{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE TypeFamilies #-}
module Data.Equality.Utils.SizedList where
import qualified Data.List
import GHC.Exts
import Data.Foldable
data SList a = SList ![a] {-# UNPACK #-} !Int
deriving Functor SList
Foldable SList
Functor SList
-> Foldable SList
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> SList a -> f (SList b))
-> (forall (f :: * -> *) a.
Applicative f =>
SList (f a) -> f (SList a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> SList a -> m (SList b))
-> (forall (m :: * -> *) a. Monad m => SList (m a) -> m (SList a))
-> Traversable SList
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => SList (m a) -> m (SList a)
forall (f :: * -> *) a. Applicative f => SList (f a) -> f (SList a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> SList a -> m (SList b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> SList a -> f (SList b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> SList a -> f (SList b)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> SList a -> f (SList b)
$csequenceA :: forall (f :: * -> *) a. Applicative f => SList (f a) -> f (SList a)
sequenceA :: forall (f :: * -> *) a. Applicative f => SList (f a) -> f (SList a)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> SList a -> m (SList b)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> SList a -> m (SList b)
$csequence :: forall (m :: * -> *) a. Monad m => SList (m a) -> m (SList a)
sequence :: forall (m :: * -> *) a. Monad m => SList (m a) -> m (SList a)
Traversable
instance Semigroup (SList a) where
<> :: SList a -> SList a -> SList a
(<>) (SList [a]
a Int
i) (SList [a]
b Int
j) = [a] -> Int -> SList a
forall a. [a] -> Int -> SList a
SList ([a]
a [a] -> [a] -> [a]
forall a. Semigroup a => a -> a -> a
<> [a]
b) (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
j)
{-# INLINE (<>) #-}
instance Monoid (SList a) where
mempty :: SList a
mempty = [a] -> Int -> SList a
forall a. [a] -> Int -> SList a
SList [a]
forall a. Monoid a => a
mempty Int
0
{-# INLINE mempty #-}
instance Functor SList where
fmap :: forall a b. (a -> b) -> SList a -> SList b
fmap a -> b
f (SList [a]
a Int
i) = [b] -> Int -> SList b
forall a. [a] -> Int -> SList a
SList ((a -> b) -> [a] -> [b]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f [a]
a) Int
i
{-# INLINE fmap #-}
instance Foldable SList where
fold :: forall m. Monoid m => SList m -> m
fold ( SList [m]
l Int
_) = [m] -> m
forall m. Monoid m => [m] -> m
forall (t :: * -> *) m. (Foldable t, Monoid m) => t m -> m
fold [m]
l
foldMap :: forall m a. Monoid m => (a -> m) -> SList a -> m
foldMap a -> m
f ( SList [a]
l Int
_) = (a -> m) -> [a] -> m
forall m a. Monoid m => (a -> m) -> [a] -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap a -> m
f [a]
l
foldMap' :: forall m a. Monoid m => (a -> m) -> SList a -> m
foldMap' a -> m
f ( SList [a]
l Int
_) = (a -> m) -> [a] -> m
forall m a. Monoid m => (a -> m) -> [a] -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap' a -> m
f [a]
l
foldr :: forall a b. (a -> b -> b) -> b -> SList a -> b
foldr a -> b -> b
f b
b ( SList [a]
l Int
_) = (a -> b -> b) -> b -> [a] -> b
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr a -> b -> b
f b
b [a]
l
foldr' :: forall a b. (a -> b -> b) -> b -> SList a -> b
foldr' a -> b -> b
f b
b ( SList [a]
l Int
_) = (a -> b -> b) -> b -> [a] -> b
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr' a -> b -> b
f b
b [a]
l
foldl :: forall b a. (b -> a -> b) -> b -> SList a -> b
foldl b -> a -> b
f b
b ( SList [a]
l Int
_) = (b -> a -> b) -> b -> [a] -> b
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl b -> a -> b
f b
b [a]
l
foldl' :: forall b a. (b -> a -> b) -> b -> SList a -> b
foldl' b -> a -> b
f b
b ( SList [a]
l Int
_) = (b -> a -> b) -> b -> [a] -> b
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' b -> a -> b
f b
b [a]
l
foldr1 :: forall a. (a -> a -> a) -> SList a -> a
foldr1 a -> a -> a
f ( SList [a]
l Int
_) = (a -> a -> a) -> [a] -> a
forall a. (a -> a -> a) -> [a] -> a
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 a -> a -> a
f [a]
l
foldl1 :: forall a. (a -> a -> a) -> SList a -> a
foldl1 a -> a -> a
f ( SList [a]
l Int
_) = (a -> a -> a) -> [a] -> a
forall a. (a -> a -> a) -> [a] -> a
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldl1 a -> a -> a
f [a]
l
toList :: forall a. SList a -> [a]
toList ( SList [a]
l Int
_) = [a]
l
null :: forall a. SList a -> Bool
null ( SList [a]
l Int
_) = [a] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
Data.List.null [a]
l
length :: forall a. SList a -> Int
length ( SList [a]
_ Int
i) = Int
i
elem :: forall a. Eq a => a -> SList a -> Bool
elem a
x ( SList [a]
l Int
_) = a
x a -> [a] -> Bool
forall a. Eq a => a -> [a] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [a]
l
maximum :: forall a. Ord a => SList a -> a
maximum ( SList [a]
l Int
_) = [a] -> a
forall a. Ord a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum [a]
l
minimum :: forall a. Ord a => SList a -> a
minimum ( SList [a]
l Int
_) = [a] -> a
forall a. Ord a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum [a]
l
sum :: forall a. Num a => SList a -> a
sum ( SList [a]
l Int
_) = [a] -> a
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [a]
l
product :: forall a. Num a => SList a -> a
product ( SList [a]
l Int
_) = [a] -> a
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [a]
l
instance IsList (SList a) where
type Item (SList a) = a
fromList :: [Item (SList a)] -> SList a
fromList [Item (SList a)]
l = [a] -> Int -> SList a
forall a. [a] -> Int -> SList a
SList [a]
[Item (SList a)]
l ([a] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
[Item (SList a)]
l)
fromListN :: Int -> [Item (SList a)] -> SList a
fromListN Int
i [Item (SList a)]
l = [a] -> Int -> SList a
forall a. [a] -> Int -> SList a
SList [a]
[Item (SList a)]
l Int
i
toList :: SList a -> [Item (SList a)]
toList (SList [a]
l Int
_) = [a]
[Item (SList a)]
l
(|:) :: a -> SList a -> SList a
|: :: forall a. a -> SList a -> SList a
(|:) a
a (SList [a]
l Int
i) = [a] -> Int -> SList a
forall a. [a] -> Int -> SList a
SList (a
aa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
l) (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
{-# INLINE (|:) #-}
toListSL :: SList a -> [a]
toListSL :: forall a. SList a -> [a]
toListSL (SList [a]
l Int
_) = [a]
l
{-# INLINE toListSL #-}
sizeSL :: SList a -> Int
sizeSL :: forall a. SList a -> Int
sizeSL (SList [a]
_ Int
i) = Int
i
{-# INLINE sizeSL #-}