{-# LANGUAGE TemplateHaskell #-}
module Algorithms.Geometry.LineSegmentIntersection.Types where

import           Control.Lens
import           Data.Ext
import           Data.Geometry.Interval
import           Data.Geometry.LineSegment
import           Data.Geometry.Point
import           Data.Geometry.Properties
import           Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NonEmpty
import qualified Data.List as L
import qualified Data.Map as Map

--------------------------------------------------------------------------------

-- get the endpoints of a line segment
endPoints'   :: (HasEnd s, HasStart s) => s -> (StartCore s, EndCore s)
endPoints' s = (s^.start.core,s^.end.core)


type Set' l =
  Map.Map (Point (Dimension l) (NumType l), Point (Dimension l) (NumType l)) (NonEmpty l)

data Associated p r = Associated { _endPointOf        :: Set' (LineSegment 2 p r)
                                 , _interiorTo        :: Set' (LineSegment 2 p r)
                                 } deriving (Show)


instance (Eq p, Eq r) => Eq (Associated p r) where
  (Associated es is) == (Associated es' is') = f es es' && f is is'
    where
      f xs ys = and $ zipWith (\(p,pa) (q,qa) -> p == q && pa `sameElements` qa)
                        (Map.toAscList xs) (Map.toAscList ys)

      g = L.nub . NonEmpty.toList
      sameElements (g -> xs) (g -> ys) = L.null $ (xs L.\\ ys) ++ (ys L.\\ xs)


associated       :: Ord r
                 => [LineSegment 2 p r] -> [LineSegment 2 p r] -> Associated p r
associated es is = Associated (f es) (f is)
  where
    f = foldr (\s -> Map.insertWith (<>) (endPoints' s) (s :| [])) mempty


endPointOf :: Associated p r -> [LineSegment 2 p r]
endPointOf = concatMap NonEmpty.toList . Map.elems . _endPointOf

interiorTo :: Associated p r -> [LineSegment 2 p r]
interiorTo = concatMap NonEmpty.toList . Map.elems . _interiorTo


instance Ord r => Semigroup (Associated p r) where
  (Associated es is) <> (Associated es' is') = Associated (es <> es') (is <> is')

instance Ord r => Monoid (Associated p r) where
  mempty = Associated mempty mempty
  mappend = (<>)

type Intersections p r = Map.Map (Point 2 r) (Associated p r)

data IntersectionPoint p r =
  IntersectionPoint { _intersectionPoint :: !(Point 2 r)
                    , _associatedSegs    :: !(Associated p r)
                    } deriving (Show,Eq)
makeLenses ''IntersectionPoint


-- | reports true if there is at least one segment for which this intersection
-- point is interior.
--
-- \(O(1)\)
isEndPointIntersection :: Associated p r -> Bool
isEndPointIntersection = Map.null . _interiorTo


-- newtype E a b = E (a -> b)