{-# LANGUAGE UndecidableInstances  #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Data.Geometry.Vector( module Data.Geometry.Vector.VectorFamily
                           , module LV
                           , C(..)
                           , Affine(..)
                           , quadrance, qdA, distanceA
                           , dot, norm, signorm
                           , isScalarMultipleOf
                           , scalarMultiple
                           
                           , FV.replicate
                           , xComponent, yComponent, zComponent
                           ) where
import           Control.Applicative (liftA2)
import           Control.Lens (Lens')
import           Control.Monad.State
import qualified Data.Foldable as F
import           Data.Geometry.Properties
import           Data.Geometry.Vector.VectorFamily
import           Data.Geometry.Vector.VectorFixed (C(..))
import qualified Data.Vector.Fixed as FV
import           GHC.TypeLits
import           Linear.Affine (Affine(..), qdA, distanceA)
import           Linear.Metric (dot,norm,signorm,quadrance)
import           Linear.Vector as LV hiding (E(..))
import           System.Random (Random(..))
import           Test.QuickCheck (Arbitrary(..),infiniteList)
type instance Dimension (Vector d r) = d
type instance NumType   (Vector d r) = r
instance (Arbitrary r, Arity d) => Arbitrary (Vector d r) where
  arbitrary = vectorFromListUnsafe <$> infiniteList
instance (Random r, Arity d) => Random (Vector d r) where
  randomR (lows,highs) g0 = flip runState g0 $
                            FV.zipWithM (\l h -> state $ randomR (l,h)) lows highs
  random g0 = flip runState g0 $ FV.replicateM (state random)
isScalarMultipleOf       :: (Eq r, Fractional r, Arity d)
                         => Vector d r -> Vector d r -> Bool
u `isScalarMultipleOf` v = let d = u `dot` v
                               num = quadrance u * quadrance v
                           in num == 0 || 1 == d*d / num
{-# SPECIALIZE
    isScalarMultipleOf :: (Eq r, Fractional r) => Vector 2 r -> Vector 2 r -> Bool  #-}
{-# SPECIALIZE
    isScalarMultipleOf :: (Eq r, Fractional r) => Vector 3 r -> Vector 3 r -> Bool  #-}
scalarMultiple     :: (Eq r, Fractional r, Arity d)
                   => Vector d r -> Vector d r -> Maybe r
scalarMultiple u v
      | allZero u || allZero v = Just 0
      | otherwise              = scalarMultiple' u v
{-# SPECIALIZE
    scalarMultiple :: (Eq r, Fractional r) => Vector 2 r -> Vector 2 r -> Maybe r #-}
allZero :: (Arity d, Eq r, Num r) => Vector d r -> Bool
allZero = F.all (== 0)
{-# SPECIALIZE allZero :: (Eq r, Num r) => Vector 2 r -> Bool #-}
data ScalarMultiple r = No | Maybe | Yes r deriving (Eq,Show)
instance Eq r => Semigroup (ScalarMultiple r) where
  No      <> _       = No
  _       <> No      = No
  Maybe   <> x       = x
  x       <> Maybe   = x
  (Yes x) <> (Yes y)
     | x == y               = Yes x
     | otherwise            = No
instance Eq r => Monoid (ScalarMultiple r) where
  mempty = Maybe
  mappend = (<>)
scalarMultiple'      :: (Eq r, Fractional r, Arity d)
                     => Vector d r -> Vector d r -> Maybe r
scalarMultiple' u v = g . F.foldr mappend mempty $ liftA2 f u v
  where
    f 0  0  = Maybe 
    f _  0  = No      
    f ui vi = Yes $ ui / vi 
    g No      = Nothing
    g Maybe   = error "scalarMultiple': found a Maybe, which means the vectors either have length zero, or one of them is all Zero!"
    g (Yes x) = Just x
{-# SPECIALIZE
    scalarMultiple' :: (Eq r, Fractional r) => Vector 2 r -> Vector 2 r -> Maybe r #-}
xComponent :: (1 <= d, Arity d) => Lens' (Vector d r) r
xComponent = element (C :: C 0)
{-# INLINABLE xComponent #-}
yComponent :: (2 <= d, Arity d) => Lens' (Vector d r) r
yComponent = element (C :: C 1)
{-# INLINABLE yComponent #-}
zComponent :: (3 <= d, Arity d) => Lens' (Vector d r) r
zComponent = element (C :: C 2)
{-# INLINABLE zComponent #-}