hs-functors-0.1.4.0: Functors from products of Haskell and its dual to Haskell

Safe HaskellNone
LanguageHaskell2010

Data.Functor.Contravariant

Documentation

class Functor f where Source #

Minimal complete definition

gmap

Methods

gmap :: (a -> b) -> f b -> f a Source #

(>$) :: b -> f b -> f a Source #

Instances
Functor (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a -> b) -> Proxy b -> Proxy a Source #

(>$) :: b -> Proxy b -> Proxy a Source #

Functor (Op2 a) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a0 -> b) -> Op2 a b -> Op2 a a0 Source #

(>$) :: b -> Op2 a b -> Op2 a a0 Source #

Functor (Op1 a) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a0 -> b) -> Op1 a b -> Op1 a a0 Source #

(>$) :: b -> Op1 a b -> Op1 a a0 Source #

Functor (Const a :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a0 -> b) -> Const a b -> Const a a0 Source #

(>$) :: b -> Const a b -> Const a a0 Source #

Functor f => Functor (Alt f) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a -> b) -> Alt f b -> Alt f a Source #

(>$) :: b -> Alt f b -> Alt f a Source #

Functor f => Functor (Reverse f) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a -> b) -> Reverse f b -> Reverse f a Source #

(>$) :: b -> Reverse f b -> Reverse f a Source #

Functor f => Functor (WriterT w f) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a -> b) -> WriterT w f b -> WriterT w f a Source #

(>$) :: b -> WriterT w f b -> WriterT w f a Source #

Functor f => Functor (StateT s f) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a -> b) -> StateT s f b -> StateT s f a Source #

(>$) :: b -> StateT s f b -> StateT s f a Source #

Functor f => Functor (ExceptT e f) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a -> b) -> ExceptT e f b -> ExceptT e f a Source #

(>$) :: b -> ExceptT e f b -> ExceptT e f a Source #

Functor f => Functor (Backwards f) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a -> b) -> Backwards f b -> Backwards f a Source #

(>$) :: b -> Backwards f b -> Backwards f a Source #

(Functor f, Functor g) => Functor (Product f g) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a -> b) -> Product f g b -> Product f g a Source #

(>$) :: b -> Product f g b -> Product f g a Source #

(Functor f, Functor g) => Functor (Sum f g) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a -> b) -> Sum f g b -> Sum f g a Source #

(>$) :: b -> Sum f g b -> Sum f g a Source #

Functor f => Functor (ReaderT r f) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a -> b) -> ReaderT r f b -> ReaderT r f a Source #

(>$) :: b -> ReaderT r f b -> ReaderT r f a Source #

Functor (s (t m)) => Functor (ComposeT s t m) Source # 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

gmap :: (a -> b) -> ComposeT s t m b -> ComposeT s t m a Source #

(>$) :: b -> ComposeT s t m b -> ComposeT s t m a Source #

(>$<) :: Functor f => (a -> b) -> f b -> f a Source #

newtype Op1 b a Source #

Constructors

Op1 

Fields

  • op1 :: a -> b
     
Instances
Functor (Op1 a) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a0 -> b) -> Op1 a b -> Op1 a a0 Source #

(>$) :: b -> Op1 a b -> Op1 a a0 Source #

Category Op1 Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

id :: Op1 a a #

(.) :: Op1 b c -> Op1 a b -> Op1 a c #

Semigroup a => Semigroup (Op1 a b) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Op1 a b -> Op1 a b -> Op1 a b #

sconcat :: NonEmpty (Op1 a b) -> Op1 a b #

stimes :: Integral b0 => b0 -> Op1 a b -> Op1 a b #

(Semigroup a, Monoid a) => Monoid (Op1 a b) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

mempty :: Op1 a b #

mappend :: Op1 a b -> Op1 a b -> Op1 a b #

mconcat :: [Op1 a b] -> Op1 a b #

newtype Op2 b a Source #

Constructors

Op2 

Fields

  • op2 :: a -> a -> b
     
Instances
Functor (Op2 a) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

gmap :: (a0 -> b) -> Op2 a b -> Op2 a a0 Source #

(>$) :: b -> Op2 a b -> Op2 a a0 Source #

Semigroup a => Semigroup (Op2 a b) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Op2 a b -> Op2 a b -> Op2 a b #

sconcat :: NonEmpty (Op2 a b) -> Op2 a b #

stimes :: Integral b0 => b0 -> Op2 a b -> Op2 a b #

(Semigroup a, Monoid a) => Monoid (Op2 a b) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

mempty :: Op2 a b #

mappend :: Op2 a b -> Op2 a b -> Op2 a b #

mconcat :: [Op2 a b] -> Op2 a b #