Copyright | (c) Alberto Ruiz 2014 |
---|---|
License | BSD3 |
Maintainer | Alberto Ruiz |
Stability | provisional |
Safe Haskell | None |
Language | Haskell2010 |
The library can be easily extended using the tools in this module.
Synopsis
- createVector :: Storable a => Int -> IO (Vector a)
- createMatrix :: Storable a => MatrixOrder -> Int -> Int -> IO (Matrix a)
- class TransArray c where
- data MatrixOrder
- orderOf :: Matrix t -> MatrixOrder
- cmat :: Element t => Matrix t -> Matrix t
- fmat :: Element t => Matrix t -> Matrix t
- matrixFromVector :: Storable t => MatrixOrder -> Int -> Int -> Vector t -> Matrix t
- unsafeFromForeignPtr :: Storable a => ForeignPtr a -> Int -> Int -> Vector a
- unsafeToForeignPtr :: Storable a => Vector a -> (ForeignPtr a, Int, Int)
- check :: String -> IO CInt -> IO ()
- (//) :: x -> (x -> y) -> y
- (#|) :: IO CInt -> String -> IO ()
- at' :: Storable a => Vector a -> Int -> a
- atM' :: Storable t => Matrix t -> Int -> Int -> t
- fi :: Int -> CInt
- ti :: CInt -> Int
- data STVector s t
- newVector :: Storable t => t -> Int -> ST s (STVector s t)
- thawVector :: Storable t => Vector t -> ST s (STVector s t)
- freezeVector :: Storable t => STVector s t -> ST s (Vector t)
- runSTVector :: Storable t => (forall s. ST s (STVector s t)) -> Vector t
- readVector :: Storable t => STVector s t -> Int -> ST s t
- writeVector :: Storable t => STVector s t -> Int -> t -> ST s ()
- modifyVector :: Storable t => STVector s t -> Int -> (t -> t) -> ST s ()
- liftSTVector :: Storable t => (Vector t -> a) -> STVector s t -> ST s a
- data STMatrix s t
- newMatrix :: Storable t => t -> Int -> Int -> ST s (STMatrix s t)
- thawMatrix :: Element t => Matrix t -> ST s (STMatrix s t)
- freezeMatrix :: Element t => STMatrix s t -> ST s (Matrix t)
- runSTMatrix :: Storable t => (forall s. ST s (STMatrix s t)) -> Matrix t
- readMatrix :: Storable t => STMatrix s t -> Int -> Int -> ST s t
- writeMatrix :: Storable t => STMatrix s t -> Int -> Int -> t -> ST s ()
- modifyMatrix :: Storable t => STMatrix s t -> Int -> Int -> (t -> t) -> ST s ()
- liftSTMatrix :: Element t => (Matrix t -> a) -> STMatrix s t -> ST s a
- mutable :: Element t => (forall s. (Int, Int) -> STMatrix s t -> ST s u) -> Matrix t -> (Matrix t, u)
- extractMatrix :: Element a => STMatrix t a -> RowRange -> ColRange -> ST s (Matrix a)
- setMatrix :: Element t => STMatrix s t -> Int -> Int -> Matrix t -> ST s ()
- rowOper :: (Num t, Element t) => RowOper t -> STMatrix s t -> ST s ()
- data RowOper t
- data RowRange
- data ColRange
- gemmm :: Element t => t -> Slice s t -> t -> Slice s t -> Slice s t -> ST s ()
- data Slice s t = Slice (STMatrix s t) Int Int Int Int
- newUndefinedVector :: Storable t => Int -> ST s (STVector s t)
- unsafeReadVector :: Storable t => STVector s t -> Int -> ST s t
- unsafeWriteVector :: Storable t => STVector s t -> Int -> t -> ST s ()
- unsafeThawVector :: Storable t => Vector t -> ST s (STVector s t)
- unsafeFreezeVector :: Storable t => STVector s t -> ST s (Vector t)
- newUndefinedMatrix :: Storable t => MatrixOrder -> Int -> Int -> ST s (STMatrix s t)
- unsafeReadMatrix :: Storable t => STMatrix s t -> Int -> Int -> ST s t
- unsafeWriteMatrix :: Storable t => STMatrix s t -> Int -> Int -> t -> ST s ()
- unsafeThawMatrix :: Storable t => Matrix t -> ST s (STMatrix s t)
- unsafeFreezeMatrix :: Storable t => STMatrix s t -> ST s (Matrix t)
- mapVectorWithIndex :: (Storable a, Storable b) => (Int -> a -> b) -> Vector a -> Vector b
