{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Geometry.Vector.VectorFamilyPeano where
import Control.Applicative (liftA2)
import Control.DeepSeq
import Control.Lens hiding (element)
import Data.Aeson (FromJSON(..),ToJSON(..))
import qualified Data.Foldable as F
import qualified Data.Geometry.Vector.VectorFixed as FV
import Data.Proxy
import qualified Data.Vector.Fixed as V
import Data.Vector.Fixed.Cont (PeanoNum(..), Fun(..))
import GHC.TypeLits
import Linear.Affine (Affine(..))
import Linear.Metric
import qualified Linear.V2 as L2
import qualified Linear.V3 as L3
import qualified Linear.V4 as L4
import Linear.Vector
import Data.Hashable
type One = S Z
type Two = S One
type Three = S Two
type Four = S Three
type Many d = S (S (S (S (S d))))
type family FromPeano (d :: PeanoNum) :: Nat where
FromPeano Z = 0
FromPeano (S d) = 1 + FromPeano d
data SingPeano (d :: PeanoNum) where
SZ :: SingPeano Z
SS :: !(SingPeano d) -> SingPeano (S d)
class ImplicitPeano (d :: PeanoNum) where
implicitPeano :: SingPeano d
instance ImplicitPeano Z where
implicitPeano = SZ
instance ImplicitPeano d => ImplicitPeano (S d) where
implicitPeano = SS implicitPeano
newtype VectorFamily (d :: PeanoNum) (r :: *) =
VectorFamily { _unVF :: VectorFamilyF d r }
type family VectorFamilyF (d :: PeanoNum) :: * -> * where
VectorFamilyF Z = Const ()
VectorFamilyF One = Identity
VectorFamilyF Two = L2.V2
VectorFamilyF Three = L3.V3
VectorFamilyF Four = L4.V4
VectorFamilyF (Many d) = FV.Vector (FromPeano (Many d))
type instance V.Dim (VectorFamily d) = FromPeano d
type instance Index (VectorFamily d r) = Int
type instance IxValue (VectorFamily d r) = r
type instance V.Dim L2.V2 = 2
type instance V.Dim L3.V3 = 3
type instance V.Dim L4.V4 = 4
unVF :: Lens (VectorFamily d r) (VectorFamily d t)
(VectorFamilyF d r) (VectorFamilyF d t)
unVF = lens _unVF (const VectorFamily)
{-# INLINE unVF #-}
class (ImplicitPeano d, V.Arity (FromPeano d)) => ImplicitArity d
instance (ImplicitPeano d, V.Arity (FromPeano d)) => ImplicitArity d
instance (Eq r, ImplicitArity d) => Eq (VectorFamily d r) where
(VectorFamily u) == (VectorFamily v) = case (implicitPeano :: SingPeano d) of
SZ -> u == v
(SS SZ) -> u == v
(SS (SS SZ)) -> u == v
(SS (SS (SS SZ))) -> u == v
(SS (SS (SS (SS SZ)))) -> u == v
(SS (SS (SS (SS (SS _))))) -> u == v
{-# INLINE (==) #-}
instance (Ord r, ImplicitArity d) => Ord (VectorFamily d r) where
(VectorFamily u) `compare` (VectorFamily v) = case (implicitPeano :: SingPeano d) of
SZ -> u `compare` v
(SS SZ) -> u `compare` v
(SS (SS SZ)) -> u `compare` v
(SS (SS (SS SZ))) -> u `compare` v
(SS (SS (SS (SS SZ)))) -> u `compare` v
(SS (SS (SS (SS (SS _))))) -> u `compare` v
{-# INLINE compare #-}
