{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Data.PlanarGraph.Core where
import Control.DeepSeq
import Control.Lens hiding ((.=))
import Control.Monad.State.Strict
import Data.Aeson
import qualified Data.Foldable as F
import Data.Permutation
import Data.PlanarGraph.Dart
import Data.Type.Equality (gcastWith, (:~:)(..))
import qualified Data.Vector as V
import qualified Data.Vector.Mutable as MV
import GHC.Generics (Generic)
import Unsafe.Coerce (unsafeCoerce)
data World = Primal | Dual deriving (Show,Eq)
type family DualOf (sp :: World) where
DualOf Primal = Dual
DualOf Dual = Primal
dualDualIdentity :: forall w. DualOf (DualOf w) :~: w
dualDualIdentity = unsafeCoerce Refl
newtype VertexId s (w :: World) = VertexId { _unVertexId :: Int }
deriving (Eq,Ord,Enum,ToJSON,FromJSON,Generic,NFData)
type VertexId' s = VertexId s Primal
unVertexId :: Getter (VertexId s w) Int
unVertexId = to _unVertexId
instance Show (VertexId s w) where
show (VertexId i) = "VertexId " ++ show i
newtype FaceId s w = FaceId { _unFaceId :: VertexId s (DualOf w) }
deriving (Eq,Ord,Enum,ToJSON,FromJSON)
type FaceId' s = FaceId s Primal
instance Show (FaceId s w) where
show (FaceId (VertexId i)) = "FaceId " ++ show i
data PlanarGraph s (w :: World) v e f = PlanarGraph { _embedding :: Permutation (Dart s)
, _vertexData :: V.Vector v
, _rawDartData :: V.Vector e
, _faceData :: V.Vector f
, _dual :: PlanarGraph s (DualOf w) f e v
} deriving (Generic)
instance (Show v, Show e, Show f) => Show (PlanarGraph s w v e f) where
show (PlanarGraph e v r f _) = unwords [ "PlanarGraph"
, "embedding =", show e
, ", vertexData =", show v
, ", rawDartData =", show r
, ", faceData =", show f
]
instance (Eq v, Eq e, Eq f) => Eq (PlanarGraph s w v e f) where
(PlanarGraph e v r f _) == (PlanarGraph e' v' r' f' _) = e == e' && v == v'
&& r == r' && f == f'
embedding :: Getter (PlanarGraph s w v e f) (Permutation (Dart s))
embedding = to _embedding
vertexData :: Lens (PlanarGraph s w v e f) (PlanarGraph s w v' e f)
(V.Vector v) (V.Vector v')
vertexData = lens _vertexData (\g vD -> updateData (const vD) id id g)
rawDartData :: Lens (PlanarGraph s w v e f) (PlanarGraph s w v e' f)
(V.Vector e) (V.Vector e')
rawDartData = lens _rawDartData (\g dD -> updateData id (const dD) id g)
faceData :: Lens (PlanarGraph s w v e f) (PlanarGraph s w v e f')
(V.Vector f) (V.Vector f')
faceData = lens _faceData (\g fD -> updateData id id (const fD) g)
dual :: Getter (PlanarGraph s w v e f) (PlanarGraph s (DualOf w) f e v)
dual = to _dual
dartData :: Lens (PlanarGraph s w v e f) (PlanarGraph s w v e' f)
(V.Vector (Dart s, e)) (V.Vector (Dart s, e'))
dartData = lens darts (\g dD -> updateData id (const $ reorderEdgeData dD) id g)
edgeData :: Lens (PlanarGraph s w v e f) (PlanarGraph s w v e' f)
(V.Vector (Dart s, e)) (V.Vector (Dart s, e'))
edgeData = dartData
updateData :: forall s w v e f v' e' f'
. (V.Vector v -> V.Vector v')
-> (V.Vector e -> V.Vector e')
-> (V.Vector f -> V.Vector f')
-> PlanarGraph s w v e f
-> PlanarGraph s w v' e' f'
updateData = gcastWith proof updateData'
where
proof :: DualOf (DualOf w) :~: w
proof = dualDualIdentity
updateData' :: (DualOf (DualOf w) ~ w)
=> (V.Vector v -> V.Vector v')
-> (V.Vector e -> V.Vector e')
-> (V.Vector f -> V.Vector f')
-> PlanarGraph s w v e f
-> PlanarGraph s w v' e' f'
updateData' fv fe ff (PlanarGraph em vtxData dData fData dg) = g'
where
vtxData' = fv vtxData
dData' = fe dData
fData' = ff fData
g' = PlanarGraph em vtxData' dData' fData' dg'
dg' = PlanarGraph (dg^.embedding) fData' dData' vtxData' g'
reorderEdgeData :: Foldable f => f (Dart s, e) -> V.Vector e
reorderEdgeData ds = V.create $ do
v <- MV.new (F.length ds)
forM_ (F.toList ds) $ \(d,x) ->
MV.write v (fromEnum d) x
pure v
traverseVertices :: Applicative m
=> (VertexId s w -> v -> m v')
-> PlanarGraph s w v e f
-> m (PlanarGraph s w v' e f)
traverseVertices f = itraverseOf (vertexData.itraversed) (\i -> f (VertexId i))
traverseDarts :: Applicative m
=> (Dart s -> e -> m e')
-> PlanarGraph s w v e f
-> m (PlanarGraph s w v e' f)
traverseDarts f = itraverseOf (rawDartData.itraversed) (\i -> f (toEnum i))
traverseFaces :: Applicative m
=> (FaceId s w -> f -> m f')
-> PlanarGraph s w v e f
-> m (PlanarGraph s w v e f')
