Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
- P2 (2-product)
- T2 (2-tuple, regular)
- P3 (3-product)
- T3 (3 triple, regular)
- P4 (4-product)
- T4 (4-tuple, regular)
- P5 (5-product)
- T5 (5-tuple, regular)
- P6 (6-product)
- T6 (6-tuple, regular)
- T7 (7-tuple, regular)
- T8 (8-tuple, regular)
- P8 (8-product)
- T9 (9-tuple, regular)
- T10 (10-tuple, regular)
- T11 (11-tuple, regular)
- T12 (12-tuple, regular)
- Family of
uncurry
functions.
Synopsis
- p2_from_list :: (t -> t1, t -> t2) -> [t] -> (t1, t2)
- p2_swap :: (s, t) -> (t, s)
- type T2 a = (a, a)
- t2_from_list :: [t] -> T2 t
- t2_to_list :: T2 a -> [a]
- t2_swap :: T2 t -> T2 t
- t2_map :: (p -> q) -> T2 p -> T2 q
- t2_zipWith :: (p -> q -> r) -> T2 p -> T2 q -> T2 r
- t2_infix :: (a -> a -> b) -> T2 a -> b
- t2_join :: Monoid m => T2 m -> m
- t2_concat :: Monoid m => [T2 m] -> T2 m
- t2_sort :: Ord t => (t, t) -> (t, t)
- t2_sum :: Num n => (n, n) -> n
- t2_mapM :: Monad m => (t -> m u) -> (t, t) -> m (u, u)
- t2_mapM_ :: Monad m => (t -> m u) -> (t, t) -> m ()
- p3_rotate_left :: (s, t, u) -> (t, u, s)
- p3_fst :: (a, b, c) -> a
- p3_snd :: (a, b, c) -> b
- p3_third :: (a, b, c) -> c
- type T3 a = (a, a, a)
- t3_from_list :: [t] -> T3 t
- t3_to_list :: T3 a -> [a]
- t3_rotate_left :: T3 t -> T3 t
- t3_fst :: T3 t -> t
- t3_snd :: T3 t -> t
- t3_third :: T3 t -> t
- t3_map :: (p -> q) -> T3 p -> T3 q
- t3_zipWith :: (p -> q -> r) -> T3 p -> T3 q -> T3 r
- t3_infix :: (a -> a -> a) -> T3 a -> a
- t3_join :: T3 [a] -> [a]
- t3_sort :: Ord t => (t, t, t) -> (t, t, t)
- p4_fst :: (a, b, c, d) -> a
- p4_snd :: (a, b, c, d) -> b
- p4_third :: (a, b, c, d) -> c
- p4_fourth :: (a, b, c, d) -> d
- p4_zip :: (a, b, c, d) -> (e, f, g, h) -> ((a, e), (b, f), (c, g), (d, h))
- type T4 a = (a, a, a, a)
- t4_from_list :: [t] -> T4 t
- t4_to_list :: T4 t -> [t]
- t4_fst :: T4 t -> t
- t4_snd :: T4 t -> t
- t4_third :: T4 t -> t
- t4_fourth :: T4 t -> t
- t4_map :: (p -> q) -> T4 p -> T4 q
- t4_zipWith :: (p -> q -> r) -> T4 p -> T4 q -> T4 r
- t4_infix :: (a -> a -> a) -> T4 a -> a
- t4_join :: T4 [a] -> [a]
- p5_fst :: (a, b, c, d, e) -> a
- p5_snd :: (a, b, c, d, e) -> b
- p5_third :: (a, b, c, d, e) -> c
- p5_fourth :: (a, b, c, d, e) -> d
- p5_fifth :: (a, b, c, d, e) -> e
- p5_from_list :: (t -> t1, t -> t2, t -> t3, t -> t4, t -> t5) -> [t] -> (t1, t2, t3, t4, t5)
- p5_to_list :: (t1 -> t, t2 -> t, t3 -> t, t4 -> t, t5 -> t) -> (t1, t2, t3, t4, t5) -> [t]
- type T5 a = (a, a, a, a, a)
- t5_from_list :: [t] -> T5 t
- t5_to_list :: T5 t -> [t]
- t5_map :: (p -> q) -> T5 p -> T5 q
- t5_fst :: T5 t -> t
- t5_snd :: T5 t -> t
- t5_fourth :: T5 t -> t
- t5_fifth :: T5 t -> t
- t5_infix :: (a -> a -> a) -> T5 a -> a
- t5_join :: T5 [a] -> [a]
- p6_fst :: (a, b, c, d, e, f) -> a
- p6_snd :: (a, b, c, d, e, f) -> b
- p6_third :: (a, b, c, d, e, f) -> c
- p6_fourth :: (a, b, c, d, e, f) -> d
- p6_fifth :: (a, b, c, d, e, f) -> e
- p6_sixth :: (a, b, c, d, e, f) -> f
- type T6 a = (a, a, a, a, a, a)
- t6_from_list :: [t] -> T6 t
- t6_to_list :: T6 t -> [t]
- t6_map :: (p -> q) -> T6 p -> T6 q
- t6_sum :: Num t => T6 t -> t
- type T7 a = (a, a, a, a, a, a, a)
- t7_to_list :: T7 t -> [t]
- t7_map :: (p -> q) -> T7 p -> T7 q
- type T8 a = (a, a, a, a, a, a, a, a)
- t8_to_list :: T8 t -> [t]
- t8_map :: (p -> q) -> T8 p -> T8 q
- p8_third :: (a, b, c, d, e, f, g, h) -> c
- type T9 a = (a, a, a, a, a, a, a, a, a)
- t9_to_list :: T9 t -> [t]
- t9_from_list :: [t] -> T9 t
- t9_map :: (p -> q) -> T9 p -> T9 q
- type T10 a = (a, a, a, a, a, a, a, a, a, a)
- t10_to_list :: T10 t -> [t]
- t10_map :: (p -> q) -> T10 p -> T10 q
- type T11 a = (a, a, a, a, a, a, a, a, a, a, a)
- t11_to_list :: T11 t -> [t]
- t11_map :: (p -> q) -> T11 p -> T11 q
- type T12 t = (t, t, t, t, t, t, t, t, t, t, t, t)
- t12_to_list :: T12 t -> [t]
- t12_from_list :: [t] -> T12 t
- t12_foldr1 :: (t -> t -> t) -> T12 t -> t
- t12_sum :: Num n => T12 n -> n
- uncurry3 :: (a -> b -> c -> z) -> (a, b, c) -> z
- uncurry4 :: (a -> b -> c -> d -> z) -> (a, b, c, d) -> z
- uncurry5 :: (a -> b -> c -> d -> e -> z) -> (a, b, c, d, e) -> z
- uncurry6 :: (a -> b -> c -> d -> e -> f -> z) -> (a, b, c, d, e, f) -> z
- uncurry7 :: (a -> b -> c -> d -> e -> f -> g -> z) -> (a, b, c, d, e, f, g) -> z