instance ImplicitArity d => Functor (VectorFamily d) where
fmap f = VectorFamily . g f . _unVF
where g = case (implicitPeano :: SingPeano d) of
SZ -> fmap
(SS SZ) -> fmap
(SS (SS SZ)) -> fmap
(SS (SS (SS SZ))) -> fmap
(SS (SS (SS (SS SZ)))) -> fmap
(SS (SS (SS (SS (SS _))))) -> fmap
{-# INLINE fmap #-}
instance ImplicitArity d => Foldable (VectorFamily d) where
foldMap f = g f . _unVF
where g = case (implicitPeano :: SingPeano d) of
SZ -> foldMap
(SS SZ) -> foldMap
(SS (SS SZ)) -> foldMap
(SS (SS (SS SZ))) -> foldMap
(SS (SS (SS (SS SZ)))) -> foldMap
(SS (SS (SS (SS (SS _))))) -> foldMap
{-# INLINE foldMap #-}
instance ImplicitArity d => Traversable (VectorFamily d) where
traverse f = fmap VectorFamily . g f . _unVF
where g = case (implicitPeano :: SingPeano d) of
SZ -> traverse
(SS SZ) -> traverse
(SS (SS SZ)) -> traverse
(SS (SS (SS SZ))) -> traverse
(SS (SS (SS (SS SZ)))) -> traverse
(SS (SS (SS (SS (SS _))))) -> traverse
{-# INLINE traverse #-}
instance ImplicitArity d => Applicative (VectorFamily d) where
pure = VectorFamily . case (implicitPeano :: SingPeano d) of
SZ -> pure
(SS SZ) -> pure
(SS (SS SZ)) -> pure
(SS (SS (SS SZ))) -> pure
(SS (SS (SS (SS SZ)))) -> pure
(SS (SS (SS (SS (SS _))))) -> pure
{-# INLINE pure #-}
liftA2 f (VectorFamily u) (VectorFamily v) = VectorFamily $
case (implicitPeano :: SingPeano d) of
SZ -> liftA2 f u v
(SS SZ) -> liftA2 f u v
(SS (SS SZ)) -> liftA2 f u v
(SS (SS (SS SZ))) -> liftA2 f u v
(SS (SS (SS (SS SZ)))) -> liftA2 f u v
(SS (SS (SS (SS (SS _))))) -> liftA2 f u v
{-# INLINE liftA2 #-}
instance ImplicitArity d => V.Vector (VectorFamily d) r where
construct = fmap VectorFamily $ case (implicitPeano :: SingPeano d) of
SZ -> Fun $ Const ()
(SS SZ) -> V.construct
(SS (SS SZ)) -> Fun L2.V2
(SS (SS (SS SZ))) -> Fun L3.V3
(SS (SS (SS (SS SZ)))) -> Fun L4.V4
(SS (SS (SS (SS (SS _))))) -> V.construct
{-# INLINE construct #-}
inspect (VectorFamily v) ff@(Fun f) = case (implicitPeano :: SingPeano d) of
SZ -> f
(SS SZ) -> V.inspect v ff
(SS (SS SZ)) -> let (L2.V2 x y) = v in f x y
(SS (SS (SS SZ))) -> let (L3.V3 x y z) = v in f x y z
(SS (SS (SS (SS SZ)))) -> let (L4.V4 x y z w) = v in f x y z w
(SS (SS (SS (SS (SS _))))) -> V.inspect v ff
{-# INLINE inspect #-}
basicIndex v i = v^.singular (element' i)
{-# INLINE basicIndex #-}
instance (ImplicitArity d, Show r) => Show (VectorFamily d r) where
show v = mconcat [ "Vector", show $ F.length v , " "
, show $ F.toList v ]
instance (NFData r, ImplicitArity d) => NFData (VectorFamily d r) where
rnf (VectorFamily v) = case (implicitPeano :: SingPeano d) of
SZ -> rnf v
(SS SZ) -> rnf v
(SS (SS SZ)) -> rnf v
(SS (SS (SS SZ))) -> rnf v
(SS (SS (SS (SS SZ)))) -> rnf v
(SS (SS (SS (SS (SS _))))) -> rnf v