- zipVector :: (Storable a, Storable b, Storable (a, b)) => Vector a -> Vector b -> Vector (a, b)
- zipVectorWith :: (Storable a, Storable b, Storable c) => (a -> b -> c) -> Vector a -> Vector b -> Vector c
- unzipVector :: (Storable a, Storable b, Storable (a, b)) => Vector (a, b) -> (Vector a, Vector b)
- unzipVectorWith :: (Storable (a, b), Storable c, Storable d) => ((a, b) -> (c, d)) -> Vector (a, b) -> (Vector c, Vector d)
- mapVectorM :: (Storable a, Storable b, Monad m) => (a -> m b) -> Vector a -> m (Vector b)
- mapVectorM_ :: (Storable a, Monad m) => (a -> m ()) -> Vector a -> m ()
- mapVectorWithIndexM :: (Storable a, Storable b, Monad m) => (Int -> a -> m b) -> Vector a -> m (Vector b)
- mapVectorWithIndexM_ :: (Storable a, Monad m) => (Int -> a -> m ()) -> Vector a -> m ()
- foldLoop :: (Int -> t -> t) -> t -> Int -> t
- foldVector :: Storable a => (a -> b -> b) -> b -> Vector a -> b
- foldVectorG :: Storable t1 => (Int -> (Int -> t1) -> t -> t) -> t -> Vector t1 -> t
- foldVectorWithIndex :: Storable a => (Int -> a -> b -> b) -> b -> Vector a -> b
- mapMatrixWithIndex :: (Element a, Storable b) => ((Int, Int) -> a -> b) -> Matrix a -> Matrix b
- mapMatrixWithIndexM :: (Element a, Storable b, Monad m) => ((Int, Int) -> a -> m b) -> Matrix a -> m (Matrix b)
- mapMatrixWithIndexM_ :: (Element a, Num a, Monad m) => ((Int, Int) -> a -> m ()) -> Matrix a -> m ()
- liftMatrix :: (Element a, Element b) => (Vector a -> Vector b) -> Matrix a -> Matrix b
- liftMatrix2 :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t
- liftMatrix2Auto :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t
- data CSR = CSR {}
- fromCSR :: CSR -> GMatrix
- mkCSR :: AssocMatrix -> CSR
- impureCSR :: PrimMonad m => (forall x. (x -> (IndexOf Matrix, Double) -> m x) -> m x -> (x -> m CSR) -> r) -> r
- data GMatrix
- toByteString :: Storable t => Vector t -> ByteString
- fromByteString :: Storable t => ByteString -> Vector t
- showInternal :: Storable t => Matrix t -> IO ()
- reorderVector :: Element a => Vector CInt -> Vector CInt -> Vector a -> Vector a
FFI tools
See examples/devel
in the repository.
createMatrix :: Storable a => MatrixOrder -> Int -> Int -> IO (Matrix a) Source #
class TransArray c where Source #
apply :: c -> (b -> IO r) -> Trans c b -> IO r infixl 1 Source #
applyRaw :: c -> (b -> IO r) -> TransRaw c b -> IO r infixl 1 Source #
Instances
Storable t => TransArray (Vector t) Source # | |
Storable t => TransArray (Matrix t) Source # | |
data MatrixOrder Source #
Instances
Eq MatrixOrder Source # | |
Defined in Internal.Matrix (==) :: MatrixOrder -> MatrixOrder -> Bool # (/=) :: MatrixOrder -> MatrixOrder -> Bool # | |
Show MatrixOrder Source # | |
Defined in Internal.Matrix showsPrec :: Int -> MatrixOrder -> ShowS # show :: MatrixOrder -> String # showList :: [MatrixOrder] -> ShowS # |
orderOf :: Matrix t -> MatrixOrder Source #
matrixFromVector :: Storable t => MatrixOrder -> Int -> Int -> Vector t -> Matrix t Source #
:: Storable a | |
=> ForeignPtr a | pointer |
-> Int | offset |
-> Int | length |
-> Vector a |
O(1) Create a vector from a ForeignPtr
with an offset and a length.
The data may not be modified through the ForeignPtr
afterwards.
If your offset is 0 it is more efficient to use unsafeFromForeignPtr0
.
unsafeToForeignPtr :: Storable a => Vector a -> (ForeignPtr a, Int, Int) #
O(1) Yield the underlying ForeignPtr
together with the offset to the
data and its length. The data may not be modified through the ForeignPtr
.
ST
In-place manipulation inside the ST monad.
See examples/inplace.hs
in the repository.
