-- |
-- A DSL for declaration of result decoders.
module Hasql.Private.Decoders where

import qualified Data.Aeson as Aeson
import qualified Data.Vector as Vector
import qualified Data.Vector.Generic as GenericVector
import qualified Hasql.Private.Decoders.Array as Array
import qualified Hasql.Private.Decoders.Composite as Composite
import qualified Hasql.Private.Decoders.Result as Result
import qualified Hasql.Private.Decoders.Results as Results
import qualified Hasql.Private.Decoders.Row as Row
import qualified Hasql.Private.Decoders.Value as Value
import qualified Hasql.Private.Errors as Errors
import Hasql.Private.Prelude hiding (bool, maybe)
import qualified Hasql.Private.Prelude as Prelude
import qualified Network.IP.Addr as NetworkIp
import qualified PostgreSQL.Binary.Decoding as A

-- * Result

-- |
-- Decoder of a query result.
newtype Result a = Result (Results.Results a) deriving (forall a b. a -> Result b -> Result a
forall a b. (a -> b) -> Result a -> Result b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Result b -> Result a
$c<$ :: forall a b. a -> Result b -> Result a
fmap :: forall a b. (a -> b) -> Result a -> Result b
$cfmap :: forall a b. (a -> b) -> Result a -> Result b
Functor)

-- |
-- Decode no value from the result.
--
-- Useful for statements like @INSERT@ or @CREATE@.
{-# INLINEABLE noResult #-}
noResult :: Result ()
noResult :: Result ()
noResult = forall a. Results a -> Result a
Result (forall a. Result a -> Results a
Results.single Result ()
Result.noResult)

-- |
-- Get the amount of rows affected by such statements as
-- @UPDATE@ or @DELETE@.
{-# INLINEABLE rowsAffected #-}
rowsAffected :: Result Int64
rowsAffected :: Result Int64
rowsAffected = forall a. Results a -> Result a
Result (forall a. Result a -> Results a
Results.single Result Int64
Result.rowsAffected)

-- |
-- Exactly one row.
-- Will raise the 'Errors.UnexpectedAmountOfRows' error if it's any other.
{-# INLINEABLE singleRow #-}
singleRow :: Row a -> Result a
singleRow :: forall a. Row a -> Result a
singleRow (Row Row a
row) = forall a. Results a -> Result a
Result (forall a. Result a -> Results a
Results.single (forall a. Row a -> Result a
Result.single Row a
row))

refineResult :: (a -> Either Text b) -> Result a -> Result b
refineResult :: forall a b. (a -> Either Text b) -> Result a -> Result b
refineResult a -> Either Text b
refiner (Result Results a
results) = forall a. Results a -> Result a
Result (forall a b. (a -> Either Text b) -> Results a -> Results b
Results.refine a -> Either Text b
refiner Results a
results)

-- ** Multi-row traversers

-- |
-- Foldl multiple rows.
{-# INLINEABLE foldlRows #-}
foldlRows :: (a -> b -> a) -> a -> Row b -> Result a
foldlRows :: forall a b. (a -> b -> a) -> a -> Row b -> Result a
foldlRows a -> b -> a
step a
init (Row Row b
row) = forall a. Results a -> Result a
Result (forall a. Result a -> Results a
Results.single (forall a b. (a -> b -> a) -> a -> Row b -> Result a
Result.foldl a -> b -> a
step a
init Row b
row))

-- |
-- Foldr multiple rows.
{-# INLINEABLE foldrRows #-}
foldrRows :: (b -> a -> a) -> a -> Row b -> Result a
foldrRows :: forall b a. (b -> a -> a) -> a -> Row b -> Result a
foldrRows b -> a -> a
step a
init (Row Row b
row) = forall a. Results a -> Result a
Result (forall a. Result a -> Results a
Results.single (forall b a. (b -> a -> a) -> a -> Row b -> Result a
Result.foldr b -> a -> a
step a
init Row b
row))

