{-# LANGUAGE ScopedTypeVariables #-}
module Data.Geometry.Polygon.Convex
( ConvexPolygon(..), simplePolygon
, convexPolygon
, isConvex, verifyConvex
, merge
, lowerTangent, lowerTangent'
, upperTangent, upperTangent'
, extremes
, maxInDirection
, leftTangent, rightTangent
, minkowskiSum
, bottomMost
, inConvex
, randomConvex
, diameter
, diametralPair
, diametralIndexPair
) where
import Control.DeepSeq (NFData)
import Control.Lens (Iso, iso, over, view, (%~), (&), (^.))
import Control.Monad.Random
import Control.Monad.ST
import Control.Monad.State
import Data.Coerce
import Data.Ext
import qualified Data.Foldable as F
import Data.Function (on)
import Data.Geometry.Boundary
import Data.Geometry.Box (IsBoxable (..))
import Data.Geometry.LineSegment
import Data.Geometry.Point
import Data.Geometry.Polygon.Core (Polygon (..), SimplePolygon, centroid,
outerBoundaryVector, outerVertex, size,
unsafeFromPoints, unsafeFromVector,
unsafeOuterBoundaryVector)
import Data.Geometry.Polygon.Extremes (cmpExtreme)
import Data.Geometry.Properties
import Data.Geometry.Transformation
import Data.Geometry.Triangle
import Data.Geometry.Vector
import qualified Data.IntSet as IS
import Data.List.NonEmpty (NonEmpty (..))
import qualified Data.List.NonEmpty as NonEmpty
import Data.Maybe (fromJust)
import Data.Ord (comparing)
import Data.Semigroup.Foldable (Foldable1 (..))
import Data.Util
import qualified Data.Vector as V
import Data.Vector.Circular (CircularVector)
import qualified Data.Vector.Circular as CV
import qualified Data.Vector.Circular.Util as CV
import qualified Data.Vector.Mutable as Mut
import qualified Data.Vector.NonEmpty as NE
import qualified Data.Vector.Unboxed as VU
newtype ConvexPolygon p r = ConvexPolygon {ConvexPolygon p r -> SimplePolygon p r
_simplePolygon :: SimplePolygon p r }
deriving (Int -> ConvexPolygon p r -> ShowS
[ConvexPolygon p r] -> ShowS
ConvexPolygon p r -> String
(Int -> ConvexPolygon p r -> ShowS)
-> (ConvexPolygon p r -> String)
-> ([ConvexPolygon p r] -> ShowS)
-> Show (ConvexPolygon p r)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall p r. (Show p, Show r) => Int -> ConvexPolygon p r -> ShowS
forall p r. (Show p, Show r) => [ConvexPolygon p r] -> ShowS
forall p r. (Show p, Show r) => ConvexPolygon p r -> String
showList :: [ConvexPolygon p r] -> ShowS
$cshowList :: forall p r. (Show p, Show r) => [ConvexPolygon p r] -> ShowS
show :: ConvexPolygon p r -> String
$cshow :: forall p r. (Show p, Show r) => ConvexPolygon p r -> String
showsPrec :: Int -> ConvexPolygon p r -> ShowS
$cshowsPrec :: forall p r. (Show p, Show r) => Int -> ConvexPolygon p r -> ShowS
Show,ConvexPolygon p r -> ConvexPolygon p r -> Bool
(ConvexPolygon p r -> ConvexPolygon p r -> Bool)
-> (ConvexPolygon p r -> ConvexPolygon p r -> Bool)
-> Eq (ConvexPolygon p r)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall p r.
(Eq p, Eq r) =>
ConvexPolygon p r -> ConvexPolygon p r -> Bool
/= :: ConvexPolygon p r -> ConvexPolygon p r -> Bool
$c/= :: forall p r.
(Eq p, Eq r) =>
ConvexPolygon p r -> ConvexPolygon p r -> Bool
== :: ConvexPolygon p r -> ConvexPolygon p r -> Bool
$c== :: forall p r.
(Eq p, Eq r) =>
ConvexPolygon p r -> ConvexPolygon p r -> Bool
Eq,ConvexPolygon p r -> ()
(ConvexPolygon p r -> ()) -> NFData (ConvexPolygon p r)
forall a. (a -> ()) -> NFData a
forall p r. (NFData p, NFData r) => ConvexPolygon p r -> ()
rnf :: ConvexPolygon p r -> ()
$crnf :: forall p r. (NFData p, NFData r) => ConvexPolygon p r -> ()
NFData)
simplePolygon :: Iso (ConvexPolygon p1 r1) (ConvexPolygon p2 r2) (SimplePolygon p1 r1) (SimplePolygon p2 r2)
simplePolygon :: p (SimplePolygon p1 r1) (f (SimplePolygon p2 r2))
-> p (ConvexPolygon p1 r1) (f (ConvexPolygon p2 r2))
simplePolygon = (ConvexPolygon p1 r1 -> SimplePolygon p1 r1)
-> (SimplePolygon p2 r2 -> ConvexPolygon p2 r2)
-> Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso ConvexPolygon p1 r1 -> SimplePolygon p1 r1
forall p r. ConvexPolygon p r -> SimplePolygon p r
_simplePolygon SimplePolygon p2 r2 -> ConvexPolygon p2 r2
forall p r. SimplePolygon p r -> ConvexPolygon p r
ConvexPolygon
instance PointFunctor (ConvexPolygon p) where
pmap :: (Point (Dimension (ConvexPolygon p r)) r
-> Point (Dimension (ConvexPolygon p s)) s)
-> ConvexPolygon p r -> ConvexPolygon p s
pmap Point (Dimension (ConvexPolygon p r)) r
-> Point (Dimension (ConvexPolygon p s)) s
f (ConvexPolygon SimplePolygon p r
p) = SimplePolygon p s -> ConvexPolygon p s
forall p r. SimplePolygon p r -> ConvexPolygon p r
ConvexPolygon (SimplePolygon p s -> ConvexPolygon p s)
-> SimplePolygon p s -> ConvexPolygon p s
forall a b. (a -> b) -> a -> b
$ (Point (Dimension (SimplePolygon p r)) r
-> Point (Dimension (SimplePolygon p s)) s)
-> SimplePolygon p r -> SimplePolygon p s
forall (g :: * -> *) r s.
PointFunctor g =>
(Point (Dimension (g r)) r -> Point (Dimension (g s)) s)
-> g r -> g s
pmap Point (Dimension (SimplePolygon p r)) r
-> Point (Dimension (SimplePolygon p s)) s
Point (Dimension (ConvexPolygon p r)) r
-> Point (Dimension (ConvexPolygon p s)) s
f SimplePolygon p r
p
type instance Dimension (ConvexPolygon p r) = 2
type instance NumType (ConvexPolygon p r) = r
instance Fractional r => IsTransformable (ConvexPolygon p r) where
transformBy :: Transformation
(Dimension (ConvexPolygon p r)) (NumType (ConvexPolygon p r))
-> ConvexPolygon p r -> ConvexPolygon p r
transformBy = Transformation
(Dimension (ConvexPolygon p r)) (NumType (ConvexPolygon p r))
-> ConvexPolygon p r -> ConvexPolygon p r
forall (g :: * -> *) r (d :: Nat).
(PointFunctor g, Fractional r, d ~ Dimension (g r), Arity d,
Arity (d + 1)) =>
Transformation d r -> g r -> g r
transformPointFunctor
instance IsBoxable (ConvexPolygon p r) where
boundingBox :: ConvexPolygon p r
-> Box
(Dimension (ConvexPolygon p r)) () (NumType (ConvexPolygon p r))
boundingBox = SimplePolygon p r -> Box 2 () r
forall g.
(IsBoxable g, Ord (NumType g)) =>
g -> Box (Dimension g) () (NumType g)
boundingBox (SimplePolygon p r -> Box 2 () r)
-> (ConvexPolygon p r -> SimplePolygon p r)
-> ConvexPolygon p r
-> Box 2 () r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConvexPolygon p r -> SimplePolygon p r
forall p r. ConvexPolygon p r -> SimplePolygon p r
_simplePolygon
type M s v a = StateT (Mut.MVector s v, Int) (ST s) a
runM :: Int -> M s v () -> ST s (Mut.MVector s v)
runM :: Int -> M s v () -> ST s (MVector s v)
runM Int
s M s v ()
action = do
MVector s v
v <- Int -> ST s (MVector (PrimState (ST s)) v)
forall (m :: * -> *) a.
PrimMonad m =>
Int -> m (MVector (PrimState m) a)
Mut.new (Int
2Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
s)
(MVector s v
v', Int
f) <- M s v () -> (MVector s v, Int) -> ST s (MVector s v, Int)
forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m s
execStateT M s v ()
action (Int -> MVector s v -> MVector s v
forall s a. Int -> MVector s a -> MVector s a
Mut.drop Int
s MVector s v
v, Int
0)
MVector s v -> ST s (MVector s v)
forall (m :: * -> *) a. Monad m => a -> m a
return (MVector s v -> ST s (MVector s v))
-> MVector s v -> ST s (MVector s v)
forall a b. (a -> b) -> a -> b
$ MVector s v -> MVector s v
forall s a. MVector s a -> MVector s a
Mut.tail (MVector s v -> MVector s v) -> MVector s v -> MVector s v
forall a b. (a -> b) -> a -> b
$ Int -> MVector s v -> MVector s v
forall s a. Int -> MVector s a -> MVector s a
Mut.take Int
f MVector s v
v'
dequeRemove :: M s a ()
dequeRemove :: M s a ()
dequeRemove = do
((MVector s a, Int) -> (MVector s a, Int)) -> M s a ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify (((MVector s a, Int) -> (MVector s a, Int)) -> M s a ())
-> ((MVector s a, Int) -> (MVector s a, Int)) -> M s a ()
forall a b. (a -> b) -> a -> b
$ \(Mut.MVector Int
offset Int
len MutableArray s a
arr, Int
f) -> (Int -> Int -> MutableArray s a -> MVector s a
forall s a. Int -> Int -> MutableArray s a -> MVector s a
Mut.MVector (Int
offsetInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
lenInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) MutableArray s a
arr, Int
fInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
dequeInsert :: a -> M s a ()
dequeInsert :: a -> M s a ()
dequeInsert a
a = do
((MVector s a, Int) -> (MVector s a, Int)) -> M s a ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify (((MVector s a, Int) -> (MVector s a, Int)) -> M s a ())
-> ((MVector s a, Int) -> (MVector s a, Int)) -> M s a ()
forall a b. (a -> b) -> a -> b
$ \(Mut.MVector Int
offset Int
len MutableArray s a
arr, Int
f) -> (Int -> Int -> MutableArray s a -> MVector s a
forall s a. Int -> Int -> MutableArray s a -> MVector s a
Mut.MVector (Int
offsetInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (Int
lenInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) MutableArray s a
arr, Int
fInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
(MVector s a
v,Int
_) <- StateT (MVector s a, Int) (ST s) (MVector s a, Int)
forall s (m :: * -> *). MonadState s m => m s
get
MVector (PrimState (StateT (MVector s a, Int) (ST s))) a
-> Int -> a -> M s a ()
forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> a -> m ()
Mut.write MVector s a
MVector (PrimState (StateT (MVector s a, Int) (ST s))) a
v Int
0 a
a
dequePush :: a -> M s a ()
dequePush :: a -> M s a ()
dequePush a
a = do
(MVector s a
v, Int
f) <- StateT (MVector s a, Int) (ST s) (MVector s a, Int)
forall s (m :: * -> *). MonadState s m => m s
get
MVector (PrimState (StateT (MVector s a, Int) (ST s))) a
-> Int -> a -> M s a ()
forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> a -> m ()
Mut.write MVector s a
MVector (PrimState (StateT (MVector s a, Int) (ST s))) a
v Int
f a
a
(MVector s a, Int) -> M s a ()
forall s (m :: * -> *). MonadState s m => s -> m ()
put (MVector s a
v,Int
fInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
dequePop :: M s a ()
dequePop :: M s a ()
dequePop = do
((MVector s a, Int) -> (MVector s a, Int)) -> M s a ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify (((MVector s a, Int) -> (MVector s a, Int)) -> M s a ())
-> ((MVector s a, Int) -> (MVector s a, Int)) -> M s a ()
forall a b. (a -> b) -> a -> b
$ \(MVector s a
v,Int
f) -> (MVector s a
v,Int
fInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
dequeBottom :: Int -> M s a a
dequeBottom :: Int -> M s a a
dequeBottom Int
idx = do
(MVector s a
v,Int
_) <- StateT (MVector s a, Int) (ST s) (MVector s a, Int)
forall s (m :: * -> *). MonadState s m => m s
get
MVector (PrimState (StateT (MVector s a, Int) (ST s))) a
-> Int -> M s a a
forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> m a
Mut.read MVector s a
MVector (PrimState (StateT (MVector s a, Int) (ST s))) a
v Int
idx
dequeTop :: Int -> M s a a
dequeTop :: Int -> M s a a
dequeTop Int
idx = do
(MVector s a
v,Int
f) <- StateT (MVector s a, Int) (ST s) (MVector s a, Int)
forall s (m :: * -> *). MonadState s m => m s
get
MVector (PrimState (StateT (MVector s a, Int) (ST s))) a
-> Int -> M s a a
forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> m a
Mut.read MVector s a
MVector (PrimState (StateT (MVector s a, Int) (ST s))) a
v (Int
fInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
idxInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
convexPolygon :: forall t p r. (Ord r, Num r, Show r, Show p) => Polygon t p r -> ConvexPolygon p r
convexPolygon :: Polygon t p r -> ConvexPolygon p r
convexPolygon Polygon t p r
p = SimplePolygon p r -> ConvexPolygon p r
forall p r. SimplePolygon p r -> ConvexPolygon p r
ConvexPolygon (SimplePolygon p r -> ConvexPolygon p r)
-> SimplePolygon p r -> ConvexPolygon p r
forall a b. (a -> b) -> a -> b
$ Vector (Point 2 r :+ p) -> SimplePolygon p r
forall r p. Vector (Point 2 r :+ p) -> SimplePolygon p r
unsafeFromVector (Vector (Point 2 r :+ p) -> SimplePolygon p r)
-> Vector (Point 2 r :+ p) -> SimplePolygon p r
forall a b. (a -> b) -> a -> b
$ (forall s. ST s (MVector s (Point 2 r :+ p)))
-> Vector (Point 2 r :+ p)
forall a. (forall s. ST s (MVector s a)) -> Vector a
V.create ((forall s. ST s (MVector s (Point 2 r :+ p)))
-> Vector (Point 2 r :+ p))
-> (forall s. ST s (MVector s (Point 2 r :+ p)))
-> Vector (Point 2 r :+ p)
forall a b. (a -> b) -> a -> b
$ Int -> M s (Point 2 r :+ p) () -> ST s (MVector s (Point 2 r :+ p))
forall s v. Int -> M s v () -> ST s (MVector s v)
runM (Polygon t p r -> Int
forall (t :: PolygonType) p r. Polygon t p r -> Int
size Polygon t p r
p) (M s (Point 2 r :+ p) () -> ST s (MVector s (Point 2 r :+ p)))
-> M s (Point 2 r :+ p) () -> ST s (MVector s (Point 2 r :+ p))
forall a b. (a -> b) -> a -> b
$
Int -> M s (Point 2 r :+ p) ()
forall s. Int -> M s (Point 2 r :+ p) ()
findStartingPoint Int
2
where
findStartingPoint :: Int -> M s (Point 2 r :+ p) ()
findStartingPoint :: Int -> M s (Point 2 r :+ p) ()
findStartingPoint Int
nth = do
let vPrev :: Point 2 r :+ p
vPrev = NonEmptyVector (Point 2 r :+ p) -> Int -> Point 2 r :+ p
forall a. NonEmptyVector a -> Int -> a
NE.unsafeIndex NonEmptyVector (Point 2 r :+ p)
vs (Int
nthInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
vNth :: Point 2 r :+ p
vNth = NonEmptyVector (Point 2 r :+ p) -> Int -> Point 2 r :+ p
forall a. NonEmptyVector a -> Int -> a
NE.unsafeIndex NonEmptyVector (Point 2 r :+ p)
vs Int
nth
case (Point 2 r :+ p) -> (Point 2 r :+ p) -> (Point 2 r :+ p) -> CCW
forall r a b c.
