hgeometry-0.12.0.2: Geometric Algorithms, Data structures, and Data types.
Copyright(C) Frank Staals
Licensesee the LICENSE file
MaintainerFrank Staals
Safe HaskellNone
LanguageHaskell2010

Data.Geometry.RangeTree.Measure

Description

 

Documentation

class LabeledMeasure v where Source #

Methods

labeledMeasure :: [a] -> v a Source #

Instances

Instances details
LabeledMeasure Report Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

labeledMeasure :: [a] -> Report a Source #

LabeledMeasure (Count :: Type -> Type) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

labeledMeasure :: [a] -> Count a Source #

(LabeledMeasure l, LabeledMeasure r) => LabeledMeasure (l :*: r) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

labeledMeasure :: [a] -> (l :*: r) a Source #

newtype Report p Source #

Constructors

Report 

Fields

Instances

Instances details
Functor Report Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

fmap :: (a -> b) -> Report a -> Report b #

(<$) :: a -> Report b -> Report a #

Foldable Report Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

fold :: Monoid m => Report m -> m #

foldMap :: Monoid m => (a -> m) -> Report a -> m #

foldMap' :: Monoid m => (a -> m) -> Report a -> m #

foldr :: (a -> b -> b) -> b -> Report a -> b #

foldr' :: (a -> b -> b) -> b -> Report a -> b #

foldl :: (b -> a -> b) -> b -> Report a -> b #

foldl' :: (b -> a -> b) -> b -> Report a -> b #

foldr1 :: (a -> a -> a) -> Report a -> a #

foldl1 :: (a -> a -> a) -> Report a -> a #

toList :: Report a -> [a] #

null :: Report a -> Bool #

length :: Report a -> Int #

elem :: Eq a => a -> Report a -> Bool #

maximum :: Ord a => Report a -> a #

minimum :: Ord a => Report a -> a #

sum :: Num a => Report a -> a #

product :: Num a => Report a -> a #

Eq1 Report Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

liftEq :: (a -> b -> Bool) -> Report a -> Report b -> Bool #

Show1 Report Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Report a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Report a] -> ShowS #

LabeledMeasure Report Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

labeledMeasure :: [a] -> Report a Source #

Eq p => Eq (Report p) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

(==) :: Report p -> Report p -> Bool #

(/=) :: Report p -> Report p -> Bool #

Ord p => Ord (Report p) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

compare :: Report p -> Report p -> Ordering #

(<) :: Report p -> Report p -> Bool #

(<=) :: Report p -> Report p -> Bool #

(>) :: Report p -> Report p -> Bool #

(>=) :: Report p -> Report p -> Bool #

max :: Report p -> Report p -> Report p #

min :: Report p -> Report p -> Report p #

Show p => Show (Report p) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

showsPrec :: Int -> Report p -> ShowS #

show :: Report p -> String #

showList :: [Report p] -> ShowS #

Semigroup (Report p) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

(<>) :: Report p -> Report p -> Report p #

sconcat :: NonEmpty (Report p) -> Report p #

stimes :: Integral b => b -> Report p -> Report p #

Monoid (Report p) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

mempty :: Report p #

mappend :: Report p -> Report p -> Report p #

mconcat :: [Report p] -> Report p #

Measured (Report p) (Report p) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

measure :: Report p -> Report p #

newtype Count a Source #

Constructors

Count 

Fields

Instances

Instances details
Eq1 (Count :: Type -> Type) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

liftEq :: (a -> b -> Bool) -> Count a -> Count b -> Bool #

Show1 (Count :: Type -> Type) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Count a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Count a] -> ShowS #

LabeledMeasure (Count :: Type -> Type) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

labeledMeasure :: [a] -> Count a Source #

Eq (Count a) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

(==) :: Count a -> Count a -> Bool #

(/=) :: Count a -> Count a -> Bool #

Ord (Count a) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

compare :: Count a -> Count a -> Ordering #

(<) :: Count a -> Count a -> Bool #

(<=) :: Count a -> Count a -> Bool #

(>) :: Count a -> Count a -> Bool #

(>=) :: Count a -> Count a -> Bool #

max :: Count a -> Count a -> Count a #

min :: Count a -> Count a -> Count a #

Read (Count a) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Show (Count a) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

showsPrec :: Int -> Count a -> ShowS #

show :: Count a -> String #

showList :: [Count a] -> ShowS #

Semigroup (Count a) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

(<>) :: Count a -> Count a -> Count a #

sconcat :: NonEmpty (Count a) -> Count a #

stimes :: Integral b => b -> Count a -> Count a #

Monoid (Count a) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Measure

Methods

mempty :: Count a #

mappend :: Count a -> Count a -> Count a #

mconcat :: [Count a] -> Count a #

Measured (Count p) (CountOf p) Source # 
Instance details

Defined in Data.Geometry.RangeTree.Generic

Methods

measure :: CountOf p -> Count p #

type (:*:) l r = Product l r Source #

Orphan instances

(Semigroup (l a), Semigroup (r a)) => Semigroup ((l :*: r) a) Source # 
Instance details

Methods

(<>) :: (l :*: r) a -> (l :*: r) a -> (l :*: r) a #

sconcat :: NonEmpty ((l :*: r) a) -> (l :*: r) a #

stimes :: Integral b => b -> (l :*: r) a -> (l :*: r) a #

(Monoid (l a), Monoid (r a)) => Monoid ((l :*: r) a) Source # 
Instance details

Methods

mempty :: (l :*: r) a #

mappend :: (l :*: r) a -> (l :*: r) a -> (l :*: r) a #

mconcat :: [(l :*: r) a] -> (l :*: r) a #