-- ** Specialized multi-row results

-- |
-- Maybe one row or none.
{-# INLINEABLE rowMaybe #-}
rowMaybe :: Row a -> Result (Maybe a)
rowMaybe :: forall a. Row a -> Result (Maybe a)
rowMaybe (Row Row a
row) = forall a. Results a -> Result a
Result (forall a. Result a -> Results a
Results.single (forall a. Row a -> Result (Maybe a)
Result.maybe Row a
row))

-- |
-- Zero or more rows packed into the vector.
--
-- It's recommended to prefer this function to 'rowList',
-- since it performs notably better.
{-# INLINEABLE rowVector #-}
rowVector :: Row a -> Result (Vector a)
rowVector :: forall a. Row a -> Result (Vector a)
rowVector (Row Row a
row) = forall a. Results a -> Result a
Result (forall a. Result a -> Results a
Results.single (forall a. Row a -> Result (Vector a)
Result.vector Row a
row))

-- |
-- Zero or more rows packed into the list.
{-# INLINEABLE rowList #-}
rowList :: Row a -> Result [a]
rowList :: forall a. Row a -> Result [a]
rowList = forall b a. (b -> a -> a) -> a -> Row b -> Result a
foldrRows forall a. a -> [a] -> [a]
strictCons []

-- * Row

-- |
-- Decoder of an individual row,
-- which gets composed of column value decoders.
--
-- E.g.:
--
-- @
-- x :: 'Row' (Maybe Int64, Text, TimeOfDay)
-- x = (,,) '<$>' ('column' . 'nullable') 'int8' '<*>' ('column' . 'nonNullable') 'text' '<*>' ('column' . 'nonNullable') 'time'
-- @
newtype Row a = Row (Row.Row a)
  deriving (forall a b. a -> Row b -> Row a
forall a b. (a -> b) -> Row a -> Row b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Row b -> Row a
$c<$ :: forall a b. a -> Row b -> Row a
fmap :: forall a b. (a -> b) -> Row a -> Row b
$cfmap :: forall a b. (a -> b) -> Row a -> Row b
Functor, Functor Row
forall a. a -> Row a
forall a b. Row a -> Row b -> Row a
forall a b. Row a -> Row b -> Row b
forall a b. Row (a -> b) -> Row a -> Row b
forall a b c. (a -> b -> c) -> Row a -> Row b -> Row c
forall (f :: * -> *).
Functor f
-> (forall a. a -> f a)
-> (forall a b. f (a -> b) -> f a -> f b)
-> (forall a b c. (a -> b -> c) -> f a -> f b -> f c)
-> (forall a b. f a -> f b -> f b)
-> (forall a b. f a -> f b -> f a)
-> Applicative f
<* :: forall a b. Row a -> Row b -> Row a
$c<* :: forall a b. Row a -> Row b -> Row a
*> :: forall a b. Row a -> Row b -> Row b
$c*> :: forall a b. Row a -> Row b -> Row b
liftA2 :: forall a b c. (a -> b -> c) -> Row a -> Row b -> Row c
$cliftA2 :: forall a b c. (a -> b -> c) -> Row a -> Row b -> Row c
<*> :: forall a b. Row (a -> b) -> Row a -> Row b
$c<*> :: forall a b. Row (a -> b) -> Row a -> Row b
pure :: forall a. a -> Row a
$cpure :: forall a. a -> Row a
Applicative, Applicative Row
forall a. a -> Row a
forall a b. Row a -> Row b -> Row b
forall a b. Row a -> (a -> Row b) -> Row b
forall (m :: * -> *).
Applicative m
-> (forall a b. m a -> (a -> m b) -> m b)
-> (forall a b. m a -> m b -> m b)
-> (forall a. a -> m a)
-> Monad m
return :: forall a. a -> Row a
$creturn :: forall a. a -> Row a
>> :: forall a b. Row a -> Row b -> Row b
$c>> :: forall a b. Row a -> Row b -> Row b
>>= :: forall a b. Row a -> (a -> Row b) -> Row b
$c>>= :: forall a b. Row a -> (a -> Row b) -> Row b
Monad, Monad Row
forall a. String -> Row a
forall (m :: * -> *).
Monad m -> (forall a. String -> m a) -> MonadFail m
fail :: forall a. String -> Row a
$cfail :: forall a. String -> Row a
MonadFail)