(Ord r, Num r) =>
(Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
ccw' Point 2 r :+ p
v1 Point 2 r :+ p
vPrev Point 2 r :+ p
vNth of
CCW
CoLinear -> Int -> M s (Point 2 r :+ p) ()
forall s. Int -> M s (Point 2 r :+ p) ()
findStartingPoint (Int
nthInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
CCW
CCW -> do
(Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall a s. a -> M s a ()
dequePush Point 2 r :+ p
v1 M s (Point 2 r :+ p) ()
-> M s (Point 2 r :+ p) () -> M s (Point 2 r :+ p) ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall a s. a -> M s a ()
dequePush Point 2 r :+ p
vPrev
(Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall a s. a -> M s a ()
dequePush Point 2 r :+ p
vNth; (Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall a s. a -> M s a ()
dequeInsert Point 2 r :+ p
vNth
((Point 2 r :+ p) -> M s (Point 2 r :+ p) ())
-> Vector (Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> Vector a -> m ()
V.mapM_ (Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall r c s.
(Ord r, Num r) =>
(Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
build (Int -> NonEmptyVector (Point 2 r :+ p) -> Vector (Point 2 r :+ p)
forall a. Int -> NonEmptyVector a -> Vector a
NE.drop (Int
nthInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) NonEmptyVector (Point 2 r :+ p)
vs)
CCW
CW -> do
(Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall a s. a -> M s a ()
dequePush Point 2 r :+ p
vPrev M s (Point 2 r :+ p) ()
-> M s (Point 2 r :+ p) () -> M s (Point 2 r :+ p) ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall a s. a -> M s a ()
dequePush Point 2 r :+ p
v1
(Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall a s. a -> M s a ()
dequePush Point 2 r :+ p
vNth; (Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall a s. a -> M s a ()
dequeInsert Point 2 r :+ p
vNth
((Point 2 r :+ p) -> M s (Point 2 r :+ p) ())
-> Vector (Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> Vector a -> m ()
V.mapM_ (Point 2 r :+ p) -> M s (Point 2 r :+ p) ()
forall r c s.
(Ord r, Num r) =>
(Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
build (Int -> NonEmptyVector (Point 2 r :+ p) -> Vector (Point 2 r :+ p)
forall a. Int -> NonEmptyVector a -> Vector a
NE.drop (Int
nthInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) NonEmptyVector (Point 2 r :+ p)
vs)
v1 :: Point 2 r :+ p
v1 = NonEmptyVector (Point 2 r :+ p) -> Int -> Point 2 r :+ p
forall a. NonEmptyVector a -> Int -> a
NE.unsafeIndex NonEmptyVector (Point 2 r :+ p)
vs Int
0
vs :: NonEmptyVector (Point 2 r :+ p)
vs = CircularVector (Point 2 r :+ p) -> NonEmptyVector (Point 2 r :+ p)
forall a. CircularVector a -> NonEmptyVector a
CV.vector (Polygon t p r
pPolygon t p r
-> Getting
(CircularVector (Point 2 r :+ p))
(Polygon t p r)
(CircularVector (Point 2 r :+ p))
-> CircularVector (Point 2 r :+ p)
forall s a. s -> Getting a s a -> a
^.Getting
(CircularVector (Point 2 r :+ p))
(Polygon t p r)
(CircularVector (Point 2 r :+ p))
forall (t :: PolygonType) p r.
Getter (Polygon t p r) (CircularVector (Point 2 r :+ p))
outerBoundaryVector)
build :: (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
build Point 2 r :+ c
v = do
CCW
botTurn <- (Point 2 r :+ c) -> (Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW
forall r a b c.
(Ord r, Num r) =>
(Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
ccw' ((Point 2 r :+ c) -> (Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
-> StateT
(MVector s (Point 2 r :+ c), Int)
(ST s)
((Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Point 2 r :+ c
v StateT
(MVector s (Point 2 r :+ c), Int)
(ST s)
((Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
-> StateT
(MVector s (Point 2 r :+ c), Int) (ST s) ((Point 2 r :+ c) -> CCW)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Int
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
forall s a. Int -> M s a a
dequeBottom Int
0 StateT
(MVector s (Point 2 r :+ c), Int) (ST s) ((Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) CCW
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Int
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
forall s a. Int -> M s a a
dequeBottom Int
1
CCW
topTurn <- (Point 2 r :+ c) -> (Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW
forall r a b c.
(Ord r, Num r) =>
(Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
ccw' ((Point 2 r :+ c) -> (Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
-> StateT
(MVector s (Point 2 r :+ c), Int)
(ST s)
((Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
forall s a. Int -> M s a a
dequeTop Int
1 StateT
(MVector s (Point 2 r :+ c), Int)
(ST s)
((Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
-> StateT
(MVector s (Point 2 r :+ c), Int) (ST s) ((Point 2 r :+ c) -> CCW)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Int
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
forall s a. Int -> M s a a
dequeTop Int
0 StateT
(MVector s (Point 2 r :+ c), Int) (ST s) ((Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) CCW
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Point 2 r :+ c
v
Bool
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (CCW
botTurn CCW -> CCW -> Bool
forall a. Eq a => a -> a -> Bool
== CCW
CW Bool -> Bool -> Bool
|| CCW
topTurn CCW -> CCW -> Bool
forall a. Eq a => a -> a -> Bool
== CCW
CW) (StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ())
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
forall a b. (a -> b) -> a -> b
$ do
(Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
forall r c s b.
(Ord r, Num r) =>
(Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) ()
backtrackTop Point 2 r :+ c
v; (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
forall a s. a -> M s a ()
dequePush Point 2 r :+ c
v
(Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
forall r c s b.
(Ord r, Num r) =>
(Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) ()
backtrackBot Point 2 r :+ c
v; (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
forall a s. a -> M s a ()
dequeInsert Point 2 r :+ c
v
backtrackTop :: (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) ()
backtrackTop Point 2 r :+ c
v = do
CCW
turn <- (Point 2 r :+ b) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
forall r a b c.
(Ord r, Num r) =>
(Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
ccw' ((Point 2 r :+ b) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) (Point 2 r :+ b)
-> StateT
(MVector s (Point 2 r :+ b), Int)
(ST s)
((Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) (Point 2 r :+ b)
forall s a. Int -> M s a a
dequeTop Int
1 StateT
(MVector s (Point 2 r :+ b), Int)
(ST s)
((Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) (Point 2 r :+ b)
-> StateT
(MVector s (Point 2 r :+ b), Int) (ST s) ((Point 2 r :+ c) -> CCW)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Int
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) (Point 2 r :+ b)
forall s a. Int -> M s a a
dequeTop Int
0 StateT
(MVector s (Point 2 r :+ b), Int) (ST s) ((Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) CCW
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) (Point 2 r :+ c)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Point 2 r :+ c
v
Bool
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) ()
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (CCW
turn CCW -> CCW -> Bool
forall a. Eq a => a -> a -> Bool
== CCW
CCW) (StateT (MVector s (Point 2 r :+ b), Int) (ST s) ()
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) ())
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) ()
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) ()
forall a b. (a -> b) -> a -> b
$ do
StateT (MVector s (Point 2 r :+ b), Int) (ST s) ()
forall s a. M s a ()
dequePop
(Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ b), Int) (ST s) ()
backtrackTop Point 2 r :+ c
v
backtrackBot :: (Point 2 r :+ a)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
backtrackBot Point 2 r :+ a
v = do
CCW
turn <- (Point 2 r :+ a) -> (Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW
forall r a b c.
(Ord r, Num r) =>
(Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
ccw' ((Point 2 r :+ a) -> (Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ a)
-> StateT
(MVector s (Point 2 r :+ c), Int)
(ST s)
((Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Point 2 r :+ a)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Point 2 r :+ a
v StateT
(MVector s (Point 2 r :+ c), Int)
(ST s)
((Point 2 r :+ c) -> (Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
-> StateT
(MVector s (Point 2 r :+ c), Int) (ST s) ((Point 2 r :+ c) -> CCW)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Int
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
forall s a. Int -> M s a a
dequeBottom Int
0 StateT
(MVector s (Point 2 r :+ c), Int) (ST s) ((Point 2 r :+ c) -> CCW)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) CCW
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Int
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) (Point 2 r :+ c)
forall s a. Int -> M s a a
dequeBottom Int
1
Bool
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (CCW
turn CCW -> CCW -> Bool
forall a. Eq a => a -> a -> Bool
== CCW
CCW) (StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ())
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
forall a b. (a -> b) -> a -> b
$ do
StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
forall s a. M s a ()
dequeRemove
(Point 2 r :+ a)
-> StateT (MVector s (Point 2 r :+ c), Int) (ST s) ()
backtrackBot Point 2 r :+ a
v
isConvex :: (Ord r, Num r) => SimplePolygon p r -> Bool
isConvex :: SimplePolygon p r -> Bool
isConvex SimplePolygon p r
s =
CircularVector Bool -> Bool
CV.and (((Point 2 r :+ p) -> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Bool)
-> CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p)
-> CircularVector Bool
forall a b c d.
(a -> b -> c -> d)
-> CircularVector a
-> CircularVector b
-> CircularVector c
-> CircularVector d
CV.zipWith3 (Point 2 r :+ p) -> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Bool
forall r a b c.
(Ord r, Num r) =>
(Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> Bool
f (Int
-> CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p)
forall a. Int -> CircularVector a -> CircularVector a
CV.rotateLeft Int
1 CircularVector (Point 2 r :+ p)
vs) CircularVector (Point 2 r :+ p)
vs (Int
-> CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p)
forall a. Int -> CircularVector a -> CircularVector a
CV.rotateRight Int
1 CircularVector (Point 2 r :+ p)
vs))
where
f :: (Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> Bool
f Point 2 r :+ a
a Point 2 r :+ b
b Point 2 r :+ c
c = (Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
forall r a b c.
