Copyright | (C) Frank Staals |
---|---|
License | see the LICENSE file |
Maintainer | Frank Staals |
Safe Haskell | None |
Language | Haskell2010 |
Data types that can represent a well separated pair decomposition (wspd).
Synopsis
- type SplitTree d p r a = BinLeafTree (NodeData d r a) (Point d r :+ p)
- type PointSet d p r a = SplitTree d p r a
- type WSP d p r a = (PointSet d p r a, PointSet d p r a)
- data NodeData d r a = NodeData {}
- splitDim :: forall d r a. Lens' (NodeData d r a) Int
- nodeData :: forall d r a a. Lens (NodeData d r a) (NodeData d r a) a a
- bBox :: forall d r a d r. Lens (NodeData d r a) (NodeData d r a) (Box d () r) (Box d () r)
- type PointSeq d p r = LSeq 1 (Point d r :+ p)
- data Level = Level {
- _unLevel :: Int
- _widestDim :: Maybe Int
- widestDim :: Lens' Level (Maybe Int)
- unLevel :: Lens' Level Int
- nextLevel :: Level -> Level
- type Idx = Int
- data ShortSide
- data FindAndCompact d r p = FAC {
- _leftPart :: !(Seq (Point d r :+ p))
- _rightPart :: !(Seq (Point d r :+ p))
- _shortSide :: !ShortSide
- shortSide :: forall d r p. Lens' (FindAndCompact d r p) ShortSide
- rightPart :: forall d r p. Lens' (FindAndCompact d r p) (Seq ((:+) (Point d r) p))
- leftPart :: forall d r p. Lens' (FindAndCompact d r p) (Seq ((:+) (Point d r) p))
Documentation
Data that we store in the split tree
Instances
Semigroup v => Measured v (NodeData d r v) Source # | |
Functor (NodeData d r) Source # | |
Foldable (NodeData d r) Source # | |
Defined in Algorithms.Geometry.WellSeparatedPairDecomposition.Types fold :: Monoid m => NodeData d r m -> m # foldMap :: Monoid m => (a -> m) -> NodeData d r a -> m # foldr :: (a -> b -> b) -> b -> NodeData d r a -> b # foldr' :: (a -> b -> b) -> b -> NodeData d r a -> b # foldl :: (b -> a -> b) -> b -> NodeData d r a -> b # foldl' :: (b -> a -> b) -> b -> NodeData d r a -> b # foldr1 :: (a -> a -> a) -> NodeData d r a -> a # foldl1 :: (a -> a -> a) -> NodeData d r a -> a # toList :: NodeData d r a -> [a] # null :: NodeData d r a -> Bool # length :: NodeData d r a -> Int # elem :: Eq a => a -> NodeData d r a -> Bool # maximum :: Ord a => NodeData d r a -> a # minimum :: Ord a => NodeData d r a -> a # | |
Traversable (NodeData d r) Source # | |
(Arity d, Eq r, Eq a) => Eq (NodeData d r a) Source # | |
(Arity d, Show r, Show a) => Show (NodeData d r a) Source # | |
Implementation types
data FindAndCompact d r p Source #
FAC | |
|
Instances
(Arity d, Eq r, Eq p) => Eq (FindAndCompact d r p) Source # | |
Defined in Algorithms.Geometry.WellSeparatedPairDecomposition.Types (==) :: FindAndCompact d r p -> FindAndCompact d r p -> Bool # (/=) :: FindAndCompact d r p -> FindAndCompact d r p -> Bool # | |
(Arity d, Show r, Show p) => Show (FindAndCompact d r p) Source # | |
Defined in Algorithms.Geometry.WellSeparatedPairDecomposition.Types showsPrec :: Int -> FindAndCompact d r p -> ShowS # show :: FindAndCompact d r p -> String # showList :: [FindAndCompact d r p] -> ShowS # |