module Music.Theory.Array.Direction where
import Data.List
import Data.Maybe
import qualified Music.Theory.Array.Cell_Ref as T
import qualified Music.Theory.List as T
type LOC n = (n,n)
type VEC n = (n,n)
vector_add :: Num n => VEC n -> VEC n -> VEC n
vector_add :: forall n. Num n => VEC n -> VEC n -> VEC n
vector_add (n
c1,n
r1) (n
c2,n
r2) = (n
c1 forall a. Num a => a -> a -> a
+ n
c2,n
r1 forall a. Num a => a -> a -> a
+ n
r2)
vector_sub :: Num n => VEC n -> VEC n -> VEC n
vector_sub :: forall n. Num n => VEC n -> VEC n -> VEC n
vector_sub (n
c1,n
r1) (n
c2,n
r2) = (n
c1 forall a. Num a => a -> a -> a
- n
c2,n
r1 forall a. Num a => a -> a -> a
- n
r2)
vector_sum :: Num n => [VEC n] -> VEC n
vector_sum :: forall n. Num n => [VEC n] -> VEC n
vector_sum = forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldl1 forall n. Num n => VEC n -> VEC n -> VEC n
vector_add
apply_vec :: Num n => LOC n -> VEC n -> LOC n
apply_vec :: forall n. Num n => VEC n -> VEC n -> VEC n
apply_vec (n
c,n
r) (n
dc,n
dr) = (n
c forall a. Num a => a -> a -> a
+ n
dc,n
r forall a. Num a => a -> a -> a
+ n
dr)
segment_vec :: Integral n => VEC n -> [VEC n]
segment_vec :: forall n. Integral n => VEC n -> [VEC n]
segment_vec VEC n
v =
case VEC n
v of
(n
0,n
0) -> [VEC n
v]
(n
c,n
r) -> forall i a. Integral i => i -> a -> [a]
genericReplicate (forall a. Num a => a -> a
abs n
r) (n
0,forall a. Num a => a -> a
signum n
r) forall a. [a] -> [a] -> [a]
++ forall i a. Integral i => i -> a -> [a]
genericReplicate (forall a. Num a => a -> a
abs n
c) (forall a. Num a => a -> a
signum n
c,n
0)
derive_vec :: Num n => LOC n -> LOC n -> VEC n
derive_vec :: forall n. Num n => VEC n -> VEC n -> VEC n
derive_vec (n
c1,n
r1) (n
c2,n
r2) = (n
c2 forall a. Num a => a -> a -> a
- n
c1,n
r2 forall a. Num a => a -> a -> a
- n
r1)
unfold_path :: Num n => LOC n -> [VEC n] -> [LOC n]
unfold_path :: forall n. Num n => LOC n -> [LOC n] -> [LOC n]
unfold_path = forall b a. (b -> a -> b) -> b -> [a] -> [b]
scanl forall n. Num n => VEC n -> VEC n -> VEC n
apply_vec
type DIRECTION_S = String
is_direction :: String -> Bool
is_direction :: String -> Bool
is_direction = (forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` String
"DLRU.") forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. [a] -> a
head
type DIRECTION_C = Char
direction_char_to_vector_tbl :: Num n => [(DIRECTION_C,VEC n)]
direction_char_to_vector_tbl :: forall n. Num n => [(Char, VEC n)]
direction_char_to_vector_tbl =
[(Char
'.',(n
0,n
0))
,(Char
'S',(n
0,n
1)),(Char
'W',(-n
1,n
0)),(Char
'E',(n
1,n
0)),(Char
'N',(n
0,-n
1))
,(Char
'D',(n
0,n
1)),(Char
'L',(-n
1,n
0)),(Char
'R',(n
1,n
0)),(Char
'U',(n
0,-n
1))]
direction_char_to_vector :: Num n => DIRECTION_C -> VEC n
direction_char_to_vector :: forall n. Num n => Char -> VEC n
direction_char_to_vector Char
d = forall a. a -> Maybe a -> a
fromMaybe (forall a. HasCallStack => String -> a
error String
"dir?") forall a b. (a -> b) -> a -> b
$ forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup Char
d forall n. Num n => [(Char, VEC n)]
direction_char_to_vector_tbl
direction_to_vector :: Num n => [DIRECTION_C] -> VEC n
direction_to_vector :: forall n. Num n => String -> VEC n
direction_to_vector = forall n. Num n => [VEC n] -> VEC n
vector_sum forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map forall n. Num n => Char -> VEC n
direction_char_to_vector
vector_to_direction_char :: (Eq n, Num n) => VEC n -> DIRECTION_C
vector_to_direction_char :: forall n. (Eq n, Num n) => VEC n -> Char
vector_to_direction_char VEC n
v =
let r :: Maybe Char
r = forall v k. Eq v => v -> [(k, v)] -> Maybe k
T.reverse_lookup VEC n
v forall n. Num n => [(Char, VEC n)]
direction_char_to_vector_tbl
in forall a. a -> Maybe a -> a
fromMaybe (forall a. HasCallStack => String -> a
error String
"vec->dir?") Maybe Char
r
dir_seq_to_cell_seq :: (String,[String]) -> [String]
dir_seq_to_cell_seq :: (String, [String]) -> [String]
dir_seq_to_cell_seq (String
l,[String]
v) =
let p :: [VEC Int]
p = forall a b. (a -> b) -> [a] -> [b]
map forall n. Num n => String -> VEC n
direction_to_vector [String]
v
c :: VEC Int
c = String -> VEC Int
T.parse_cell_index String
l
in forall a b. (a -> b) -> [a] -> [b]
map (Cell_Ref -> String
T.cell_ref_pp forall b c a. (b -> c) -> (a -> b) -> a -> c
. VEC Int -> Cell_Ref
T.index_to_cell) (forall n. Num n => LOC n -> [LOC n] -> [LOC n]
unfold_path VEC Int
c [VEC Int]
p)