(Ord r, Num r) =>
(Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
ccw' Point 2 r :+ a
a Point 2 r :+ b
b Point 2 r :+ c
c CCW -> CCW -> Bool
forall a. Eq a => a -> a -> Bool
== CCW
CCW
vs :: CircularVector (Point 2 r :+ p)
vs = SimplePolygon p r
s SimplePolygon p r
-> Getting
(CircularVector (Point 2 r :+ p))
(SimplePolygon p r)
(CircularVector (Point 2 r :+ p))
-> CircularVector (Point 2 r :+ p)
forall s a. s -> Getting a s a -> a
^. Getting
(CircularVector (Point 2 r :+ p))
(SimplePolygon p r)
(CircularVector (Point 2 r :+ p))
forall (t :: PolygonType) p r.
Getter (Polygon t p r) (CircularVector (Point 2 r :+ p))
outerBoundaryVector
verifyConvex :: (Ord r, Num r) => ConvexPolygon p r -> Bool
verifyConvex :: ConvexPolygon p r -> Bool
verifyConvex = SimplePolygon p r -> Bool
forall r p. (Ord r, Num r) => SimplePolygon p r -> Bool
isConvex (SimplePolygon p r -> Bool)
-> (ConvexPolygon p r -> SimplePolygon p r)
-> ConvexPolygon p r
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConvexPolygon p r -> SimplePolygon p r
forall p r. ConvexPolygon p r -> SimplePolygon p r
_simplePolygon
extremes :: (Num r, Ord r) => Vector 2 r -> ConvexPolygon p r
-> (Point 2 r :+ p, Point 2 r :+ p)
extremes :: Vector 2 r -> ConvexPolygon p r -> (Point 2 r :+ p, Point 2 r :+ p)
extremes Vector 2 r
u ConvexPolygon p r
p = (Vector 2 r -> ConvexPolygon p r -> Point 2 r :+ p
forall r p.
(Num r, Ord r) =>
Vector 2 r -> ConvexPolygon p r -> Point 2 r :+ p
maxInDirection ((-r
1) r -> Vector 2 r -> Vector 2 r
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
*^ Vector 2 r
u) ConvexPolygon p r
p, Vector 2 r -> ConvexPolygon p r -> Point 2 r :+ p
forall r p.
(Num r, Ord r) =>
Vector 2 r -> ConvexPolygon p r -> Point 2 r :+ p
maxInDirection Vector 2 r
u ConvexPolygon p r
p)
maxInDirection :: (Num r, Ord r) => Vector 2 r -> ConvexPolygon p r -> Point 2 r :+ p
maxInDirection :: Vector 2 r -> ConvexPolygon p r -> Point 2 r :+ p
maxInDirection Vector 2 r
u = ((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> ConvexPolygon p r -> Point 2 r :+ p
forall r p.
((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> ConvexPolygon p r -> Point 2 r :+ p
findMaxWith (Vector 2 r -> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering
forall r p q.
(Num r, Ord r) =>
Vector 2 r -> (Point 2 r :+ p) -> (Point 2 r :+ q) -> Ordering
cmpExtreme Vector 2 r
u)
findMaxWith :: (Point 2 r :+ p -> Point 2 r :+ p -> Ordering)
-> ConvexPolygon p r -> Point 2 r :+ p
findMaxWith :: ((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> ConvexPolygon p r -> Point 2 r :+ p
findMaxWith (Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering
cmp ConvexPolygon p r
p = CircularVector (Point 2 r :+ p) -> Int -> Point 2 r :+ p
forall a. CircularVector a -> Int -> a
CV.index CircularVector (Point 2 r :+ p)
v (Int -> Int -> Int
worker Int
0 (CircularVector (Point 2 r :+ p) -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
F.length CircularVector (Point 2 r :+ p)
v))
where
v :: CircularVector (Point 2 r :+ p)
v = ConvexPolygon p r
p ConvexPolygon p r
-> Getting
(CircularVector (Point 2 r :+ p))
(ConvexPolygon p r)
(CircularVector (Point 2 r :+ p))
-> CircularVector (Point 2 r :+ p)
forall s a. s -> Getting a s a -> a
^. (SimplePolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (SimplePolygon p r))
-> ConvexPolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (ConvexPolygon p r)
forall p1 r1 p2 r2.
Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
simplePolygon((SimplePolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (SimplePolygon p r))
-> ConvexPolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (ConvexPolygon p r))
-> ((CircularVector (Point 2 r :+ p)
-> Const
(CircularVector (Point 2 r :+ p))
(CircularVector (Point 2 r :+ p)))
-> SimplePolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (SimplePolygon p r))
-> Getting
(CircularVector (Point 2 r :+ p))
(ConvexPolygon p r)
(CircularVector (Point 2 r :+ p))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(CircularVector (Point 2 r :+ p)
-> Const
(CircularVector (Point 2 r :+ p))
(CircularVector (Point 2 r :+ p)))
-> SimplePolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (SimplePolygon p r)
forall (t :: PolygonType) p r.
Getter (Polygon t p r) (CircularVector (Point 2 r :+ p))
outerBoundaryVector
Int
a icmp :: Int -> Int -> Ordering
`icmp` Int
b = CircularVector (Point 2 r :+ p) -> Int -> Point 2 r :+ p
forall a. CircularVector a -> Int -> a
CV.index CircularVector (Point 2 r :+ p)
v Int
a (Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering
`cmp` CircularVector (Point 2 r :+ p) -> Int -> Point 2 r :+ p
forall a. CircularVector a -> Int -> a
CV.index CircularVector (Point 2 r :+ p)
v Int
b
worker :: Int -> Int -> Int
worker Int
a Int
b
| Int -> Bool
localMaximum Int
c = Int
c
| Int
aInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
b = Int
b
| Bool
otherwise =
case (Int -> Bool
isUpwards Int
a, Int -> Bool
isUpwards Int
c, Int
c Int -> Int -> Ordering
`icmp` Int
a Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
/= Ordering
LT) of
(Bool
True, Bool
False, Bool
_) -> Int -> Int -> Int
worker Int
a Int
c
(Bool
True, Bool
True, Bool
True) -> Int -> Int -> Int
worker Int
c Int
b
(Bool
True, Bool
True, Bool
False) -> Int -> Int -> Int
worker Int
a Int
c
(Bool
False, Bool
True, Bool
_) -> Int -> Int -> Int
worker Int
c Int
b
(Bool
False, Bool
False, Bool
False) -> Int -> Int -> Int
worker Int
c Int
b
(Bool
False, Bool
_, Bool
True) -> Int -> Int -> Int
worker Int
a Int
c
where
c :: Int
c = (Int
aInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
b) Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2
localMaximum :: Int -> Bool
localMaximum Int
idx = Int
idx Int -> Int -> Ordering
`icmp` (Int
cInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
GT Bool -> Bool -> Bool
&& Int
idx Int -> Int -> Ordering
`icmp` (Int
cInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
GT
isUpwards :: Int -> Bool
isUpwards Int
idx = Int
idx Int -> Int -> Ordering
`icmp` (Int
idxInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
/= Ordering
GT
tangentCmp :: (Num r, Ord r)
=> Point 2 r -> Point 2 r :+ p -> Point 2 r :+ q -> Ordering
tangentCmp :: Point 2 r -> (Point 2 r :+ p) -> (Point 2 r :+ q) -> Ordering
tangentCmp Point 2 r
o Point 2 r :+ p
p Point 2 r :+ q
q = case Point 2 r -> Point 2 r -> Point 2 r -> CCW
forall r.
(Ord r, Num r) =>
Point 2 r -> Point 2 r -> Point 2 r -> CCW
ccw Point 2 r
o (Point 2 r :+ p
p(Point 2 r :+ p)
-> Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core) (Point 2 r :+ q
q(Point 2 r :+ q)
-> Getting (Point 2 r) (Point 2 r :+ q) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.Getting (Point 2 r) (Point 2 r :+ q) (Point 2 r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core) of
CCW
CCW -> Ordering
LT
CCW
CoLinear -> Ordering
EQ
CCW
CW -> Ordering
GT
leftTangent :: (Ord r, Num r) => ConvexPolygon p r -> Point 2 r -> Point 2 r :+ p
leftTangent :: ConvexPolygon p r -> Point 2 r -> Point 2 r :+ p
leftTangent ConvexPolygon p r
poly Point 2 r
q = ((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> ConvexPolygon p r -> Point 2 r :+ p
forall r p.
((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> ConvexPolygon p r -> Point 2 r :+ p
findMaxWith (Point 2 r -> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering
forall r p q.
(Num r, Ord r) =>
Point 2 r -> (Point 2 r :+ p) -> (Point 2 r :+ q) -> Ordering
tangentCmp Point 2 r
q) ConvexPolygon p r
poly
rightTangent :: (Ord r, Num r) => ConvexPolygon p r -> Point 2 r -> Point 2 r :+ p
rightTangent :: ConvexPolygon p r -> Point 2 r -> Point 2 r :+ p
rightTangent ConvexPolygon p r
poly Point 2 r
q = ((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> ConvexPolygon p r -> Point 2 r :+ p
forall r p.
((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> ConvexPolygon p r -> Point 2 r :+ p
findMaxWith (((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering
forall a b c. (a -> b -> c) -> b -> a -> c
flip (((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> ((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> (Point 2 r :+ p)
-> (Point 2 r :+ p)
-> Ordering
forall a b. (a -> b) -> a -> b
$ Point 2 r -> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering
forall r p q.
(Num r, Ord r) =>
Point 2 r -> (Point 2 r :+ p) -> (Point 2 r :+ q) -> Ordering
tangentCmp Point 2 r
q) ConvexPolygon p r
poly
merge :: (Num r, Ord r) => ConvexPolygon p r -> ConvexPolygon p r
-> (ConvexPolygon p r, LineSegment 2 p r, LineSegment 2 p r)
merge :: ConvexPolygon p r
-> ConvexPolygon p r
-> (ConvexPolygon p r, LineSegment 2 p r, LineSegment 2 p r)
merge ConvexPolygon p r
lp ConvexPolygon p r
rp = (SimplePolygon p r -> ConvexPolygon p r
forall p r. SimplePolygon p r -> ConvexPolygon p r
ConvexPolygon (SimplePolygon p r -> ConvexPolygon p r)
-> ([Point 2 r :+ p] -> SimplePolygon p r)
-> [Point 2 r :+ p]
-> ConvexPolygon p r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Point 2 r :+ p] -> SimplePolygon p r
forall r p. [Point 2 r :+ p] -> SimplePolygon p r
unsafeFromPoints ([Point 2 r :+ p] -> ConvexPolygon p r)
-> [Point 2 r :+ p] -> ConvexPolygon p r
forall a b. (a -> b) -> a -> b
$ [Point 2 r :+ p]
r' [Point 2 r :+ p] -> [Point 2 r :+ p] -> [Point 2 r :+ p]
forall a. [a] -> [a] -> [a]
++ [Point 2 r :+ p]
l', LineSegment 2 p r
lt, LineSegment 2 p r
ut)
where
lt :: LineSegment 2 p r
lt@(ClosedLineSegment Point 2 r :+ p
a Point 2 r :+ p
b) = ConvexPolygon p r -> ConvexPolygon p r -> LineSegment 2 p r
forall r p.
(Num r, Ord r) =>
ConvexPolygon p r -> ConvexPolygon p r -> LineSegment 2 p r
lowerTangent ConvexPolygon p r
lp ConvexPolygon p r
rp
ut :: LineSegment 2 p r
ut@(ClosedLineSegment Point 2 r :+ p
c Point 2 r :+ p
d) = ConvexPolygon p r -> ConvexPolygon p r -> LineSegment 2 p r
forall r p.
(Num r, Ord r) =>
ConvexPolygon p r -> ConvexPolygon p r -> LineSegment 2 p r
upperTangent ConvexPolygon p r
lp ConvexPolygon p r
rp
takeUntil :: (a -> Bool) -> [a] -> [a]
takeUntil a -> Bool
p [a]
xs = let ([a]
xs',a
x:[a]
_) = (a -> Bool) -> [a] -> ([a], [a])
forall a. (a -> Bool) -> [a] -> ([a], [a])
break a -> Bool
p [a]
xs in [a]
xs' [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a
x]
rightElems :: CircularVector a -> [a]
rightElems = NonEmptyVector a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
F.toList (NonEmptyVector a -> [a])
-> (CircularVector a -> NonEmptyVector a)
-> CircularVector a
-> [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CircularVector a -> NonEmptyVector a
forall a. CircularVector a -> NonEmptyVector a
CV.rightElements
takeAndRotate :: (Point 2 r :+ b)
-> (Point 2 r :+ b) -> ConvexPolygon b r -> [Point 2 r :+ b]
takeAndRotate Point 2 r :+ b
x Point 2 r :+ b
y = ((Point 2 r :+ b) -> Bool) -> [Point 2 r :+ b] -> [Point 2 r :+ b]
forall a. (a -> Bool) -> [a] -> [a]
takeUntil ((Point 2 r :+ b) -> (Point 2 r :+ b) -> Bool
forall a b. Eq a => (a :+ b) -> (a :+ b) -> Bool
coreEq Point 2 r :+ b
x) ([Point 2 r :+ b] -> [Point 2 r :+ b])
-> (ConvexPolygon b r -> [Point 2 r :+ b])
-> ConvexPolygon b r
-> [Point 2 r :+ b]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CircularVector (Point 2 r :+ b) -> [Point 2 r :+ b]
forall a. CircularVector a -> [a]
rightElems (CircularVector (Point 2 r :+ b) -> [Point 2 r :+ b])
-> (ConvexPolygon b r -> CircularVector (Point 2 r :+ b))
-> ConvexPolygon b r
-> [Point 2 r :+ b]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Point 2 r :+ b)
-> CircularVector (Point 2 r :+ b)
-> CircularVector (Point 2 r :+ b)
forall a b.