- uncurry8 :: (a -> b -> c -> d -> e -> f -> g -> h -> z) -> (a, b, c, d, e, f, g, h) -> z
- uncurry9 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> z) -> (a, b, c, d, e, f, g, h, i) -> z
- uncurry10 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> z) -> (a, b, c, d, e, f, g, h, i, j) -> z
- uncurry11 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> z) -> (a, b, c, d, e, f, g, h, i, j, k) -> z
- uncurry12 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> z
- uncurry13 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> z
- uncurry14 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> z
- uncurry15 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> o -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> z
- uncurry16 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> o -> p -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) -> z
- uncurry17 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> o -> p -> q -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> z
- uncurry18 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> o -> p -> q -> r -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> z
- uncurry19 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> o -> p -> q -> r -> s -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) -> z
- uncurry20 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> o -> p -> q -> r -> s -> t -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) -> z
P2 (2-product)
p2_from_list :: (t -> t1, t -> t2) -> [t] -> (t1, t2) Source #
T2 (2-tuple, regular)
t2_from_list :: [t] -> T2 t Source #
t2_to_list :: T2 a -> [a] Source #
P3 (3-product)
p3_rotate_left :: (s, t, u) -> (t, u, s) Source #
Left rotation.
p3_rotate_left (1,2,3) == (2,3,1)
T3 (3 triple, regular)
t3_from_list :: [t] -> T3 t Source #
t3_to_list :: T3 a -> [a] Source #
t3_rotate_left :: T3 t -> T3 t Source #
P4 (4-product)
T4 (4-tuple, regular)
t4_from_list :: [t] -> T4 t Source #
t4_to_list :: T4 t -> [t] Source #
P5 (5-product)
p5_from_list :: (t -> t1, t -> t2, t -> t3, t -> t4, t -> t5) -> [t] -> (t1, t2, t3, t4, t5) Source #
p5_to_list :: (t1 -> t, t2 -> t, t3 -> t, t4 -> t, t5 -> t) -> (t1, t2, t3, t4, t5) -> [t] Source #
T5 (5-tuple, regular)
t5_from_list :: [t] -> T5 t Source #
t5_to_list :: T5 t -> [t] Source #
P6 (6-product)
T6 (6-tuple, regular)
t6_from_list :: [t] -> T6 t Source #
t6_to_list :: T6 t -> [t] Source #
T7 (7-tuple, regular)
t7_to_list :: T7 t -> [t] Source #
T8 (8-tuple, regular)
t8_to_list :: T8 t -> [t] Source #
P8 (8-product)
T9 (9-tuple, regular)
t9_to_list :: T9 t -> [t] Source #
t9_from_list :: [t] -> T9 t Source #
T10 (10-tuple, regular)
t10_to_list :: T10 t -> [t] Source #
T11 (11-tuple, regular)
t11_to_list :: T11 t -> [t] Source #
T12 (12-tuple, regular)
t12_to_list :: T12 t -> [t] Source #
t12_from_list :: [t] -> T12 t Source #
t12_foldr1 :: (t -> t -> t) -> T12 t -> t Source #
foldr1
of t12_to_list
.
t12_foldr1 (+) (1,2,3,4,5,6,7,8,9,10,11,12) == 78
t12_sum :: Num n => T12 n -> n Source #
sum
of t12_to_list
.
t12_sum (1,2,3,4,5,6,7,8,9,10,11,12) == 78
Family of uncurry
functions.
uncurry9 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> z) -> (a, b, c, d, e, f, g, h, i) -> z Source #
uncurry10 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> z) -> (a, b, c, d, e, f, g, h, i, j) -> z Source #
uncurry11 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> z) -> (a, b, c, d, e, f, g, h, i, j, k) -> z Source #
uncurry12 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> z Source #
uncurry13 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> z Source #
uncurry14 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> z Source #
uncurry15 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> o -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> z Source #
uncurry16 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> o -> p -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) -> z Source #
uncurry17 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> o -> p -> q -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> z Source #
uncurry18 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m -> n -> o -> p -> q -> r -> z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> z Source #