traverseFaces f = itraverseOf (faceData.itraversed) (\i -> f (FaceId $ VertexId i))
planarGraph' :: Permutation (Dart s) -> PlanarGraph s w () () ()
planarGraph' perm = pg
where
pg = PlanarGraph perm vData eData fData (computeDual pg)
d = size perm
e = d `div` 2
v = V.length (perm^.orbits)
f = e - v + 2
vData = V.replicate v ()
eData = V.replicate d ()
fData = V.replicate f ()
planarGraph :: [[(Dart s,e)]] -> PlanarGraph s Primal () e ()
planarGraph ds = (planarGraph' perm)&dartData .~ (V.fromList . concat $ ds)
where
n = sum . map length $ ds
perm = toCycleRep n $ map (map fst) ds
toAdjacencyLists :: PlanarGraph s w v e f -> [(VertexId s w, V.Vector (VertexId s w))]
toAdjacencyLists pg = map (\u -> (u,neighboursOf u pg)) . V.toList . vertices' $ pg
numVertices :: PlanarGraph s w v e f -> Int
numVertices g = V.length (g^.embedding.orbits)
numDarts :: PlanarGraph s w v e f -> Int
numDarts g = size (g^.embedding)
numEdges :: PlanarGraph s w v e f -> Int
numEdges g = numDarts g `div` 2
numFaces :: PlanarGraph s w v e f -> Int
numFaces g = numEdges g - numVertices g + 2
vertices' :: PlanarGraph s w v e f -> V.Vector (VertexId s w)
vertices' g = VertexId <$> V.enumFromN 0 (V.length (g^.embedding.orbits))
vertices :: PlanarGraph s w v e f -> V.Vector (VertexId s w, v)
vertices g = V.zip (vertices' g) (g^.vertexData)
darts' :: PlanarGraph s w v e f -> V.Vector (Dart s)
darts' = elems . _embedding
darts :: PlanarGraph s w v e f -> V.Vector (Dart s, e)
darts g = (\d -> (d,g^.dataOf d)) <$> darts' g
edges' :: PlanarGraph s w v e f -> V.Vector (Dart s)
edges' = V.filter isPositive . darts'
edges :: PlanarGraph s w v e f -> V.Vector (Dart s, e)
edges = V.filter (isPositive . fst) . darts
tailOf :: Dart s -> PlanarGraph s w v e f -> VertexId s w
tailOf d g = VertexId . fst $ lookupIdx (g^.embedding) d
headOf :: Dart s -> PlanarGraph s w v e f -> VertexId s w
headOf d = tailOf (twin d)
endPoints :: Dart s -> PlanarGraph s w v e f -> (VertexId s w, VertexId s w)
endPoints d g = (tailOf d g, headOf d g)
incidentEdges :: VertexId s w -> PlanarGraph s w v e f
-> V.Vector (Dart s)
incidentEdges (VertexId v) g = g^?!embedding.orbits.ix v
incomingEdges :: VertexId s w -> PlanarGraph s w v e f -> V.Vector (Dart s)
incomingEdges v g = V.filter (not . isPositive) $ incidentEdges v g
outgoingEdges :: VertexId s w -> PlanarGraph s w v e f -> V.Vector (Dart s)
outgoingEdges v g = V.filter isPositive $ incidentEdges v g
neighboursOf :: VertexId s w -> PlanarGraph s w v e f -> V.Vector (VertexId s w)
neighboursOf v g = otherVtx <$> incidentEdges v g
where
otherVtx d = let u = tailOf d g in if u == v then headOf d g else u
nextIncidentEdge :: Dart s -> PlanarGraph s w v e f -> Dart s
nextIncidentEdge d g = let perm = g^.embedding
(i,j) = lookupIdx perm d
in next (perm^?!orbits.ix i) j
prevIncidentEdge :: Dart s -> PlanarGraph s w v e f -> Dart s
prevIncidentEdge d g = let perm = g^.embedding
(i,j) = lookupIdx perm d
in previous (perm^?!orbits.ix i) j
class HasDataOf g i where
type DataOf g i
dataOf :: i -> Lens' g (DataOf g i)
instance HasDataOf (PlanarGraph s w v e f) (VertexId s w) where
type DataOf (PlanarGraph s w v e f) (VertexId s w) = v
dataOf (VertexId i) = vertexData.singular (ix i)
instance HasDataOf (PlanarGraph s w v e f) (Dart s) where
type DataOf (PlanarGraph s w v e f) (Dart s) = e
dataOf d = rawDartData.singular (ix $ fromEnum d)
instance HasDataOf (PlanarGraph s w v e f) (FaceId s w) where
type DataOf (PlanarGraph s w v e f) (FaceId s w) = f
dataOf (FaceId (VertexId i)) = faceData.singular (ix i)
endPointDataOf :: Dart s -> Getter (PlanarGraph s w v e f) (v,v)
endPointDataOf d = to $ endPointData d
endPointData :: Dart s -> PlanarGraph s w v e f -> (v,v)
endPointData d g = let (u,v) = endPoints d g in (g^.dataOf u, g^.dataOf v)
computeDual :: forall s w v e f. PlanarGraph s w v e f -> PlanarGraph s (DualOf w) f e v
computeDual = gcastWith proof computeDual'
where
proof :: DualOf (DualOf w) :~: w
proof = dualDualIdentity
computeDual' :: (DualOf (DualOf w) ~ w)
=> PlanarGraph s w v e f -> PlanarGraph s (DualOf w) f e v
computeDual' g = dualG
where
perm = g^.embedding
dualG = PlanarGraph (cycleRep (elems perm) (apply perm . twin))
(g^.faceData)
(g^.rawDartData)
(g^.vertexData)
g