Eq a =>
(a :+ b) -> CircularVector (a :+ b) -> CircularVector (a :+ b)
rotateTo' Point 2 r :+ b
y (CircularVector (Point 2 r :+ b)
-> CircularVector (Point 2 r :+ b))
-> (ConvexPolygon b r -> CircularVector (Point 2 r :+ b))
-> ConvexPolygon b r
-> CircularVector (Point 2 r :+ b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConvexPolygon b r -> CircularVector (Point 2 r :+ b)
forall p r. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
getVertices
r' :: [Point 2 r :+ p]
r' = (Point 2 r :+ p)
-> (Point 2 r :+ p) -> ConvexPolygon p r -> [Point 2 r :+ p]
forall r b.
Eq r =>
(Point 2 r :+ b)
-> (Point 2 r :+ b) -> ConvexPolygon b r -> [Point 2 r :+ b]
takeAndRotate Point 2 r :+ p
b Point 2 r :+ p
d ConvexPolygon p r
rp
l' :: [Point 2 r :+ p]
l' = (Point 2 r :+ p)
-> (Point 2 r :+ p) -> ConvexPolygon p r -> [Point 2 r :+ p]
forall r b.
Eq r =>
(Point 2 r :+ b)
-> (Point 2 r :+ b) -> ConvexPolygon b r -> [Point 2 r :+ b]
takeAndRotate Point 2 r :+ p
c Point 2 r :+ p
a ConvexPolygon p r
lp
rotateTo' :: Eq a => (a :+ b) -> CircularVector (a :+ b) -> CircularVector (a :+ b)
rotateTo' :: (a :+ b) -> CircularVector (a :+ b) -> CircularVector (a :+ b)
rotateTo' a :+ b
x = Maybe (CircularVector (a :+ b)) -> CircularVector (a :+ b)
forall a. HasCallStack => Maybe a -> a
fromJust (Maybe (CircularVector (a :+ b)) -> CircularVector (a :+ b))
-> (CircularVector (a :+ b) -> Maybe (CircularVector (a :+ b)))
-> CircularVector (a :+ b)
-> CircularVector (a :+ b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((a :+ b) -> Bool)
-> CircularVector (a :+ b) -> Maybe (CircularVector (a :+ b))
forall a.
(a -> Bool) -> CircularVector a -> Maybe (CircularVector a)
CV.findRotateTo ((a :+ b) -> (a :+ b) -> Bool
forall a b. Eq a => (a :+ b) -> (a :+ b) -> Bool
coreEq a :+ b
x)
coreEq :: Eq a => (a :+ b) -> (a :+ b) -> Bool
coreEq :: (a :+ b) -> (a :+ b) -> Bool
coreEq = a -> a -> Bool
forall a. Eq a => a -> a -> Bool
(==) (a -> a -> Bool) -> ((a :+ b) -> a) -> (a :+ b) -> (a :+ b) -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` ((a :+ b) -> Getting a (a :+ b) a -> a
forall s a. s -> Getting a s a -> a
^.Getting a (a :+ b) a
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core)
lowerTangent :: (Num r, Ord r)
=> ConvexPolygon p r
-> ConvexPolygon p r
-> LineSegment 2 p r
lowerTangent :: ConvexPolygon p r -> ConvexPolygon p r -> LineSegment 2 p r
lowerTangent ConvexPolygon p r
lp ConvexPolygon p r
rp = (Point 2 r :+ p) -> (Point 2 r :+ p) -> LineSegment 2 p r
forall (d :: Nat) r p.
(Point d r :+ p) -> (Point d r :+ p) -> LineSegment d p r
ClosedLineSegment Point 2 r :+ p
l Point 2 r :+ p
r
where
lh :: NonEmptyVector (Point 2 r :+ p)
lh = CircularVector (Point 2 r :+ p) -> NonEmptyVector (Point 2 r :+ p)
forall a. CircularVector a -> NonEmptyVector a
CV.rightElements (CircularVector (Point 2 r :+ p)
-> NonEmptyVector (Point 2 r :+ p))
-> (ConvexPolygon p r -> CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r
-> NonEmptyVector (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
forall r p.
Ord r =>
CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
rightMost (CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p))
-> (ConvexPolygon p r -> CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r
-> CircularVector (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
forall p r. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
getVertices (ConvexPolygon p r -> NonEmptyVector (Point 2 r :+ p))
-> ConvexPolygon p r -> NonEmptyVector (Point 2 r :+ p)
forall a b. (a -> b) -> a -> b
$ ConvexPolygon p r
lp
rh :: NonEmptyVector (Point 2 r :+ p)
rh = CircularVector (Point 2 r :+ p) -> NonEmptyVector (Point 2 r :+ p)
forall a. CircularVector a -> NonEmptyVector a
CV.leftElements (CircularVector (Point 2 r :+ p)
-> NonEmptyVector (Point 2 r :+ p))
-> (ConvexPolygon p r -> CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r
-> NonEmptyVector (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
forall r p.
Ord r =>
CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
leftMost (CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p))
-> (ConvexPolygon p r -> CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r
-> CircularVector (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
forall p r. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
getVertices (ConvexPolygon p r -> NonEmptyVector (Point 2 r :+ p))
-> ConvexPolygon p r -> NonEmptyVector (Point 2 r :+ p)
forall a b. (a -> b) -> a -> b
$ ConvexPolygon p r
rp
(Two (Point 2 r :+ p
l :+ [Point 2 r :+ p]
_) (Point 2 r :+ p
r :+ [Point 2 r :+ p]
_)) = NonEmptyVector (Point 2 r :+ p)
-> NonEmptyVector (Point 2 r :+ p)
-> Two ((Point 2 r :+ p) :+ [Point 2 r :+ p])
forall r (f :: * -> *) p.
(Ord r, Num r, Foldable1 f) =>
f (Point 2 r :+ p)
-> f (Point 2 r :+ p) -> Two ((Point 2 r :+ p) :+ [Point 2 r :+ p])
lowerTangent' NonEmptyVector (Point 2 r :+ p)
lh NonEmptyVector (Point 2 r :+ p)
rh
lowerTangent' :: (Ord r, Num r, Foldable1 f)
=> f (Point 2 r :+ p) -> f (Point 2 r :+ p)
-> Two ((Point 2 r :+ p) :+ [Point 2 r :+ p])
lowerTangent' :: f (Point 2 r :+ p)
-> f (Point 2 r :+ p) -> Two ((Point 2 r :+ p) :+ [Point 2 r :+ p])
lowerTangent' f (Point 2 r :+ p)
l0 f (Point 2 r :+ p)
r0 = NonEmpty (Point 2 r :+ p)
-> NonEmpty (Point 2 r :+ p)
-> Two ((Point 2 r :+ p) :+ [Point 2 r :+ p])
forall r a.
(Ord r, Num r) =>
NonEmpty (Point 2 r :+ a)
-> NonEmpty (Point 2 r :+ a)
-> Two ((Point 2 r :+ a) :+ [Point 2 r :+ a])
go (f (Point 2 r :+ p) -> NonEmpty (Point 2 r :+ p)
forall (t :: * -> *) a. Foldable1 t => t a -> NonEmpty a
toNonEmpty f (Point 2 r :+ p)
l0) (f (Point 2 r :+ p) -> NonEmpty (Point 2 r :+ p)
forall (t :: * -> *) a. Foldable1 t => t a -> NonEmpty a
toNonEmpty f (Point 2 r :+ p)
r0)
where
ne :: [a] -> NonEmpty a
ne = [a] -> NonEmpty a
forall a. [a] -> NonEmpty a
NonEmpty.fromList
isRight' :: [Point 2 r :+ c] -> (Point 2 r :+ a) -> (Point 2 r :+ b) -> Bool
isRight' [] Point 2 r :+ a
_ Point 2 r :+ b
_ = Bool
False
isRight' (Point 2 r :+ c
x:[Point 2 r :+ c]
_) Point 2 r :+ a
l Point 2 r :+ b
r = (Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
forall r a b c.
(Ord r, Num r) =>
(Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
ccw' Point 2 r :+ a
l Point 2 r :+ b
r Point 2 r :+ c
x CCW -> CCW -> Bool
forall a. Eq a => a -> a -> Bool
/= CCW
CCW
go :: NonEmpty (Point 2 r :+ a)
-> NonEmpty (Point 2 r :+ a)
-> Two ((Point 2 r :+ a) :+ [Point 2 r :+ a])
go lh :: NonEmpty (Point 2 r :+ a)
lh@(Point 2 r :+ a
l:|[Point 2 r :+ a]
ls) rh :: NonEmpty (Point 2 r :+ a)
rh@(Point 2 r :+ a
r:|[Point 2 r :+ a]
rs) | [Point 2 r :+ a] -> (Point 2 r :+ a) -> (Point 2 r :+ a) -> Bool
forall r c a b.
(Ord r, Num r) =>
[Point 2 r :+ c] -> (Point 2 r :+ a) -> (Point 2 r :+ b) -> Bool
isRight' [Point 2 r :+ a]
rs Point 2 r :+ a
l Point 2 r :+ a
r = NonEmpty (Point 2 r :+ a)
-> NonEmpty (Point 2 r :+ a)
-> Two ((Point 2 r :+ a) :+ [Point 2 r :+ a])
go NonEmpty (Point 2 r :+ a)
lh ([Point 2 r :+ a] -> NonEmpty (Point 2 r :+ a)
forall a. [a] -> NonEmpty a
ne [Point 2 r :+ a]
rs)
| [Point 2 r :+ a] -> (Point 2 r :+ a) -> (Point 2 r :+ a) -> Bool
forall r c a b.
(Ord r, Num r) =>
[Point 2 r :+ c] -> (Point 2 r :+ a) -> (Point 2 r :+ b) -> Bool
isRight' [Point 2 r :+ a]
ls Point 2 r :+ a
l Point 2 r :+ a
r = NonEmpty (Point 2 r :+ a)
-> NonEmpty (Point 2 r :+ a)
-> Two ((Point 2 r :+ a) :+ [Point 2 r :+ a])
go ([Point 2 r :+ a] -> NonEmpty (Point 2 r :+ a)
forall a. [a] -> NonEmpty a
ne [Point 2 r :+ a]
ls) NonEmpty (Point 2 r :+ a)
rh
| Bool
otherwise = ((Point 2 r :+ a) :+ [Point 2 r :+ a])
-> ((Point 2 r :+ a) :+ [Point 2 r :+ a])
-> Two ((Point 2 r :+ a) :+ [Point 2 r :+ a])
forall a. a -> a -> Two a
Two (Point 2 r :+ a
l (Point 2 r :+ a)
-> [Point 2 r :+ a] -> (Point 2 r :+ a) :+ [Point 2 r :+ a]
forall core extra. core -> extra -> core :+ extra
:+ [Point 2 r :+ a]
ls) (Point 2 r :+ a
r (Point 2 r :+ a)
-> [Point 2 r :+ a] -> (Point 2 r :+ a) :+ [Point 2 r :+ a]
forall core extra. core -> extra -> core :+ extra
:+ [Point 2 r :+ a]
rs)
upperTangent :: (Num r, Ord r)
=> ConvexPolygon p r
-> ConvexPolygon p r
-> LineSegment 2 p r
upperTangent :: ConvexPolygon p r -> ConvexPolygon p r -> LineSegment 2 p r
upperTangent ConvexPolygon p r
lp ConvexPolygon p r
rp = (Point 2 r :+ p) -> (Point 2 r :+ p) -> LineSegment 2 p r
forall (d :: Nat) r p.
(Point d r :+ p) -> (Point d r :+ p) -> LineSegment d p r
ClosedLineSegment Point 2 r :+ p
l Point 2 r :+ p
r
where
lh :: NonEmptyVector (Point 2 r :+ p)
lh = CircularVector (Point 2 r :+ p) -> NonEmptyVector (Point 2 r :+ p)
forall a. CircularVector a -> NonEmptyVector a
CV.leftElements (CircularVector (Point 2 r :+ p)
-> NonEmptyVector (Point 2 r :+ p))
-> (ConvexPolygon p r -> CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r
-> NonEmptyVector (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
forall r p.