-- |
-- Lift an individual value decoder to a composable row decoder.
{-# INLINEABLE column #-}
column :: NullableOrNot Value a -> Row a
column :: forall a. NullableOrNot Value a -> Row a
column = \case
  NonNullable (Value Value a
imp) -> forall a. Row a -> Row a
Row (forall a. Value a -> Row a
Row.nonNullValue Value a
imp)
  Nullable (Value Value a
imp) -> forall a. Row a -> Row a
Row (forall a. Value a -> Row (Maybe a)
Row.value Value a
imp)

-- * Nullability

-- |
-- Extensional specification of nullability over a generic decoder.
data NullableOrNot decoder a where
  NonNullable :: decoder a -> NullableOrNot decoder a
  Nullable :: decoder a -> NullableOrNot decoder (Maybe a)

-- |
-- Specify that a decoder produces a non-nullable value.
nonNullable :: decoder a -> NullableOrNot decoder a
nonNullable :: forall (decoder :: * -> *) a. decoder a -> NullableOrNot decoder a
nonNullable = forall (decoder :: * -> *) a. decoder a -> NullableOrNot decoder a
NonNullable

-- |
-- Specify that a decoder produces a nullable value.
nullable :: decoder a -> NullableOrNot decoder (Maybe a)
nullable :: forall (decoder :: * -> *) a.
decoder a -> NullableOrNot decoder (Maybe a)
nullable = forall (decoder :: * -> *) a.
decoder a -> NullableOrNot decoder (Maybe a)
Nullable

-- * Value

-- |
-- Decoder of a value.
newtype Value a = Value (Value.Value a)
  deriving (forall a b. a -> Value b -> Value a
forall a b. (a -> b) -> Value a -> Value b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Value b -> Value a
$c<$ :: forall a b. a -> Value b -> Value a
fmap :: forall a b. (a -> b) -> Value a -> Value b
$cfmap :: forall a b. (a -> b) -> Value a -> Value b
Functor)

type role Value representational

-- |
-- Decoder of the @BOOL@ values.
{-# INLINEABLE bool #-}
bool :: Value Bool
bool :: Value Bool
bool = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value Bool
A.bool))

-- |
-- Decoder of the @INT2@ values.
{-# INLINEABLE int2 #-}
int2 :: Value Int16
int2 :: Value Int16
int2 = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const forall a. (Integral a, Bits a) => Value a
A.int))

-- |
-- Decoder of the @INT4@ values.
{-# INLINEABLE int4 #-}
int4 :: Value Int32
int4 :: Value Int32
int4 = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const forall a. (Integral a, Bits a) => Value a
A.int))

-- |
-- Decoder of the @INT8@ values.
{-# INLINEABLE int8 #-}
int8 :: Value Int64
int8 :: Value Int64
int8 =
  {-# SCC "int8" #-}
  forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const ({-# SCC "int8.int" #-} forall a. (Integral a, Bits a) => Value a
A.int)))

-- |
-- Decoder of the @FLOAT4@ values.
{-# INLINEABLE float4 #-}
float4 :: Value Float
float4 :: Value Float
float4 = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value Float
A.float4))

-- |
-- Decoder of the @FLOAT8@ values.
{-# INLINEABLE float8 #-}
float8 :: Value Double
float8 :: Value Double
float8 = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value Double
A.float8))

-- |
-- Decoder of the @NUMERIC@ values.
{-# INLINEABLE numeric #-}
numeric :: Value Scientific
numeric :: Value Scientific
numeric = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value Scientific
A.numeric))

-- |
-- Decoder of the @CHAR@ values.
-- Note that it supports Unicode values.
{-# INLINEABLE char #-}
char :: Value Char
char :: Value Char
char = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value Char
A.char))

-- |
-- Decoder of the @TEXT@ values.
{-# INLINEABLE text #-}
text :: Value Text
text :: Value Text
text = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value Text
A.text_strict))

-- |
-- Decoder of the @BYTEA@ values.
{-# INLINEABLE bytea #-}
bytea :: Value ByteString
bytea :: Value ByteString
bytea = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value ByteString
A.bytea_strict))