Mutable Vectors
Mutable Matrices
mutable :: Element t => (forall s. (Int, Int) -> STMatrix s t -> ST s u) -> Matrix t -> (Matrix t, u) Source #
Unsafe functions
newUndefinedMatrix :: Storable t => MatrixOrder -> Int -> Int -> ST s (STMatrix s t) Source #
Special maps and zips
zipVector :: (Storable a, Storable b, Storable (a, b)) => Vector a -> Vector b -> Vector (a, b) Source #
zip for Vectors
zipVectorWith :: (Storable a, Storable b, Storable c) => (a -> b -> c) -> Vector a -> Vector b -> Vector c Source #
zipWith for Vectors
unzipVector :: (Storable a, Storable b, Storable (a, b)) => Vector (a, b) -> (Vector a, Vector b) Source #
unzip for Vectors
unzipVectorWith :: (Storable (a, b), Storable c, Storable d) => ((a, b) -> (c, d)) -> Vector (a, b) -> (Vector c, Vector d) Source #
unzipWith for Vectors
mapVectorM :: (Storable a, Storable b, Monad m) => (a -> m b) -> Vector a -> m (Vector b) Source #
monadic map over Vectors
the monad m
must be strict
mapVectorM_ :: (Storable a, Monad m) => (a -> m ()) -> Vector a -> m () Source #
monadic map over Vectors
mapVectorWithIndexM :: (Storable a, Storable b, Monad m) => (Int -> a -> m b) -> Vector a -> m (Vector b) Source #
monadic map over Vectors with the zero-indexed index passed to the mapping function
the monad m
must be strict
mapVectorWithIndexM_ :: (Storable a, Monad m) => (Int -> a -> m ()) -> Vector a -> m () Source #
monadic map over Vectors with the zero-indexed index passed to the mapping function
foldVector :: Storable a => (a -> b -> b) -> b -> Vector a -> b Source #
mapMatrixWithIndex :: (Element a, Storable b) => ((Int, Int) -> a -> b) -> Matrix a -> Matrix b Source #
>>>
mapMatrixWithIndex (\(i,j) v -> 100*v + 10*fromIntegral i + fromIntegral j) (ident 3:: Matrix Double)
(3><3) [ 100.0, 1.0, 2.0 , 10.0, 111.0, 12.0 , 20.0, 21.0, 122.0 ]
mapMatrixWithIndexM :: (Element a, Storable b, Monad m) => ((Int, Int) -> a -> m b) -> Matrix a -> m (Matrix b) Source #
>>>
mapMatrixWithIndexM (\(i,j) v -> Just $ 100*v + 10*fromIntegral i + fromIntegral j) (ident 3:: Matrix Double)
Just (3><3) [ 100.0, 1.0, 2.0 , 10.0, 111.0, 12.0 , 20.0, 21.0, 122.0 ]
mapMatrixWithIndexM_ :: (Element a, Num a, Monad m) => ((Int, Int) -> a -> m ()) -> Matrix a -> m () Source #
>>>
mapMatrixWithIndexM_ (\(i,j) v -> printf "m[%d,%d] = %.f\n" i j v :: IO()) ((2><3)[1 :: Double ..])
m[0,0] = 1 m[0,1] = 2 m[0,2] = 3 m[1,0] = 4 m[1,1] = 5 m[1,2] = 6
liftMatrix :: (Element a, Element b) => (Vector a -> Vector b) -> Matrix a -> Matrix b Source #
application of a vector function on the flattened matrix elements
liftMatrix2 :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t Source #
application of a vector function on the flattened matrices elements
liftMatrix2Auto :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t Source #
A version of liftMatrix2
which automatically adapt matrices with a single row or column to match the dimensions of the other matrix.
Sparse representation
mkCSR :: AssocMatrix -> CSR Source #
Produce a CSR sparse matrix from a association matrix.
impureCSR :: PrimMonad m => (forall x. (x -> (IndexOf Matrix, Double) -> m x) -> m x -> (x -> m CSR) -> r) -> r Source #
Produce a CSR sparse matrix by applying a generic folding function.
This allows one to build a CSR from an effectful streaming source when combined with libraries like pipes, io-streams, or streaming.
For example
impureCSR Pipes.Prelude.foldM :: PrimMonad m => Producer AssocEntry m () -> m CSR impureCSR Streaming.Prelude.foldM :: PrimMonad m => Stream (Of AssocEntry) m r -> m (Of CSR r)
General matrix with specialized internal representations for dense, sparse, diagonal, banded, and constant elements.
>>>
let m = mkSparse [((0,999),1.0),((1,1999),2.0)]
>>>
m
SparseR {gmCSR = CSR {csrVals = fromList [1.0,2.0], csrCols = fromList [1000,2000], csrRows = fromList [1,2,3], csrNRows = 2, csrNCols = 2000}, nRows = 2, nCols = 2000}
>>>
let m = mkDense (mat 2 [1..4])
>>>
m
Dense {gmDense = (2><2) [ 1.0, 2.0 , 3.0, 4.0 ], nRows = 2, nCols = 2}
Misc
toByteString :: Storable t => Vector t -> ByteString Source #
fromByteString :: Storable t => ByteString -> Vector t Source #
:: Element a | |
=> Vector CInt |
|
-> Vector CInt |
|
-> Vector a |
|
-> Vector a |
|
Transpose an array with dimensions dims
by making a copy using strides
. For example, for an array with 3 indices,
(reorderVector strides dims v) ! ((i * dims ! 1 + j) * dims ! 2 + k) == v ! (i * strides ! 0 + j * strides ! 1 + k * strides ! 2)
This function is intended to be used internally by tensor libraries.