Ord r =>
CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
rightMost (CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p))
-> (ConvexPolygon p r -> CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r
-> CircularVector (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
forall p r. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
getVertices (ConvexPolygon p r -> NonEmptyVector (Point 2 r :+ p))
-> ConvexPolygon p r -> NonEmptyVector (Point 2 r :+ p)
forall a b. (a -> b) -> a -> b
$ ConvexPolygon p r
lp
rh :: NonEmptyVector (Point 2 r :+ p)
rh = CircularVector (Point 2 r :+ p) -> NonEmptyVector (Point 2 r :+ p)
forall a. CircularVector a -> NonEmptyVector a
CV.rightElements (CircularVector (Point 2 r :+ p)
-> NonEmptyVector (Point 2 r :+ p))
-> (ConvexPolygon p r -> CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r
-> NonEmptyVector (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
forall r p.
Ord r =>
CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
leftMost (CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p))
-> (ConvexPolygon p r -> CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r
-> CircularVector (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
forall p r. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
getVertices (ConvexPolygon p r -> NonEmptyVector (Point 2 r :+ p))
-> ConvexPolygon p r -> NonEmptyVector (Point 2 r :+ p)
forall a b. (a -> b) -> a -> b
$ ConvexPolygon p r
rp
(Two (Point 2 r :+ p
l :+ [Point 2 r :+ p]
_) (Point 2 r :+ p
r :+ [Point 2 r :+ p]
_)) = NonEmptyVector (Point 2 r :+ p)
-> NonEmptyVector (Point 2 r :+ p)
-> Two ((Point 2 r :+ p) :+ [Point 2 r :+ p])
forall r (f :: * -> *) p.
(Ord r, Num r, Foldable1 f) =>
f (Point 2 r :+ p)
-> f (Point 2 r :+ p) -> Two ((Point 2 r :+ p) :+ [Point 2 r :+ p])
upperTangent' NonEmptyVector (Point 2 r :+ p)
lh NonEmptyVector (Point 2 r :+ p)
rh
upperTangent' :: (Ord r, Num r, Foldable1 f)
=> f (Point 2 r :+ p) -> f (Point 2 r :+ p)
-> Two ((Point 2 r :+ p) :+ [Point 2 r :+ p])
upperTangent' :: f (Point 2 r :+ p)
-> f (Point 2 r :+ p) -> Two ((Point 2 r :+ p) :+ [Point 2 r :+ p])
upperTangent' f (Point 2 r :+ p)
l0 f (Point 2 r :+ p)
r0 = NonEmpty (Point 2 r :+ p)
-> NonEmpty (Point 2 r :+ p)
-> Two ((Point 2 r :+ p) :+ [Point 2 r :+ p])
forall r a.
(Ord r, Num r) =>
NonEmpty (Point 2 r :+ a)
-> NonEmpty (Point 2 r :+ a)
-> Two ((Point 2 r :+ a) :+ [Point 2 r :+ a])
go (f (Point 2 r :+ p) -> NonEmpty (Point 2 r :+ p)
forall (t :: * -> *) a. Foldable1 t => t a -> NonEmpty a
toNonEmpty f (Point 2 r :+ p)
l0) (f (Point 2 r :+ p) -> NonEmpty (Point 2 r :+ p)
forall (t :: * -> *) a. Foldable1 t => t a -> NonEmpty a
toNonEmpty f (Point 2 r :+ p)
r0)
where
ne :: [a] -> NonEmpty a
ne = [a] -> NonEmpty a
forall a. [a] -> NonEmpty a
NonEmpty.fromList
isLeft' :: [Point 2 r :+ c] -> (Point 2 r :+ a) -> (Point 2 r :+ b) -> Bool
isLeft' [] Point 2 r :+ a
_ Point 2 r :+ b
_ = Bool
False
isLeft' (Point 2 r :+ c
x:[Point 2 r :+ c]
_) Point 2 r :+ a
l Point 2 r :+ b
r = (Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
forall r a b c.
(Ord r, Num r) =>
(Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
ccw' Point 2 r :+ a
l Point 2 r :+ b
r Point 2 r :+ c
x CCW -> CCW -> Bool
forall a. Eq a => a -> a -> Bool
/= CCW
CW
go :: NonEmpty (Point 2 r :+ a)
-> NonEmpty (Point 2 r :+ a)
-> Two ((Point 2 r :+ a) :+ [Point 2 r :+ a])
go lh :: NonEmpty (Point 2 r :+ a)
lh@(Point 2 r :+ a
l:|[Point 2 r :+ a]
ls) rh :: NonEmpty (Point 2 r :+ a)
rh@(Point 2 r :+ a
r:|[Point 2 r :+ a]
rs) | [Point 2 r :+ a] -> (Point 2 r :+ a) -> (Point 2 r :+ a) -> Bool
forall r c a b.
(Ord r, Num r) =>
[Point 2 r :+ c] -> (Point 2 r :+ a) -> (Point 2 r :+ b) -> Bool
isLeft' [Point 2 r :+ a]
rs Point 2 r :+ a
l Point 2 r :+ a
r = NonEmpty (Point 2 r :+ a)
-> NonEmpty (Point 2 r :+ a)
-> Two ((Point 2 r :+ a) :+ [Point 2 r :+ a])
go NonEmpty (Point 2 r :+ a)
lh ([Point 2 r :+ a] -> NonEmpty (Point 2 r :+ a)
forall a. [a] -> NonEmpty a
ne [Point 2 r :+ a]
rs)
| [Point 2 r :+ a] -> (Point 2 r :+ a) -> (Point 2 r :+ a) -> Bool
forall r c a b.
(Ord r, Num r) =>
[Point 2 r :+ c] -> (Point 2 r :+ a) -> (Point 2 r :+ b) -> Bool
isLeft' [Point 2 r :+ a]
ls Point 2 r :+ a
l Point 2 r :+ a
r = NonEmpty (Point 2 r :+ a)
-> NonEmpty (Point 2 r :+ a)
-> Two ((Point 2 r :+ a) :+ [Point 2 r :+ a])
go ([Point 2 r :+ a] -> NonEmpty (Point 2 r :+ a)
forall a. [a] -> NonEmpty a
ne [Point 2 r :+ a]
ls) NonEmpty (Point 2 r :+ a)
rh
| Bool
otherwise = ((Point 2 r :+ a) :+ [Point 2 r :+ a])
-> ((Point 2 r :+ a) :+ [Point 2 r :+ a])
-> Two ((Point 2 r :+ a) :+ [Point 2 r :+ a])
forall a. a -> a -> Two a
Two (Point 2 r :+ a
l (Point 2 r :+ a)
-> [Point 2 r :+ a] -> (Point 2 r :+ a) :+ [Point 2 r :+ a]
forall core extra. core -> extra -> core :+ extra
:+ [Point 2 r :+ a]
ls) (Point 2 r :+ a
r (Point 2 r :+ a)
-> [Point 2 r :+ a] -> (Point 2 r :+ a) :+ [Point 2 r :+ a]
forall core extra. core -> extra -> core :+ extra
:+ [Point 2 r :+ a]
rs)
minkowskiSum :: (Ord r, Num r)
=> ConvexPolygon p r -> ConvexPolygon q r -> ConvexPolygon (p,q) r
minkowskiSum :: ConvexPolygon p r -> ConvexPolygon q r -> ConvexPolygon (p, q) r
minkowskiSum ConvexPolygon p r
p ConvexPolygon q r
q = SimplePolygon (p, q) r -> ConvexPolygon (p, q) r
forall p r. SimplePolygon p r -> ConvexPolygon p r
ConvexPolygon (SimplePolygon (p, q) r -> ConvexPolygon (p, q) r)
-> ([Point 2 r :+ (p, q)] -> SimplePolygon (p, q) r)
-> [Point 2 r :+ (p, q)]
-> ConvexPolygon (p, q) r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Point 2 r :+ (p, q)] -> SimplePolygon (p, q) r
forall r p. [Point 2 r :+ p] -> SimplePolygon p r
unsafeFromPoints ([Point 2 r :+ (p, q)] -> ConvexPolygon (p, q) r)
-> [Point 2 r :+ (p, q)] -> ConvexPolygon (p, q) r
forall a b. (a -> b) -> a -> b
$ [Point 2 r :+ p] -> [Point 2 r :+ q] -> [Point 2 r :+ (p, q)]
forall r (p :: * -> *) a b.
(Num r, Affine p, Ord r, Diff p ~ Vector 2) =>
[p r :+ a] -> [Point 2 r :+ b] -> [p r :+ (a, b)]
merge' (ConvexPolygon p r -> [Point 2 r :+ p]
forall r p. Ord r => ConvexPolygon p r -> [Point 2 r :+ p]
f ConvexPolygon p r
p) (ConvexPolygon q r -> [Point 2 r :+ q]
forall r p. Ord r => ConvexPolygon p r -> [Point 2 r :+ p]
f ConvexPolygon q r
q)
where
f :: ConvexPolygon p r -> [Point 2 r :+ p]
f ConvexPolygon p r
p' = let (Point 2 r :+ p
v:[Point 2 r :+ p]
xs) = CircularVector (Point 2 r :+ p) -> [Point 2 r :+ p]
forall (t :: * -> *) a. Foldable t => t a -> [a]
F.toList (CircularVector (Point 2 r :+ p) -> [Point 2 r :+ p])
-> (ConvexPolygon p r -> CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r
-> [Point 2 r :+ p]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
forall r p.
Ord r =>
CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
bottomMost (CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p))
-> (ConvexPolygon p r -> CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r
-> CircularVector (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
forall p r. ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
getVertices (ConvexPolygon p r -> [Point 2 r :+ p])
-> ConvexPolygon p r -> [Point 2 r :+ p]
forall a b. (a -> b) -> a -> b
$ ConvexPolygon p r
p'
in Point 2 r :+ p
v(Point 2 r :+ p) -> [Point 2 r :+ p] -> [Point 2 r :+ p]
forall a. a -> [a] -> [a]
:[Point 2 r :+ p]
xs[Point 2 r :+ p] -> [Point 2 r :+ p] -> [Point 2 r :+ p]
forall a. [a] -> [a] -> [a]
++[Point 2 r :+ p
v]
(p a
v :+ a
ve) .+. :: (p a :+ a) -> (Point d a :+ b) -> p a :+ (a, b)
.+. (Point d a
w :+ b
we) = p a
v p a -> Diff p a -> p a
forall (p :: * -> *) a. (Affine p, Num a) => p a -> Diff p a -> p a
.+^ Point d a -> Vector d a
forall (d :: Nat) r. Point d r -> Vector d r
toVec Point d a
w p a -> (a, b) -> p a :+ (a, b)
forall core extra. core -> extra -> core :+ extra
:+ (a
ve,b
we)
cmpAngle :: p r -> p r -> p r -> p r -> Ordering
cmpAngle p r
v p r
v' p r
w p r
w' =
Point 2 r -> Point 2 r -> Point 2 r -> Ordering
forall r.
(Num r, Ord r) =>
Point 2 r -> Point 2 r -> Point 2 r -> Ordering
ccwCmpAround Point 2 r
forall (d :: Nat) r. (Arity d, Num r) => Point d r
origin (Vector 2 r -> Point 2 r
forall (d :: Nat) r. Vector d r -> Point d r
Point (Vector 2 r -> Point 2 r) -> Vector 2 r -> Point 2 r
forall a b. (a -> b) -> a -> b
$ p r
v' p r -> p r -> Diff p r
forall (p :: * -> *) a. (Affine p, Num a) => p a -> p a -> Diff p a
.-. p r
v) (Vector 2 r -> Point 2 r
forall (d :: Nat) r. Vector d r -> Point d r
Point (Vector 2 r -> Point 2 r) -> Vector 2 r -> Point 2 r
forall a b. (a -> b) -> a -> b
$ p r
w' p r -> p r -> Diff p r
forall (p :: * -> *) a. (Affine p, Num a) => p a -> p a -> Diff p a
.-. p r
w)
merge' :: [p r :+ a] -> [Point 2 r :+ b] -> [p r :+ (a, b)]
merge' [p r :+ a
_] [Point 2 r :+ b
_] = []
merge' vs :: [p r :+ a]
vs@[p r :+ a
v] (Point 2 r :+ b
w:[Point 2 r :+ b]
ws) = p r :+ a
v (p r :+ a) -> (Point 2 r :+ b) -> p r :+ (a, b)
forall a (p :: * -> *) (d :: Nat) a b.
(Num a, Affine p, Diff p ~ Vector d) =>
(p a :+ a) -> (Point d a :+ b) -> p a :+ (a, b)
.+. Point 2 r :+ b
w (p r :+ (a, b)) -> [p r :+ (a, b)] -> [p r :+ (a, b)]
forall a. a -> [a] -> [a]
: [p r :+ a] -> [Point 2 r :+ b] -> [p r :+ (a, b)]
merge' [p r :+ a]
vs [Point 2 r :+ b]
ws
merge' (p r :+ a
v:[p r :+ a]
vs) ws :: [Point 2 r :+ b]
ws@[Point 2 r :+ b
w] = p r :+ a
v (p r :+ a) -> (Point 2 r :+ b) -> p r :+ (a, b)
forall a (p :: * -> *) (d :: Nat) a b.