-- |
-- Decoder of the @DATE@ values.
{-# INLINEABLE date #-}
date :: Value Day
date :: Value Day
date = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value Day
A.date))

-- |
-- Decoder of the @TIMESTAMP@ values.
{-# INLINEABLE timestamp #-}
timestamp :: Value LocalTime
timestamp :: Value LocalTime
timestamp = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a. a -> a -> Bool -> a
Prelude.bool Value LocalTime
A.timestamp_float Value LocalTime
A.timestamp_int))

-- |
-- Decoder of the @TIMESTAMPTZ@ values.
--
-- /NOTICE/
--
-- Postgres does not store the timezone information of @TIMESTAMPTZ@.
-- Instead it stores a UTC value and performs silent conversions
-- to the currently set timezone, when dealt with in the text format.
-- However this library bypasses the silent conversions
-- and communicates with Postgres using the UTC values directly.
{-# INLINEABLE timestamptz #-}
timestamptz :: Value UTCTime
timestamptz :: Value UTCTime
timestamptz = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a. a -> a -> Bool -> a
Prelude.bool Value UTCTime
A.timestamptz_float Value UTCTime
A.timestamptz_int))

-- |
-- Decoder of the @TIME@ values.
{-# INLINEABLE time #-}
time :: Value TimeOfDay
time :: Value TimeOfDay
time = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a. a -> a -> Bool -> a
Prelude.bool Value TimeOfDay
A.time_float Value TimeOfDay
A.time_int))

-- |
-- Decoder of the @TIMETZ@ values.
--
-- Unlike in case of @TIMESTAMPTZ@,
-- Postgres does store the timezone information for @TIMETZ@.
-- However the Haskell's \"time\" library does not contain any composite type,
-- that fits the task, so we use a pair of 'TimeOfDay' and 'TimeZone'
-- to represent a value on the Haskell's side.
{-# INLINEABLE timetz #-}
timetz :: Value (TimeOfDay, TimeZone)
timetz :: Value (TimeOfDay, TimeZone)
timetz = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a. a -> a -> Bool -> a
Prelude.bool Value (TimeOfDay, TimeZone)
A.timetz_float Value (TimeOfDay, TimeZone)
A.timetz_int))

-- |
-- Decoder of the @INTERVAL@ values.
{-# INLINEABLE interval #-}
interval :: Value DiffTime
interval :: Value DiffTime
interval = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a. a -> a -> Bool -> a
Prelude.bool Value DiffTime
A.interval_float Value DiffTime
A.interval_int))

-- |
-- Decoder of the @UUID@ values.
{-# INLINEABLE uuid #-}
uuid :: Value UUID
uuid :: Value UUID
uuid = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value UUID
A.uuid))

-- |
-- Decoder of the @INET@ values.
{-# INLINEABLE inet #-}
inet :: Value (NetworkIp.NetAddr NetworkIp.IP)
inet :: Value (NetAddr IP)
inet = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value (NetAddr IP)
A.inet))

-- |
-- Decoder of the @JSON@ values into a JSON AST.
{-# INLINEABLE json #-}
json :: Value Aeson.Value
json :: Value Value
json = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value Value
A.json_ast))

-- |
-- Decoder of the @JSON@ values into a raw JSON 'ByteString'.
{-# INLINEABLE jsonBytes #-}
jsonBytes :: (ByteString -> Either Text a) -> Value a
jsonBytes :: forall a. (ByteString -> Either Text a) -> Value a
jsonBytes ByteString -> Either Text a
fn = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const (forall a. (ByteString -> Either Text a) -> Value a
A.json_bytes ByteString -> Either Text a
fn)))

-- |
-- Decoder of the @JSONB@ values into a JSON AST.
{-# INLINEABLE jsonb #-}
jsonb :: Value Aeson.Value
jsonb :: Value Value
jsonb = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const Value Value
A.jsonb_ast))

-- |
-- Decoder of the @JSONB@ values into a raw JSON 'ByteString'.
{-# INLINEABLE jsonbBytes #-}
jsonbBytes :: (ByteString -> Either Text a) -> Value a
jsonbBytes :: forall a. (ByteString -> Either Text a) -> Value a
jsonbBytes ByteString -> Either Text a
fn = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const (forall a. (ByteString -> Either Text a) -> Value a
A.jsonb_bytes ByteString -> Either Text a
fn)))