{-# INLINE rnf #-}
instance (ImplicitPeano d, Hashable r) => Hashable (VectorFamily d r) where
hashWithSalt = case (implicitPeano :: SingPeano d) of
SZ -> hashWithSalt
(SS SZ) -> hashWithSalt
(SS (SS SZ)) -> hashWithSalt
(SS (SS (SS SZ))) -> hashWithSalt
(SS (SS (SS (SS SZ)))) -> hashWithSalt
(SS (SS (SS (SS (SS _))))) -> hashWithSalt
instance ImplicitArity d => Ixed (VectorFamily d r) where
ix = element'
element' :: forall d r. ImplicitArity d => Int -> Traversal' (VectorFamily d r) r
element' = case (implicitPeano :: SingPeano d) of
SZ -> elem0
(SS SZ) -> elem1
(SS (SS SZ)) -> elem2
(SS (SS (SS SZ))) -> elem3
(SS (SS (SS (SS SZ)))) -> elem4
(SS (SS (SS (SS (SS _))))) -> elemD
{-# INLINE element' #-}
elem0 :: Int -> Traversal' (VectorFamily Z r) r
elem0 _ = \_ v -> pure v
{-# INLINE elem0 #-}
elem1 :: Int -> Traversal' (VectorFamily One r) r
elem1 = \case
0 -> unVF.(lens runIdentity (\_ -> Identity))
_ -> \_ v -> pure v
{-# INLINE elem1 #-}
elem2 :: Int -> Traversal' (VectorFamily Two r) r
elem2 = \case
0 -> unVF.L2._x
1 -> unVF.L2._y
_ -> \_ v -> pure v
{-# INLINE elem2 #-}
elem3 :: Int -> Traversal' (VectorFamily Three r) r
elem3 = \case
0 -> unVF.L3._x
1 -> unVF.L3._y
2 -> unVF.L3._z
_ -> \_ v -> pure v
{-# INLINE elem3 #-}
elem4 :: Int -> Traversal' (VectorFamily Four r) r
elem4 = \case
0 -> unVF.L4._x
1 -> unVF.L4._y
2 -> unVF.L4._z
3 -> unVF.L4._w
_ -> \_ v -> pure v
{-# INLINE elem4 #-}
elemD :: V.Arity (FromPeano (Many d)) => Int -> Traversal' (VectorFamily (Many d) r) r
elemD i = unVF.FV.element' i
{-# INLINE elemD #-}
instance ImplicitArity d => Metric (VectorFamily d)
instance ImplicitArity d => Additive (VectorFamily d) where
zero = pure 0
u ^+^ v = liftA2 (+) u v
instance ImplicitArity d => Affine (VectorFamily d) where
type Diff (VectorFamily d) = VectorFamily d
u .-. v = u ^-^ v
p .+^ v = p ^+^ v
instance (FromJSON r, ImplicitArity d) => FromJSON (VectorFamily d r) where
parseJSON y = parseJSON y >>= \xs -> case vectorFromList xs of
Nothing -> fail . mconcat $
[ "FromJSON (Vector d a), wrong number of elements. Expected "
, show $ natVal (Proxy :: Proxy (FromPeano d))
, " elements but found "
, show $ length xs
, "."
]
Just v -> pure v
instance (ToJSON r, ImplicitArity d) => ToJSON (VectorFamily d r) where
toJSON = toJSON . F.toList
toEncoding = toEncoding . F.toList
vectorFromList :: ImplicitArity d => [r] -> Maybe (VectorFamily d r)
vectorFromList = V.fromListM
vectorFromListUnsafe :: ImplicitArity d => [r] -> VectorFamily d r
vectorFromListUnsafe = V.fromList
destruct :: (ImplicitArity d, ImplicitArity (S d))
=> VectorFamily (S d) r -> (r, VectorFamily d r)
destruct v = (head $ F.toList v, vectorFromListUnsafe . tail $ F.toList v)