(Num a, Affine p, Diff p ~ Vector d) =>
(p a :+ a) -> (Point d a :+ b) -> p a :+ (a, b)
.+. Point 2 r :+ b
w (p r :+ (a, b)) -> [p r :+ (a, b)] -> [p r :+ (a, b)]
forall a. a -> [a] -> [a]
: [p r :+ a] -> [Point 2 r :+ b] -> [p r :+ (a, b)]
merge' [p r :+ a]
vs [Point 2 r :+ b]
ws
merge' (p r :+ a
v:p r :+ a
v':[p r :+ a]
vs) (Point 2 r :+ b
w:Point 2 r :+ b
w':[Point 2 r :+ b]
ws) = p r :+ a
v (p r :+ a) -> (Point 2 r :+ b) -> p r :+ (a, b)
forall a (p :: * -> *) (d :: Nat) a b.
(Num a, Affine p, Diff p ~ Vector d) =>
(p a :+ a) -> (Point d a :+ b) -> p a :+ (a, b)
.+. Point 2 r :+ b
w (p r :+ (a, b)) -> [p r :+ (a, b)] -> [p r :+ (a, b)]
forall a. a -> [a] -> [a]
:
case p r -> p r -> Point 2 r -> Point 2 r -> Ordering
forall r (p :: * -> *) (p :: * -> *).
(Num r, Ord r, Affine p, Affine p, Diff p ~ Vector 2,
Diff p ~ Vector 2) =>
p r -> p r -> p r -> p r -> Ordering
cmpAngle (p r :+ a
v(p r :+ a) -> Getting (p r) (p r :+ a) (p r) -> p r
forall s a. s -> Getting a s a -> a
^.Getting (p r) (p r :+ a) (p r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core) (p r :+ a
v'(p r :+ a) -> Getting (p r) (p r :+ a) (p r) -> p r
forall s a. s -> Getting a s a -> a
^.Getting (p r) (p r :+ a) (p r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core) (Point 2 r :+ b
w(Point 2 r :+ b)
-> Getting (Point 2 r) (Point 2 r :+ b) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.Getting (Point 2 r) (Point 2 r :+ b) (Point 2 r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core) (Point 2 r :+ b
w'(Point 2 r :+ b)
-> Getting (Point 2 r) (Point 2 r :+ b) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.Getting (Point 2 r) (Point 2 r :+ b) (Point 2 r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core) of
Ordering
LT -> [p r :+ a] -> [Point 2 r :+ b] -> [p r :+ (a, b)]
merge' (p r :+ a
v'(p r :+ a) -> [p r :+ a] -> [p r :+ a]
forall a. a -> [a] -> [a]
:[p r :+ a]
vs) (Point 2 r :+ b
w(Point 2 r :+ b) -> [Point 2 r :+ b] -> [Point 2 r :+ b]
forall a. a -> [a] -> [a]
:Point 2 r :+ b
w'(Point 2 r :+ b) -> [Point 2 r :+ b] -> [Point 2 r :+ b]
forall a. a -> [a] -> [a]
:[Point 2 r :+ b]
ws)
Ordering
GT -> [p r :+ a] -> [Point 2 r :+ b] -> [p r :+ (a, b)]
merge' (p r :+ a
v(p r :+ a) -> [p r :+ a] -> [p r :+ a]
forall a. a -> [a] -> [a]
:p r :+ a
v'(p r :+ a) -> [p r :+ a] -> [p r :+ a]
forall a. a -> [a] -> [a]
:[p r :+ a]
vs) (Point 2 r :+ b
w'(Point 2 r :+ b) -> [Point 2 r :+ b] -> [Point 2 r :+ b]
forall a. a -> [a] -> [a]
:[Point 2 r :+ b]
ws)
Ordering
EQ -> [p r :+ a] -> [Point 2 r :+ b] -> [p r :+ (a, b)]
merge' (p r :+ a
v'(p r :+ a) -> [p r :+ a] -> [p r :+ a]
forall a. a -> [a] -> [a]
:[p r :+ a]
vs) (Point 2 r :+ b
w'(Point 2 r :+ b) -> [Point 2 r :+ b] -> [Point 2 r :+ b]
forall a. a -> [a] -> [a]
:[Point 2 r :+ b]
ws)
merge' [p r :+ a]
_ [Point 2 r :+ b]
_ = String -> [p r :+ (a, b)]
forall a. HasCallStack => String -> a
error String
"minkowskiSum: Should not happen"
inConvex :: forall p r. (Fractional r, Ord r)
=> Point 2 r -> ConvexPolygon p r
-> PointLocationResult
inConvex :: Point 2 r -> ConvexPolygon p r -> PointLocationResult
inConvex Point 2 r
p (ConvexPolygon SimplePolygon p r
poly)
| Point 2 r
p Point 2 r -> LineSegment 2 p r -> Bool
forall g h. IsIntersectableWith g h => g -> h -> Bool
`intersects` LineSegment 2 p r
leftEdge = PointLocationResult
OnBoundary
| Point 2 r
p Point 2 r -> LineSegment 2 p r -> Bool
forall g h. IsIntersectableWith g h => g -> h -> Bool
`intersects` LineSegment 2 p r
rightEdge = PointLocationResult
OnBoundary
| Bool
otherwise = Int -> Int -> PointLocationResult
worker Int
1 Int
n
where
p' :: Point 2 r :+ Any
p' = Point 2 r
p Point 2 r -> Any -> Point 2 r :+ Any
forall core extra. core -> extra -> core :+ extra
:+ Any
forall a. HasCallStack => a
undefined
n :: Int
n = SimplePolygon p r -> Int
forall (t :: PolygonType) p r. Polygon t p r -> Int
size SimplePolygon p r
poly Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
point0 :: Point 2 r :+ p
point0 = Int -> Point 2 r :+ p
point Int
0
leftEdge :: LineSegment 2 p r
leftEdge = (Point 2 r :+ p) -> (Point 2 r :+ p) -> LineSegment 2 p r
forall (d :: Nat) r p.
(Point d r :+ p) -> (Point d r :+ p) -> LineSegment d p r
ClosedLineSegment Point 2 r :+ p
point0 (Int -> Point 2 r :+ p
point Int
n)
rightEdge :: LineSegment 2 p r
rightEdge = (Point 2 r :+ p) -> (Point 2 r :+ p) -> LineSegment 2 p r
forall (d :: Nat) r p.
(Point d r :+ p) -> (Point d r :+ p) -> LineSegment d p r
ClosedLineSegment Point 2 r :+ p
point0 (Int -> Point 2 r :+ p
point Int
1)
worker :: Int -> Int -> PointLocationResult
worker Int
a Int
b
| Int
aInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
b =
if Point 2 r
p Point 2 r -> LineSegment 2 p r -> Bool
forall g h. IsIntersectableWith g h => g -> h -> Bool
`intersects` ((Point 2 r :+ p) -> (Point 2 r :+ p) -> LineSegment 2 p r
forall (d :: Nat) r p.
(Point d r :+ p) -> (Point d r :+ p) -> LineSegment d p r
ClosedLineSegment (Int -> Point 2 r :+ p
point Int
a) (Int -> Point 2 r :+ p
point Int
b))
then PointLocationResult
OnBoundary
else
if Point 2 r -> Triangle 2 p r -> PointLocationResult
forall r p.
(Ord r, Fractional r) =>
Point 2 r -> Triangle 2 p r -> PointLocationResult
inTriangle Point 2 r
p ((Point 2 r :+ p)
-> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Triangle 2 p r
forall (d :: Nat) p r.
(Point d r :+ p)
-> (Point d r :+ p) -> (Point d r :+ p) -> Triangle d p r
Triangle Point 2 r :+ p
point0 (Int -> Point 2 r :+ p
point Int
a) (Int -> Point 2 r :+ p
point Int
b)) PointLocationResult -> PointLocationResult -> Bool
forall a. Eq a => a -> a -> Bool
== PointLocationResult
Outside
then PointLocationResult
Outside
else PointLocationResult
Inside
| (Point 2 r :+ p) -> (Point 2 r :+ p) -> (Point 2 r :+ Any) -> CCW
forall r a b c.
(Ord r, Num r) =>
(Point 2 r :+ a) -> (Point 2 r :+ b) -> (Point 2 r :+ c) -> CCW
ccw' Point 2 r :+ p
point0 (Int -> Point 2 r :+ p
point Int
c) Point 2 r :+ Any
p' CCW -> CCW -> Bool
forall a. Eq a => a -> a -> Bool
== CCW
CCW = Int -> Int -> PointLocationResult
worker Int
c Int
b
| Bool
otherwise = Int -> Int -> PointLocationResult
worker Int
a Int
c
where c :: Int
c = (Int
aInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
b) Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2
point :: Int -> Point 2 r :+ p
point Int
x = SimplePolygon p r
poly SimplePolygon p r
-> Getting (Point 2 r :+ p) (SimplePolygon p r) (Point 2 r :+ p)
-> Point 2 r :+ p
forall s a. s -> Getting a s a -> a
^. Int -> Getter (SimplePolygon p r) (Point 2 r :+ p)
forall (t :: PolygonType) p r.
Int -> Getter (Polygon t p r) (Point 2 r :+ p)
outerVertex Int
x
diameter :: (Ord r, Floating r) => ConvexPolygon p r -> r
diameter :: ConvexPolygon p r -> r
diameter ConvexPolygon p r
p = Point 2 r -> Point 2 r -> r
forall r (d :: Nat).
(Floating r, Arity d) =>
Point d r -> Point d r -> r
euclideanDist (Point 2 r :+ p
a(Point 2 r :+ p)
-> Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core) (Point 2 r :+ p
b(Point 2 r :+ p)
-> Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core)
where
(Point 2 r :+ p
a,Point 2 r :+ p
b) = ConvexPolygon p r -> (Point 2 r :+ p, Point 2 r :+ p)
forall r p.
(Ord r, Num r) =>
ConvexPolygon p r -> (Point 2 r :+ p, Point 2 r :+ p)
diametralPair ConvexPolygon p r
p
diametralPair :: (Ord r, Num r) => ConvexPolygon p r -> (Point 2 r :+ p, Point 2 r :+ p)
diametralPair :: ConvexPolygon p r -> (Point 2 r :+ p, Point 2 r :+ p)
diametralPair ConvexPolygon p r
p = (ConvexPolygon p r
pConvexPolygon p r
-> Getting (Point 2 r :+ p) (ConvexPolygon p r) (Point 2 r :+ p)
-> Point 2 r :+ p
forall s a. s -> Getting a s a -> a
^.(SimplePolygon p r -> Const (Point 2 r :+ p) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r :+ p) (ConvexPolygon p r)
forall p1 r1 p2 r2.
Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
simplePolygon((SimplePolygon p r -> Const (Point 2 r :+ p) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r :+ p) (ConvexPolygon p r))
-> (((Point 2 r :+ p) -> Const (Point 2 r :+ p) (Point 2 r :+ p))
-> SimplePolygon p r -> Const (Point 2 r :+ p) (SimplePolygon p r))
-> Getting (Point 2 r :+ p) (ConvexPolygon p r) (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Int -> Getter (SimplePolygon p r) (Point 2 r :+ p)
forall (t :: PolygonType) p r.
Int -> Getter (Polygon t p r) (Point 2 r :+ p)
outerVertex Int
a, ConvexPolygon p r
pConvexPolygon p r
-> Getting (Point 2 r :+ p) (ConvexPolygon p r) (Point 2 r :+ p)
-> Point 2 r :+ p
forall s a. s -> Getting a s a -> a
^.(SimplePolygon p r -> Const (Point 2 r :+ p) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r :+ p) (ConvexPolygon p r)
forall p1 r1 p2 r2.
Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
simplePolygon((SimplePolygon p r -> Const (Point 2 r :+ p) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r :+ p) (ConvexPolygon p r))
-> (((Point 2 r :+ p) -> Const (Point 2 r :+ p) (Point 2 r :+ p))
-> SimplePolygon p r -> Const (Point 2 r :+ p) (SimplePolygon p r))
-> Getting (Point 2 r :+ p) (ConvexPolygon p r) (Point 2 r :+ p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Int -> Getter (SimplePolygon p r) (Point 2 r :+ p)
forall (t :: PolygonType) p r.
Int -> Getter (Polygon t p r) (Point 2 r :+ p)
outerVertex Int
b)
where
(Int
a,Int
b) = ConvexPolygon p r -> (Int, Int)
forall r p. (Ord r, Num r) => ConvexPolygon p r -> (Int, Int)
diametralIndexPair ConvexPolygon p r
p
diametralIndexPair :: (Ord r, Num r) => ConvexPolygon p r -> (Int, Int)
diametralIndexPair :: ConvexPolygon p r -> (Int, Int)
diametralIndexPair ConvexPolygon p r
p = ((Int, Int) -> (Int, Int) -> Ordering)
-> [(Int, Int)] -> (Int, Int)
forall (t :: * -> *) a.
Foldable t =>
(a -> a -> Ordering) -> t a -> a
F.maximumBy (Int, Int) -> (Int, Int) -> Ordering
fn ([(Int, Int)] -> (Int, Int)) -> [(Int, Int)] -> (Int, Int)
forall a b. (a -> b) -> a -> b
$ ConvexPolygon p r -> [(Int, Int)]
forall p r. (Ord r, Num r) => ConvexPolygon p r -> [(Int, Int)]
antipodalPairs ConvexPolygon p r
p
where
fn :: (Int, Int) -> (Int, Int) -> Ordering
fn (Int
a1,Int
b1) (Int
a2,Int
b2) =
Point 2 r -> Point 2 r -> r
forall r (d :: Nat).
