a)
- xspecify :: (HasCallStack, Example a) => String -> a -> SpecWith (Arg a)
- xdescribe :: String -> SpecWith a -> SpecWith a
- xcontext :: String -> SpecWith a -> SpecWith a
- parallel :: SpecWith a -> SpecWith a
- type Spec = SpecWith ()
- type SpecWith a = SpecM a ()
- newtype SpecM a r = SpecM (WriterT [SpecTree a] IO r)
- runSpecM :: SpecWith a -> IO [SpecTree a]
- fromSpecList :: [SpecTree a] -> SpecWith a
- runIO :: IO r -> SpecM a r
- mapSpecTree :: (SpecTree a -> SpecTree b) -> SpecWith a -> SpecWith b
- mapSpecItem :: (ActionWith a -> ActionWith b) -> (Item a -> Item b) -> SpecWith a -> SpecWith b
- mapSpecItem_ :: (Item a -> Item a) -> SpecWith a -> SpecWith a
- modifyParams :: (Params -> Params) -> SpecWith a -> SpecWith a
- class Example e where
- type Arg e
- data Params = Params {}
- defaultParams :: Params
- type ActionWith a = a -> IO ()
- type Progress = (Int, Int)
- type ProgressCallback = Progress -> IO ()
- data Result
- data Location = Location {}
- data LocationAccuracy
- data FailureReason
- safeEvaluateExample :: Example e => e -> Params -> (ActionWith (Arg e) -> IO ()) -> ProgressCallback -> IO (Either SomeException Result)
- type SpecTree a = Tree (ActionWith a) (Item a)
- data Tree c a
- data Item a = Item {
- itemRequirement :: String
- itemLocation :: Maybe Location
- itemIsParallelizable :: Bool
- itemExample :: Params -> (ActionWith a -> IO ()) -> ProgressCallback -> IO (Either SomeException Result)
- specGroup :: String -> [SpecTree a] -> SpecTree a
- specItem :: (HasCallStack, Example a) => String -> a -> SpecTree (Arg a)
Defining a spec
it :: (HasCallStack, Example a) => String -> a -> SpecWith (Arg a) Source #
The it function creates a spec item.
A spec item consists of:
- a textual description of a desired behavior
- an example for that behavior
describe "absolute" $ do
it "returns a positive number when given a negative number" $
absolute (-1) == 1specify :: (HasCallStack, Example a) => String -> a -> SpecWith (Arg a) Source #
specify is an alias for it.
describe :: String -> SpecWith a -> SpecWith a Source #
The describe function combines a list of specs into a larger spec.
pending :: Expectation Source #
pending can be used to mark a spec item as pending.
If you want to textually specify a behavior but do not have an example yet, use this:
describe "fancyFormatter" $ do
it "can format text in a way that everyone likes" $
pendingpendingWith :: String -> Expectation Source #
pendingWith is similar to pending, but it takes an additional string
argument that can be used to specify the reason for why the spec item is pending.
xspecify :: (HasCallStack, Example a) => String -> a -> SpecWith (Arg a) Source #
xspecify is an alias for xit.
parallel :: SpecWith a -> SpecWith a Source #
parallel marks all spec items of the given spec to be safe for parallel
evaluation.
The SpecM monad
A writer monad for SpecTree forests
runIO :: IO r -> SpecM a r Source #
Run an IO action while constructing the spec tree.
SpecM is a monad to construct a spec tree, without executing any spec
items. runIO allows you to run IO actions during this construction phase.
The IO action is always run when the spec tree is constructed (e.g. even
when --dry-run is specified).
If you do not need the result of the IO action to construct the spec tree,
beforeAll may be more suitable for your use case.
mapSpecItem :: (ActionWith a -> ActionWith b) -> (Item a -> Item b) -> SpecWith a -> SpecWith b Source #
A type class for examples
class Example e where Source #
A type class for examples
Minimal complete definition
Methods
evaluateExample :: e -> Params -> (ActionWith (Arg e) -> IO ()) -> ProgressCallback -> IO Result Source #
Constructors
| Params | |
Fields | |
type ActionWith a = a -> IO () Source #
An IO action that expects an argument of type a
type ProgressCallback = Progress -> IO () Source #
The result of running an example
Location is used to represent source locations.
Constructors
| Location | |
Fields | |
data LocationAccuracy Source #
A marker for source locations
Constructors
| ExactLocation | The source location is accurate |
| BestEffort | The source location was determined on a best-effort basis and my be wrong or inaccurate |
Instances
data FailureReason Source #
Instances
safeEvaluateExample :: Example e => e -> Params -> (ActionWith (Arg e) -> IO ()) -> ProgressCallback -> IO (Either SomeException Result) Source #
Internal representation of a spec tree
type SpecTree a = Tree (ActionWith a) (Item a) Source #
A tree is used to represent a spec internally. The tree is parametrize over the type of cleanup actions and the type of the actual spec items.
Internal tree data structure
Item is used to represent spec items internally. A spec item consists of:
- a textual description of a desired behavior
- an example for that behavior
- additional meta information
Everything that is an instance of the Example type class can be used as an
example, including QuickCheck properties, Hspec expectations and HUnit
assertions.
Constructors
| Item | |
Fields
| |