Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Multiple channel expansion
Synopsis
- listFillId :: (Integral n, ID z, Enum z) => z -> Int -> (z -> n -> Ugen) -> [Ugen]
- listFillM :: (Uid m, Integral n) => Int -> (n -> m Ugen) -> m [Ugen]
- listFill :: Integral n => Int -> (n -> Ugen) -> [Ugen]
- mceConst :: Int -> Ugen -> Ugen
- mceGenId :: ID z => (Id -> Ugen) -> Int -> z -> Ugen
- mceGenM :: Applicative f => f Ugen -> Int -> f Ugen
- mceSize :: Ugen -> Ugen
- mceMean :: Ugen -> Ugen
- mceFill :: Integral n => Int -> (n -> Ugen) -> Ugen
- mceFillId :: (Integral n, ID z, Enum z) => z -> Int -> (z -> n -> Ugen) -> Ugen
- mceFillInt :: Int -> (Int -> Ugen) -> Ugen
- mix :: Ugen -> Ugen
- mixTo :: Int -> Ugen -> Ugen
- mixFill :: Integral n => Int -> (n -> Ugen) -> Ugen
- mixFillInt :: Int -> (Int -> Ugen) -> Ugen
- mixFillUgen :: Int -> (Ugen -> Ugen) -> Ugen
- mixFillId :: (Integral n, ID z, Enum z) => z -> Int -> (z -> n -> Ugen) -> Ugen
- mixFillM :: (Integral n, Monad m) => Int -> (n -> m Ugen) -> m Ugen
Documentation
listFillId :: (Integral n, ID z, Enum z) => z -> Int -> (z -> n -> Ugen) -> [Ugen] Source #
Construct a list of Ugens by applying f to consecutive identifiers (from z) and indices (from 0).
listFillM :: (Uid m, Integral n) => Int -> (n -> m Ugen) -> m [Ugen] Source #
Construct a list of Ugens by applying f at consecutive indices (from 0).
listFill :: Integral n => Int -> (n -> Ugen) -> [Ugen] Source #
Construct a list of Ugens by applying f at consecutive indices (from 0).
mceFillId :: (Integral n, ID z, Enum z) => z -> Int -> (z -> n -> Ugen) -> Ugen Source #
mce
of listFillId