(Num r, Arity d) =>
Point d r -> Point d r -> r
squaredEuclideanDist (ConvexPolygon p r
pConvexPolygon p r
-> Getting (Point 2 r) (ConvexPolygon p r) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.(SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r) (ConvexPolygon p r)
forall p1 r1 p2 r2.
Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
simplePolygon((SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r) (ConvexPolygon p r))
-> ((Point 2 r -> Const (Point 2 r) (Point 2 r))
-> SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> Getting (Point 2 r) (ConvexPolygon p r) (Point 2 r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Int -> Getter (SimplePolygon p r) (Point 2 r :+ p)
forall (t :: PolygonType) p r.
Int -> Getter (Polygon t p r) (Point 2 r :+ p)
outerVertex Int
a1(((Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p))
-> SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ((Point 2 r -> Const (Point 2 r) (Point 2 r))
-> (Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p))
-> (Point 2 r -> Const (Point 2 r) (Point 2 r))
-> SimplePolygon p r
-> Const (Point 2 r) (SimplePolygon p r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Point 2 r -> Const (Point 2 r) (Point 2 r))
-> (Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core) (ConvexPolygon p r
pConvexPolygon p r
-> Getting (Point 2 r) (ConvexPolygon p r) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.(SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r) (ConvexPolygon p r)
forall p1 r1 p2 r2.
Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
simplePolygon((SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r) (ConvexPolygon p r))
-> ((Point 2 r -> Const (Point 2 r) (Point 2 r))
-> SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> Getting (Point 2 r) (ConvexPolygon p r) (Point 2 r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Int -> Getter (SimplePolygon p r) (Point 2 r :+ p)
forall (t :: PolygonType) p r.
Int -> Getter (Polygon t p r) (Point 2 r :+ p)
outerVertex Int
b1(((Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p))
-> SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ((Point 2 r -> Const (Point 2 r) (Point 2 r))
-> (Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p))
-> (Point 2 r -> Const (Point 2 r) (Point 2 r))
-> SimplePolygon p r
-> Const (Point 2 r) (SimplePolygon p r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Point 2 r -> Const (Point 2 r) (Point 2 r))
-> (Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core)
r -> r -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare`
Point 2 r -> Point 2 r -> r
forall r (d :: Nat).
(Num r, Arity d) =>
Point d r -> Point d r -> r
squaredEuclideanDist (ConvexPolygon p r
pConvexPolygon p r
-> Getting (Point 2 r) (ConvexPolygon p r) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.(SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r) (ConvexPolygon p r)
forall p1 r1 p2 r2.
Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
simplePolygon((SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r) (ConvexPolygon p r))
-> ((Point 2 r -> Const (Point 2 r) (Point 2 r))
-> SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> Getting (Point 2 r) (ConvexPolygon p r) (Point 2 r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Int -> Getter (SimplePolygon p r) (Point 2 r :+ p)
forall (t :: PolygonType) p r.
Int -> Getter (Polygon t p r) (Point 2 r :+ p)
outerVertex Int
a2(((Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p))
-> SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ((Point 2 r -> Const (Point 2 r) (Point 2 r))
-> (Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p))
-> (Point 2 r -> Const (Point 2 r) (Point 2 r))
-> SimplePolygon p r
-> Const (Point 2 r) (SimplePolygon p r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Point 2 r -> Const (Point 2 r) (Point 2 r))
-> (Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core) (ConvexPolygon p r
pConvexPolygon p r
-> Getting (Point 2 r) (ConvexPolygon p r) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.(SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r) (ConvexPolygon p r)
forall p1 r1 p2 r2.
Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
simplePolygon((SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ConvexPolygon p r -> Const (Point 2 r) (ConvexPolygon p r))
-> ((Point 2 r -> Const (Point 2 r) (Point 2 r))
-> SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> Getting (Point 2 r) (ConvexPolygon p r) (Point 2 r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Int -> Getter (SimplePolygon p r) (Point 2 r :+ p)
forall (t :: PolygonType) p r.
Int -> Getter (Polygon t p r) (Point 2 r :+ p)
outerVertex Int
b2(((Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p))
-> SimplePolygon p r -> Const (Point 2 r) (SimplePolygon p r))
-> ((Point 2 r -> Const (Point 2 r) (Point 2 r))
-> (Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p))
-> (Point 2 r -> Const (Point 2 r) (Point 2 r))
-> SimplePolygon p r
-> Const (Point 2 r) (SimplePolygon p r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Point 2 r -> Const (Point 2 r) (Point 2 r))
-> (Point 2 r :+ p) -> Const (Point 2 r) (Point 2 r :+ p)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core)
antipodalPairs :: forall p r. (Ord r, Num r) => ConvexPolygon p r -> [(Int, Int)]
antipodalPairs :: ConvexPolygon p r -> [(Int, Int)]
antipodalPairs ConvexPolygon p r
p = Int -> Point 2 r -> Int -> [(Int, Int)]
worker Int
0 (CircularVector (Point 2 r) -> Int -> Point 2 r
forall a. CircularVector a -> Int -> a
CV.index CircularVector (Point 2 r)
vectors Int
0) Int
1
where
n :: Int
n = Polygon 'Simple p r -> Int
forall (t :: PolygonType) p r. Polygon t p r -> Int
size (ConvexPolygon p r
pConvexPolygon p r
-> Getting
(Polygon 'Simple p r) (ConvexPolygon p r) (Polygon 'Simple p r)
-> Polygon 'Simple p r
forall s a. s -> Getting a s a -> a
^.Getting
(Polygon 'Simple p r) (ConvexPolygon p r) (Polygon 'Simple p r)
forall p1 r1 p2 r2.
Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
simplePolygon)
vs :: CircularVector (Point 2 r :+ p)
vs = ConvexPolygon p r
pConvexPolygon p r
-> Getting
(CircularVector (Point 2 r :+ p))
(ConvexPolygon p r)
(CircularVector (Point 2 r :+ p))
-> CircularVector (Point 2 r :+ p)
forall s a. s -> Getting a s a -> a
^.(Polygon 'Simple p r
-> Const (CircularVector (Point 2 r :+ p)) (Polygon 'Simple p r))
-> ConvexPolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (ConvexPolygon p r)
forall p1 r1 p2 r2.
Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
simplePolygon((Polygon 'Simple p r
-> Const (CircularVector (Point 2 r :+ p)) (Polygon 'Simple p r))
-> ConvexPolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (ConvexPolygon p r))
-> ((CircularVector (Point 2 r :+ p)
-> Const
(CircularVector (Point 2 r :+ p))
(CircularVector (Point 2 r :+ p)))
-> Polygon 'Simple p r
-> Const (CircularVector (Point 2 r :+ p)) (Polygon 'Simple p r))
-> Getting
(CircularVector (Point 2 r :+ p))
(ConvexPolygon p r)
(CircularVector (Point 2 r :+ p))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(CircularVector (Point 2 r :+ p)
-> Const
(CircularVector (Point 2 r :+ p))
(CircularVector (Point 2 r :+ p)))
-> Polygon 'Simple p r
-> Const (CircularVector (Point 2 r :+ p)) (Polygon 'Simple p r)
forall (t :: PolygonType) p r.
Getter (Polygon t p r) (CircularVector (Point 2 r :+ p))
outerBoundaryVector
worker :: Int -> Point 2 r -> Int -> [(Int, Int)]
worker Int
a Point 2 r
aElt Int
b
| Int
a Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
n = []
| Bool
otherwise =
case Point 2 r -> Point 2 r -> Point 2 r -> CCW
forall r.
(Ord r, Num r) =>
Point 2 r -> Point 2 r -> Point 2 r -> CCW
ccw Point 2 r
aElt (r -> r -> Point 2 r
forall r. r -> r -> Point 2 r
Point2 r
0 r
0) (CircularVector (Point 2 r) -> Int -> Point 2 r
forall a. CircularVector a -> Int -> a
CV.index CircularVector (Point 2 r)
vectors Int
b) of
CCW
CW -> Int -> Point 2 r -> Int -> [(Int, Int)]
worker Int
a Point 2 r
aElt (Int
bInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
CCW
_ ->
(Int
a, Int
b Int -> Int -> Int
forall a. Integral a => a -> a -> a
`mod` Int
n) (Int, Int) -> [(Int, Int)] -> [(Int, Int)]
forall a. a -> [a] -> [a]
:
Int -> Point 2 r -> Int -> [(Int, Int)]
worker (Int
aInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (CircularVector (Point 2 r) -> Int -> Point 2 r
forall a. CircularVector a -> Int -> a
CV.index CircularVector (Point 2 r)
vectors (Int
aInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)) Int
b
vectors :: CircularVector (Point 2 r)
vectors :: CircularVector (Point 2 r)
vectors = Vector (Point 2 r) -> CircularVector (Point 2 r)
forall a. Vector a -> CircularVector a
CV.unsafeFromVector (Vector (Point 2 r) -> CircularVector (Point 2 r))
-> Vector (Point 2 r) -> CircularVector (Point 2 r)
forall a b. (a -> b) -> a -> b
$ Int -> (Int -> Point 2 r) -> Vector (Point 2 r)
forall a. Int -> (Int -> a) -> Vector a
V.generate Int
n ((Int -> Point 2 r) -> Vector (Point 2 r))
-> (Int -> Point 2 r) -> Vector (Point 2 r)
forall a b. (a -> b) -> a -> b
$ \Int
i ->
let Point Vector 2 r
p1 = Int -> Point 2 r
point Int
i
p2 :: Point 2 r
p2 = Int -> Point 2 r
point (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
in Point 2 r
p2 Point 2 r -> Diff (Point 2) r -> Point 2 r
forall (p :: * -> *) a. (Affine p, Num a) => p a -> Diff p a -> p a
.-^ Diff (Point 2) r
Vector 2 r
p1
point :: Int -> Point 2 r
point Int
x = CircularVector (Point 2 r :+ p) -> Int -> Point 2 r :+ p
forall a. CircularVector a -> Int -> a
CV.index CircularVector (Point 2 r :+ p)
vs Int
x (Point 2 r :+ p)
-> Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^. Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core
rightMost :: Ord r => CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
rightMost :: CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
rightMost = ((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p)
forall a.
(a -> a -> Ordering) -> CircularVector a -> CircularVector a
CV.rotateToMaximumBy (((Point 2 r :+ p) -> Point 2 r)
-> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering
forall a b. Ord a => (b -> a) -> b -> b -> Ordering
comparing ((Point 2 r :+ p)
-> Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core))
leftMost :: Ord r => CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
leftMost :: CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
leftMost = ((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p)
forall a.
(a -> a -> Ordering) -> CircularVector a -> CircularVector a
CV.rotateToMinimumBy (((Point 2 r :+ p) -> Point 2 r)
-> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering
forall a b. Ord a => (b -> a) -> b -> b -> Ordering
comparing ((Point 2 r :+ p)
-> Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r) -> Point 2 r
forall s a. s -> Getting a s a -> a
^.Getting (Point 2 r) (Point 2 r :+ p) (Point 2 r)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core))
bottomMost :: Ord r => CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
bottomMost :: CircularVector (Point 2 r :+ p) -> CircularVector (Point 2 r :+ p)
bottomMost = ((Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering)
-> CircularVector (Point 2 r :+ p)
-> CircularVector (Point 2 r :+ p)
forall a.
(a -> a -> Ordering) -> CircularVector a -> CircularVector a
CV.rotateToMinimumBy (((Point 2 r :+ p) -> (r, r))
-> (Point 2 r :+ p) -> (Point 2 r :+ p) -> Ordering
forall a b. Ord a => (b -> a) -> b -> b -> Ordering
comparing (Point 2 r :+ p) -> (r, r)
forall (d :: Nat) (point :: Nat -> * -> *) b extra.
(ImplicitPeano (Peano d), ArityPeano (Peano (FromPeano (Peano d))),
KnownNat (FromPeano (Peano d)), KnownNat d, AsAPoint point,
(1 <=? d) ~ 'True, (2 <=? d) ~ 'True,
Peano (FromPeano (Peano d) + 1)
~ 'S (Peano (FromPeano (Peano d)))) =>
(point d b :+ extra) -> (b, b)
f)
where
f :: (point d b :+ extra) -> (b, b)
f point d b :+ extra
p = (point d b :+ extra
p(point d b :+ extra) -> Getting b (point d b :+ extra) b -> b
forall s a. s -> Getting a s a -> a
^.(point d b -> Const b (point d b))
-> (point d b :+ extra) -> Const b (point d b :+ extra)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core((point d b -> Const b (point d b))
-> (point d b :+ extra) -> Const b (point d b :+ extra))
-> ((b -> Const b b) -> point d b -> Const b (point d b))
-> Getting b (point d b :+ extra) b
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(b -> Const b b) -> point d b -> Const b (point d b)
forall (d :: Nat) (point :: Nat -> * -> *) r.
