{-# LANGUAGE UndecidableInstances #-}
module Data.Geometry.RangeTree where
import Control.Lens hiding (element)
import Data.BinaryTree (Measured(..))
import Data.Ext
import qualified Data.Foldable as F
import Data.Geometry.Point
import qualified Data.Geometry.RangeTree.Generic as GRT
import Data.Geometry.RangeTree.Measure
import Data.Geometry.Vector
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NonEmpty
import Data.Proxy
import Data.Range
import Data.Semigroup.Foldable
import Data.Vector.Fixed.Cont (Peano, PeanoNum(..))
import GHC.TypeLits
import Prelude hiding (last,init,head)
type RangeTree d = RT d d
newtype RT i d v p r =
RangeTree { _unRangeTree :: GRT.RangeTree (Assoc i d v p r) (Leaf i d v p r) r }
deriving instance (Show r, Show (Assoc i d v p r), Show (Leaf i d v p r)) => Show (RT i d v p r)
deriving instance (Eq r, Eq (Assoc i d v p r), Eq (Leaf i d v p r)) => Eq (RT i d v p r)
newtype Leaf i d v p r = Leaf { _getPts :: [Point d r :+ p]} deriving (Semigroup,Monoid)
deriving instance (Show r, Show p, Arity d) => Show (Leaf i d v p r)
deriving instance (Eq r, Eq p, Arity d) => Eq (Leaf i d v p r)
type family AssocT i d v p r where
AssocT 1 d v p r = v (Point d r :+ p)
AssocT 2 d v p r = Maybe (RT 1 d v p r)
newtype Assoc i d v p r = Assoc { unAssoc :: AssocT i d v p r }
deriving instance Show (AssocT i d v p r) => Show (Assoc i d v p r)
deriving instance Eq (AssocT i d v p r) => Eq (Assoc i d v p r)
type RTMeasure v d p r = (LabeledMeasure v, Semigroup (v (Point d r :+ p)))
instance RTMeasure v d p r => Semigroup (Assoc 1 d v p r) where
(Assoc l) <> (Assoc r) = Assoc $ l <> r
instance (RTMeasure v d p r, Ord r, 1 <= d, Arity d) => Semigroup (Assoc 2 d v p r) where
(Assoc l) <> (Assoc r) = Assoc . createRangeTree'' $ toList l <> toList r
where
toList = maybe [] (F.toList . toAscList)
createRangeTree'' = fmap createRangeTree1 . NonEmpty.nonEmpty
instance (RTMeasure v d p r, Ord r, 1 <= d, Arity d) => Monoid (Assoc 2 d v p r) where
mempty = Assoc Nothing
instance ( RTMeasure v d p r
) => Measured (Assoc 1 d v p r) (Leaf 1 d v p r) where
measure (Leaf pts) = Assoc . labeledMeasure $ pts
instance ( RTMeasure v d p r, Ord r, 1 <= d, Arity d
) => Measured (Assoc 2 d v p r) (Leaf 2 d v p r) where
measure (Leaf pts) = Assoc . createRangeTree'' $ pts
where
createRangeTree'' = fmap createRangeTree1 . NonEmpty.nonEmpty
createRangeTree' :: (Ord r, RTMeasure v d p r
)
=> [Point d r :+ p] -> Maybe (RT i d v p r)
createRangeTree' = fmap createRangeTree . NonEmpty.nonEmpty
createRangeTree :: (Ord r, RTMeasure v d p r
)
=> NonEmpty (Point d r :+ p) -> RT i d v p r
createRangeTree = undefined
toAscList :: RT i d v p r -> [Point d r :+ p]
toAscList = concatMap (^.extra.to _getPts) . F.toList . GRT.toAscList . _unRangeTree
createRangeTree1 :: (Ord r, RTMeasure v d p r, 1 <= d, Arity d)
=> NonEmpty (Point d r :+ p) -> RT 1 d v p r
createRangeTree1 = RangeTree . GRT.createTree
. fmap (\p -> head (p^.core.vector) :+ Leaf [p])
createRangeTree2 :: forall v d r p. (Ord r, RTMeasure v d p r, Arity d, 2 <= d
, 1 <= d
) => NonEmpty (Point d r :+ p) -> RT 2 d v p r
createRangeTree2 = RangeTree . GRT.createTree
. fmap (\p -> p^.core.coord (Proxy :: Proxy 2) :+ Leaf [p])
search :: ( Ord r, Monoid (v (Point d r :+ p)), Query i d)
=> Vector d (Range r) -> RT i d v p r -> v (Point d r :+ p)
search r = mconcat . search' r
class (i <= d, Arity d) => Query i d where
search' :: Ord r => Vector d (Range r) -> RT i d v p r -> [v (Point d r :+ p)]
instance (1 <= d, Arity d) => Query 1 d where
search' qr = map unAssoc . GRT.search' r . _unRangeTree
where
r = qr^.element (Proxy :: Proxy 0)
instance ( 1 <= d, i <= d, Query (i-1) d, Arity d
, i ~ 2
) => Query 2 d where
search' qr = concatMap (maybe [] (search' qr) . unAssoc) . GRT.search' r . _unRangeTree
where
r = qr^.element (Proxy :: Proxy (i-1))