{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Geometry.SubLine where
import Control.Lens
import Data.Bifunctor
import Data.Ext
import qualified Data.Foldable as F
import Data.Geometry.Interval
import Data.Geometry.Line.Internal
import Data.Geometry.Point
import Data.Geometry.Properties
import Data.Geometry.Vector
import qualified Data.Traversable as T
import Data.UnBounded
import Data.Vinyl
import Data.Vinyl.CoRec
import Data.Ratio
data SubLine d p s r = SubLine { _line :: Line d r
, _subRange :: Interval p s
}
makeLenses ''SubLine
type instance Dimension (SubLine d p s r) = d
deriving instance (Show r, Show s, Show p, Arity d) => Show (SubLine d p s r)
deriving instance (Eq r, Eq s, Fractional r, Eq p, Arity d) => Eq (SubLine d p s r)
deriving instance Arity d => Functor (SubLine d p s)
deriving instance Arity d => F.Foldable (SubLine d p s)
deriving instance Arity d => T.Traversable (SubLine d p s)
fixEndPoints :: (Num r, Arity d) => SubLine d p r r -> SubLine d (Point d r :+ p) r r
fixEndPoints sl = sl&subRange %~ f
where
ptAt = flip pointAt (sl^.line)
label (c :+ e) = (c :+ (ptAt c :+ e))
f ~(Interval l u) = Interval (l&unEndPoint %~ label)
(u&unEndPoint %~ label)
dropExtra :: SubLine d p s r -> SubLine d () s r
dropExtra = over subRange (first (const ()))
_unBounded :: Prism' (SubLine d p (UnBounded r) r) (SubLine d p r r)
_unBounded = prism' toUnbounded fromUnbounded
toUnbounded :: SubLine d p r r -> SubLine d p (UnBounded r) r
toUnbounded = over subRange (fmap Val)
fromUnbounded :: SubLine d p (UnBounded r) r -> Maybe (SubLine d p r r)
fromUnbounded (SubLine l i) = SubLine l <$> mapM unBoundedToMaybe i
onSubLine :: (Ord r, Fractional r, Arity d)
=> Point d r -> SubLine d p r r -> Bool
onSubLine p (SubLine l r) = case toOffset p l of
Nothing -> False
Just x -> x `inInterval` r
onSubLineUB :: (Ord r, Fractional r)
=> Point 2 r -> SubLine 2 p (UnBounded r) r -> Bool
p `onSubLineUB` (SubLine l r) = case toOffset p l of
Nothing -> False
Just x -> Val x `inInterval` r
onSubLine2 :: (Ord r, Num r) => Point 2 r -> SubLine 2 p r r -> Bool
p `onSubLine2` sl = d `inInterval` r
where
SubLine _ (Interval s e) = fixEndPoints sl
a = s^.unEndPoint.extra.core
b = e^.unEndPoint.extra.core
d = (p .-. a) `dot` (b .-. a)
r = Interval (s&unEndPoint.core .~ 0) (e&unEndPoint.core .~ squaredEuclideanDist b a)
onSubLine2UB :: (Ord r, Fractional r)
=> Point 2 r -> SubLine 2 p (UnBounded r) r -> Bool
p `onSubLine2UB` sl = p `onSubLineUB` sl
type instance IntersectionOf (SubLine 2 p s r) (SubLine 2 q s r) = [ NoIntersection
, Point 2 r
, SubLine 2 p s r
]
instance (Ord r, Fractional r) =>
(SubLine 2 p r r) `IsIntersectableWith` (SubLine 2 p r r) where
nonEmptyIntersection = defaultNonEmptyIntersection
sl@(SubLine l r) `intersect` sm@(SubLine m _) = match (l `intersect` m) $
(H $ \NoIntersection -> coRec NoIntersection)
:& (H $ \p@(Point _) -> if onSubLine2 p sl && onSubLine2 p sm
then coRec p
else coRec NoIntersection)
:& (H $ \_ -> match (r `intersect` s'') $
(H $ \NoIntersection -> coRec NoIntersection)
:& (H $ \i -> coRec $ SubLine l i)
:& RNil
)
:& RNil
where
s' = (fixEndPoints sm)^.subRange
s'' = bimap (^.extra) id
$ s'&start.core .~ toOffset' (s'^.start.extra.core) l
&end.core .~ toOffset' (s'^.end.extra.core) l
instance (Ord r, Fractional r) =>
(SubLine 2 p (UnBounded r) r) `IsIntersectableWith` (SubLine 2 p (UnBounded r) r) where
nonEmptyIntersection = defaultNonEmptyIntersection
sl@(SubLine l r) `intersect` sm@(SubLine m _) = match (l `intersect` m) $
(H $ \NoIntersection -> coRec NoIntersection)
:& (H $ \p@(Point _) -> if onSubLine2UB p sl && onSubLine2UB p sm
then coRec p
else coRec NoIntersection)
:& (H $ \_ -> match (r `intersect` s'') $
(H $ \NoIntersection -> coRec NoIntersection)
:& (H $ \i -> coRec $ SubLine l i)
:& RNil
)
:& RNil
where
s' = getEndPointsUnBounded sm
s'' = second (fmap f) s'
f = flip toOffset' l
getEndPointsUnBounded :: (Num r, Arity d) => SubLine d p (UnBounded r) r
-> Interval p (UnBounded (Point d r))
getEndPointsUnBounded sl = second (fmap f) $ sl^.subRange
where
f = flip pointAt (sl^.line)
fromLine :: Arity d => Line d r -> SubLine d () (UnBounded r) r
fromLine l = SubLine l (ClosedInterval (ext MinInfinity) (ext MaxInfinity))
testz :: SubLine 2 () Rational Rational
testz = SubLine (Line (Point2 0 0) (Vector2 10 0))
(Interval (Closed (0 % 1 :+ ())) (Closed (1 % 1 :+ ())))