Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
John Rahn. Basic Atonal Theory. Longman, New York, 1980.
Synopsis
- rahn_cmp :: Ord a => [a] -> [a] -> Ordering
- z_rahn_prime :: Integral i => Z i -> [i] -> [i]
- rahn_forte_diff :: Num n => [[n]]
Documentation
rahn_cmp :: Ord a => [a] -> [a] -> Ordering Source #
Rahn prime form (comparison is rightmost inwards).
rahn_cmp [0,1,3,6,8,9] [0,2,3,6,7,9] == GT
z_rahn_prime :: Integral i => Z i -> [i] -> [i] Source #
Rahn prime form, ie. ti_cmp_prime
of rahn_cmp
.
z_rahn_prime z12 [0,1,3,6,8,9] == [0,2,3,6,7,9]
rahn_forte_diff :: Num n => [[n]] Source #
The six sets where the Forte and Rahn prime forms differ. Given here in Forte prime form.
all (\p -> Forte_1973.forte_prime z12 p /= rahn_prime z12 p) rahn_forte_diff == True