module Algorithms.Geometry.PolygonTriangulation.TriangulateMonotone where
import           Control.Lens
import           Data.Bifunctor
import qualified Data.CircularSeq as C
import           Data.Ext
import qualified Data.Foldable as F
import           Data.Geometry.LineSegment
import           Data.Geometry.Point
import           Data.Geometry.Polygon
import qualified Data.List as L
import           Data.Ord (comparing, Down(..))
import           Data.Util
import           Algorithms.Geometry.PolygonTriangulation.Types
import           Data.PlaneGraph (PlaneGraph)
import           Data.Geometry.PlanarSubdivision.Basic(PolygonFaceData, PlanarSubdivision)
type MonotonePolygon p r = SimplePolygon p r
data LR = L | R deriving (Show,Eq)
triangulate        :: (Ord r, Fractional r)
                   => proxy s -> MonotonePolygon p r
                   -> PlanarSubdivision s p PolygonEdgeType PolygonFaceData r
triangulate px pg' = constructSubdivision px e es (computeDiagonals pg)
  where
    pg     = toCounterClockWiseOrder pg'
    (e:es) = listEdges pg
  
triangulate'        :: (Ord r, Fractional r)
                    => proxy s -> MonotonePolygon p r
                    -> PlaneGraph s p PolygonEdgeType PolygonFaceData r
triangulate' px pg' = constructGraph px e es (computeDiagonals pg)
  where
    pg     = toCounterClockWiseOrder pg'
    (e:es) = listEdges pg
  
computeDiagonals    :: (Ord r, Num r)
                    => MonotonePolygon p r -> [LineSegment 2 p r]
computeDiagonals pg = diags'' <> diags'
  where
    
    SP (_:stack') diags' = L.foldl' (\(SP stack acc) v' -> (<> acc) <$> process v' stack)
                                    (SP [v,u] []) vs'
    
    diags'' = map (seg w) $ init stack'
    
    Just (vs',w) = unsnoc vs
    
    (u:v:vs) = uncurry (mergeBy $ comparing (\(Point2 x y :+ _) -> (Down y, x)))
             $ splitPolygon pg
type P p r = Point 2 r :+ (LR :+ p)
type Stack a = [a]
chainOf :: P p r -> LR
chainOf = (^.extra.core)
toVtx :: P p r -> Point 2 r :+ p
toVtx = (&extra %~ (^.extra))
seg     :: P p r -> P p r -> LineSegment 2 p r
seg u v = ClosedLineSegment (toVtx u) (toVtx v)
process                    :: (Ord r, Num r)
                           => P p r -> Stack (P p r)
                           -> SP (Stack (P p r)) [LineSegment 2 p r]
process _ []               = error "TriangulateMonotone.process: absurd. empty stack"
process v stack@(u:ws)
  | chainOf v /= chainOf u = SP [v,u]      (map (seg v) . init $ stack)
  | otherwise              = SP (v:w:rest) (map (seg v) popped)
      where
        (popped,rest) = bimap (map fst) (map fst) . L.span (isInside v) $ zip ws stack
        w             = last $ u:popped
isInside          :: (Ord r, Num r) => P p r -> (P p r, P p r) -> Bool
isInside v (u, m) = case ccw' v m u of
                     CoLinear -> False
                     CCW      -> chainOf v == R
                     CW       -> chainOf v == L
mergeBy     :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
mergeBy cmp = go
  where
    go []     ys     = ys
    go xs     []     = xs
    go (x:xs) (y:ys) = case x `cmp` y of
                         GT -> y : go (x:xs) ys
                         _  -> x : go xs     (y:ys)
splitPolygon    :: Ord r => MonotonePolygon p r
                -> ([Point 2 r :+ (LR :+ p)], [Point 2 r :+ (LR :+ p)])
splitPolygon pg = bimap (f L) (f R)
                . second reverse
                . L.break (\v -> v^.core == vMinY)
                . F.toList . C.rightElements $ vs'
  where
    f x = map (&extra %~ (x :+))
    
    Just vs' = C.findRotateTo (\v -> v^.core == vMaxY)
             $ pg^.outerBoundary
    vMaxY = getY F.maximumBy
    vMinY = getY F.minimumBy
    swap' (Point2 x y) = Point2 y x
    getY ff = let p = ff (comparing (^.core.to swap')) $ pg^.outerBoundary
              in p^.core
testPoly5 :: SimplePolygon () Rational
testPoly5 = toCounterClockWiseOrder . fromPoints $ map ext $ [ Point2 176 736
                                                             , Point2 240 688
                                                             , Point2 240 608
                                                             , Point2 128 576
                                                             , Point2 64 640
                                                             , Point2 80 720
                                                             , Point2 128 752
                                                             ]