{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Geometry.PolyLine where
import Control.Lens
import Data.Bifunctor
import Data.Ext
import qualified Data.Foldable as F
import Data.Geometry.Box
import Data.Geometry.LineSegment
import Data.Geometry.Point
import Data.Geometry.Properties
import Data.Geometry.Transformation
import Data.Geometry.Vector
import Data.LSeq (LSeq, pattern (:<|))
import qualified Data.LSeq as LSeq
import qualified Data.List.NonEmpty as NE
import GHC.TypeLits
newtype PolyLine d p r = PolyLine { _points :: LSeq 2 (Point d r :+ p) }
makeLenses ''PolyLine
deriving instance (Show r, Show p, Arity d) => Show (PolyLine d p r)
deriving instance (Eq r, Eq p, Arity d) => Eq (PolyLine d p r)
deriving instance (Ord r, Ord p, Arity d) => Ord (PolyLine d p r)
instance Arity d => Functor (PolyLine d p) where
fmap f (PolyLine ps) = PolyLine $ fmap (first (fmap f)) ps
type instance Dimension (PolyLine d p r) = d
type instance NumType (PolyLine d p r) = r
instance Semigroup (PolyLine d p r) where
(PolyLine pts) <> (PolyLine pts') = PolyLine $ pts <> pts'
instance Arity d => IsBoxable (PolyLine d p r) where
boundingBox = boundingBoxList . NE.fromList . toListOf (points.traverse.core)
instance (Fractional r, Arity d, Arity (d + 1)) => IsTransformable (PolyLine d p r) where
transformBy = transformPointFunctor
instance PointFunctor (PolyLine d p) where
pmap f = over points (fmap (first f))
instance Arity d => Bifunctor (PolyLine d) where
bimap f g (PolyLine pts) = PolyLine $ fmap (bimap (fmap g) f) pts
fromPoints :: [Point d r :+ p] -> PolyLine d p r
fromPoints = PolyLine . LSeq.forceLSeq (C :: C 2) . LSeq.fromList
fromPoints' :: (Monoid p) => [Point d r] -> PolyLine d p r
fromPoints' = fromPoints . map (\p -> p :+ mempty)
fromLineSegment :: LineSegment d p r -> PolyLine d p r
fromLineSegment ~(LineSegment' p q) = fromPoints [p,q]
asLineSegment :: PolyLine d p r -> LineSegment d p r
asLineSegment (PolyLine (p :<| q :<| _)) = ClosedLineSegment p q
asLineSegment' :: PolyLine d p r -> Maybe (LineSegment d p r)
asLineSegment' (PolyLine pts) = case F.toList pts of
[p,q] -> Just $ ClosedLineSegment p q
_ -> Nothing