(2 <= d, Arity d, AsAPoint point) =>
Lens' (point d r) r
yCoord,point d b :+ extra
p(point d b :+ extra) -> Getting b (point d b :+ extra) b -> b
forall s a. s -> Getting a s a -> a
^.(point d b -> Const b (point d b))
-> (point d b :+ extra) -> Const b (point d b :+ extra)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core((point d b -> Const b (point d b))
-> (point d b :+ extra) -> Const b (point d b :+ extra))
-> ((b -> Const b b) -> point d b -> Const b (point d b))
-> Getting b (point d b :+ extra) b
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(b -> Const b b) -> point d b -> Const b (point d b)
forall (d :: Nat) (point :: Nat -> * -> *) r.
(1 <= d, Arity d, AsAPoint point) =>
Lens' (point d r) r
xCoord)
getVertices :: ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
getVertices :: ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
getVertices = Getting
(CircularVector (Point 2 r :+ p))
(ConvexPolygon p r)
(CircularVector (Point 2 r :+ p))
-> ConvexPolygon p r -> CircularVector (Point 2 r :+ p)
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view ((SimplePolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (SimplePolygon p r))
-> ConvexPolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (ConvexPolygon p r)
forall p1 r1 p2 r2.
Iso
(ConvexPolygon p1 r1)
(ConvexPolygon p2 r2)
(SimplePolygon p1 r1)
(SimplePolygon p2 r2)
simplePolygon((SimplePolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (SimplePolygon p r))
-> ConvexPolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (ConvexPolygon p r))
-> ((CircularVector (Point 2 r :+ p)
-> Const
(CircularVector (Point 2 r :+ p))
(CircularVector (Point 2 r :+ p)))
-> SimplePolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (SimplePolygon p r))
-> Getting
(CircularVector (Point 2 r :+ p))
(ConvexPolygon p r)
(CircularVector (Point 2 r :+ p))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(CircularVector (Point 2 r :+ p)
-> Const
(CircularVector (Point 2 r :+ p))
(CircularVector (Point 2 r :+ p)))
-> SimplePolygon p r
-> Const (CircularVector (Point 2 r :+ p)) (SimplePolygon p r)
forall (t :: PolygonType) p r.
Getter (Polygon t p r) (CircularVector (Point 2 r :+ p))
outerBoundaryVector)
randomBetween :: RandomGen g => Int -> Int -> Rand g (VU.Vector Int)
randomBetween :: Int -> Int -> Rand g (Vector Int)
randomBetween Int
n Int
vMax | Int
vMax Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1 = Vector Int -> Rand g (Vector Int)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Vector Int -> Rand g (Vector Int))
-> Vector Int -> Rand g (Vector Int)
forall a b. (a -> b) -> a -> b
$ Int -> Int -> Vector Int
forall a. Unbox a => Int -> a -> Vector a
VU.replicate Int
vMax Int
1
randomBetween Int
n Int
vMax = Int -> IntSet -> Rand g (Vector Int)
worker (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) IntSet
IS.empty
where
gen :: Int -> [Int] -> [Int]
gen Int
from [] = [Int
vMaxInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
from]
gen Int
from (Int
x:[Int]
xs) = (Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
from) Int -> [Int] -> [Int]
forall a. a -> [a] -> [a]
: Int -> [Int] -> [Int]
gen Int
x [Int]
xs
worker :: Int -> IntSet -> Rand g (Vector Int)
worker Int
0 IntSet
seen = Vector Int -> Rand g (Vector Int)
forall (f :: * -> *) a. Applicative f => a -> f a
pure ([Int] -> Vector Int
forall a. Unbox a => [a] -> Vector a
VU.fromList (Int -> [Int] -> [Int]
gen Int
0 ([Int] -> [Int]) -> [Int] -> [Int]
forall a b. (a -> b) -> a -> b
$ IntSet -> [Int]
IS.elems IntSet
seen))
worker Int
i IntSet
seen = do
Int
v <- (Int, Int) -> RandT g Identity Int
forall (m :: * -> *) a. (MonadRandom m, Random a) => (a, a) -> m a
getRandomR (Int
1, Int
vMaxInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
if Int -> IntSet -> Bool
IS.member Int
v IntSet
seen
then Int -> IntSet -> Rand g (Vector Int)
worker Int
i IntSet
seen
else Int -> IntSet -> Rand g (Vector Int)
worker (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (Int -> IntSet -> IntSet
IS.insert Int
v IntSet
seen)
randomBetweenZero :: RandomGen g => Int -> Int -> Rand g (VU.Vector Int)
randomBetweenZero :: Int -> Int -> Rand g (Vector Int)
randomBetweenZero Int
n Int
vMax = (Int -> Int -> Int) -> Vector Int -> Vector Int -> Vector Int
forall a b c.
(Unbox a, Unbox b, Unbox c) =>
(a -> b -> c) -> Vector a -> Vector b -> Vector c
VU.zipWith (-) (Vector Int -> Vector Int -> Vector Int)
-> Rand g (Vector Int)
-> RandT g Identity (Vector Int -> Vector Int)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> Rand g (Vector Int)
forall g. RandomGen g => Int -> Int -> Rand g (Vector Int)
randomBetween Int
n Int
vMax RandT g Identity (Vector Int -> Vector Int)
-> Rand g (Vector Int) -> Rand g (Vector Int)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Int -> Int -> Rand g (Vector Int)
forall g. RandomGen g => Int -> Int -> Rand g (Vector Int)
randomBetween Int
n Int
vMax
randomEdges :: RandomGen g => Int -> Int -> Rand g [Vector 2 Int]
randomEdges :: Int -> Int -> Rand g [Vector 2 Int]
randomEdges Int
n Int
vMax = do
(Int -> Int -> Vector 2 Int) -> [Int] -> [Int] -> [Vector 2 Int]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Int -> Int -> Vector 2 Int
forall r. r -> r -> Vector 2 r
Vector2
([Int] -> [Int] -> [Vector 2 Int])
-> RandT g Identity [Int]
-> RandT g Identity ([Int] -> [Vector 2 Int])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Vector Int -> [Int])
-> RandT g Identity (Vector Int) -> RandT g Identity [Int]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Vector Int -> [Int]
forall a. Unbox a => Vector a -> [a]
VU.toList (Int -> Int -> RandT g Identity (Vector Int)
forall g. RandomGen g => Int -> Int -> Rand g (Vector Int)
randomBetweenZero Int
n Int
vMax)
RandT g Identity ([Int] -> [Vector 2 Int])
-> RandT g Identity [Int] -> Rand g [Vector 2 Int]
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Vector Int -> [Int])
-> RandT g Identity (Vector Int) -> RandT g Identity [Int]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Vector Int -> [Int]
forall a. Unbox a => Vector a -> [a]
VU.toList (Int -> Int -> RandT g Identity (Vector Int)
forall g. RandomGen g => Int -> Int -> Rand g (Vector Int)
randomBetweenZero Int
n Int
vMax)
randomConvex :: RandomGen g => Int -> Int -> Rand g (ConvexPolygon () Rational)
randomConvex :: Int -> Int -> Rand g (ConvexPolygon () Rational)
randomConvex Int
n Int
_vMax | Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
3 =
String -> Rand g (ConvexPolygon () Rational)
forall a. HasCallStack => String -> a
error String
"Data.Geometry.Polygon.Convex.randomConvex: At least 3 edges are required."
randomConvex Int
n Int
vMax = do
~(Vector 2 Int
v:[Vector 2 Int]
vs) <- [Point 2 Int] -> [Vector 2 Int]
coerce ([Point 2 Int] -> [Vector 2 Int])
-> ([Vector 2 Int] -> [Point 2 Int])
-> [Vector 2 Int]
-> [Vector 2 Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Point 2 Int -> [Point 2 Int] -> [Point 2 Int]
forall r. (Ord r, Num r) => Point 2 r -> [Point 2 r] -> [Point 2 r]
sortAround Point 2 Int
forall (d :: Nat) r. (Arity d, Num r) => Point d r
origin ([Point 2 Int] -> [Point 2 Int])
-> ([Vector 2 Int] -> [Point 2 Int])
-> [Vector 2 Int]
-> [Point 2 Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Vector 2 Int] -> [Point 2 Int]
coerce ([Vector 2 Int] -> [Vector 2 Int])
-> RandT g Identity [Vector 2 Int]
-> RandT g Identity [Vector 2 Int]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> RandT g Identity [Vector 2 Int]
forall g. RandomGen g => Int -> Int -> Rand g [Vector 2 Int]
randomEdges Int
n Int
vMax
let vertices :: [Point 2 Rational]
vertices = (Int -> Rational) -> Point 2 Int -> Point 2 Rational
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Rational -> Rational -> Rational
forall a. Fractional a => a -> a -> a
/ Int -> Rational
forall a b. (Real a, Fractional b) => a -> b
realToFrac Int
vMax) (Rational -> Rational) -> (Int -> Rational) -> Int -> Rational
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Rational
forall a b. (Real a, Fractional b) => a -> b
realToFrac) (Point 2 Int -> Point 2 Rational)
-> [Point 2 Int] -> [Point 2 Rational]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Point 2 Int -> Vector 2 Int -> Point 2 Int)
-> Point 2 Int -> [Vector 2 Int] -> [Point 2 Int]
forall b a. (b -> a -> b) -> b -> [a] -> [b]
scanl Point 2 Int -> Vector 2 Int -> Point 2 Int
forall (p :: * -> *) a. (Affine p, Num a) => p a -> Diff p a -> p a
(.+^) (Vector 2 Int -> Point 2 Int
forall (d :: Nat) r. Vector d r -> Point d r
Point Vector 2 Int
v) [Vector 2 Int]
vs
pRational :: SimplePolygon () Rational
pRational = [Point 2 Rational :+ ()] -> SimplePolygon () Rational
forall r p. [Point 2 r :+ p] -> SimplePolygon p r
unsafeFromPoints ([Point 2 Rational :+ ()] -> SimplePolygon () Rational)
-> [Point 2 Rational :+ ()] -> SimplePolygon () Rational
forall a b. (a -> b) -> a -> b
$ (Point 2 Rational -> Point 2 Rational :+ ())
-> [Point 2 Rational] -> [Point 2 Rational :+ ()]
forall a b. (a -> b) -> [a] -> [b]
map Point 2 Rational -> Point 2 Rational :+ ()
forall a. a -> a :+ ()
ext [Point 2 Rational]
vertices
Point Vector 2 Rational
c = SimplePolygon () Rational -> Point 2 Rational
forall r p. Fractional r => SimplePolygon p r -> Point 2 r
centroid SimplePolygon () Rational
pRational
pFinal :: SimplePolygon () Rational
pFinal = SimplePolygon () Rational
pRational SimplePolygon () Rational
-> (SimplePolygon () Rational -> SimplePolygon () Rational)
-> SimplePolygon () Rational
forall a b. a -> (a -> b) -> b
& (CircularVector (Point 2 Rational :+ ())
-> Identity (CircularVector (Point 2 Rational :+ ())))
-> SimplePolygon () Rational
-> Identity (SimplePolygon () Rational)
forall (t :: PolygonType) p r.
Lens' (Polygon t p r) (CircularVector (Point 2 r :+ p))
unsafeOuterBoundaryVector ((CircularVector (Point 2 Rational :+ ())
-> Identity (CircularVector (Point 2 Rational :+ ())))
-> SimplePolygon () Rational
-> Identity (SimplePolygon () Rational))
-> (CircularVector (Point 2 Rational :+ ())
-> CircularVector (Point 2 Rational :+ ()))
-> SimplePolygon () Rational
-> SimplePolygon () Rational
forall s t a b. ASetter s t a b -> (a -> b) -> s -> t
%~ ((Point 2 Rational :+ ()) -> Point 2 Rational :+ ())
-> CircularVector (Point 2 Rational :+ ())
-> CircularVector (Point 2 Rational :+ ())
forall a b. (a -> b) -> CircularVector a -> CircularVector b
CV.map (ASetter
(Point 2 Rational :+ ())
(Point 2 Rational :+ ())
(Point 2 Rational)
(Point 2 Rational)
-> (Point 2 Rational -> Point 2 Rational)
-> (Point 2 Rational :+ ())
-> Point 2 Rational :+ ()
forall s t a b. ASetter s t a b -> (a -> b) -> s -> t
over ASetter
(Point 2 Rational :+ ())
(Point 2 Rational :+ ())
(Point 2 Rational)
(Point 2 Rational)
forall core extra core'.
Lens (core :+ extra) (core' :+ extra) core core'
core (Point 2 Rational -> Diff (Point 2) Rational -> Point 2 Rational
forall (p :: * -> *) a. (Affine p, Num a) => p a -> Diff p a -> p a
.-^ Diff (Point 2) Rational
Vector 2 Rational
c))
ConvexPolygon () Rational -> Rand g (ConvexPolygon () Rational)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (ConvexPolygon () Rational -> Rand g (ConvexPolygon () Rational))
-> ConvexPolygon () Rational -> Rand g (ConvexPolygon () Rational)
forall a b. (a -> b) -> a -> b
$ SimplePolygon () Rational -> ConvexPolygon () Rational
forall p r. SimplePolygon p r -> ConvexPolygon p r
ConvexPolygon SimplePolygon () Rational
pFinal