-- |
-- Lift a custom value decoder function to a 'Value' decoder.
{-# INLINEABLE custom #-}
custom :: (Bool -> ByteString -> Either Text a) -> Value a
custom :: forall a. (Bool -> ByteString -> Either Text a) -> Value a
custom Bool -> ByteString -> Either Text a
fn = forall a. Value a -> Value a
Value (forall a. (Bool -> ByteString -> Either Text a) -> Value a
Value.decoderFn Bool -> ByteString -> Either Text a
fn)

-- |
-- Refine a value decoder, lifting the possible error to the session level.
{-# INLINEABLE refine #-}
refine :: (a -> Either Text b) -> Value a -> Value b
refine :: forall a b. (a -> Either Text b) -> Value a -> Value b
refine a -> Either Text b
fn (Value Value a
v) = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.Value (\Bool
b -> forall a b. (a -> Either Text b) -> Value a -> Value b
A.refine a -> Either Text b
fn (forall a. Value a -> Bool -> Value a
Value.run Value a
v Bool
b)))

-- |
-- A generic decoder of @HSTORE@ values.
--
-- Here's how you can use it to construct a specific value:
--
-- @
-- x :: Value [(Text, Maybe Text)]
-- x = hstore 'replicateM'
-- @
{-# INLINEABLE hstore #-}
hstore :: (forall m. Monad m => Int -> m (Text, Maybe Text) -> m a) -> Value a
hstore :: forall a.
(forall (m :: * -> *).
 Monad m =>
 Int -> m (Text, Maybe Text) -> m a)
-> Value a
hstore forall (m :: * -> *). Monad m => Int -> m (Text, Maybe Text) -> m a
replicateM = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const (forall k v r.
(forall (m :: * -> *). Monad m => Int -> m (k, Maybe v) -> m r)
-> Value k -> Value v -> Value r
A.hstore forall (m :: * -> *). Monad m => Int -> m (Text, Maybe Text) -> m a
replicateM Value Text
A.text_strict Value Text
A.text_strict)))

-- |
-- Given a partial mapping from text to value,
-- produces a decoder of that value.
enum :: (Text -> Maybe a) -> Value a
enum :: forall a. (Text -> Maybe a) -> Value a
enum Text -> Maybe a
mapping = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a b. a -> b -> a
const (forall a. (Text -> Maybe a) -> Value a
A.enum Text -> Maybe a
mapping)))

-- |
-- Lift an 'Array' decoder to a 'Value' decoder.
{-# INLINEABLE array #-}
array :: Array a -> Value a
array :: forall a. Array a -> Value a
array (Array Array a
imp) = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a. Array a -> Bool -> Value a
Array.run Array a
imp))

-- |
-- Lift a value decoder of element into a unidimensional array decoder producing a list.
--
-- This function is merely a shortcut to the following expression:
--
-- @
-- ('array' . 'dimension' Control.Monad.'replicateM' . 'element')
-- @
--
-- Please notice that in case of multidimensional arrays nesting 'listArray' decoder
-- won't work. You have to explicitly construct the array decoder using 'array'.
{-# INLINE listArray #-}
listArray :: NullableOrNot Value element -> Value [element]
listArray :: forall element. NullableOrNot Value element -> Value [element]
listArray = forall a. Array a -> Value a
array forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b.
(forall (m :: * -> *). Monad m => Int -> m a -> m b)
-> Array a -> Array b
dimension forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. NullableOrNot Value a -> Array a
element

-- |
-- Lift a value decoder of element into a unidimensional array decoder producing a generic vector.
--
-- This function is merely a shortcut to the following expression:
--
-- @
-- ('array' . 'dimension' Data.Vector.Generic.'GenericVector.replicateM' . 'element')
-- @
--
-- Please notice that in case of multidimensional arrays nesting 'vectorArray' decoder
-- won't work. You have to explicitly construct the array decoder using 'array'.
{-# INLINE vectorArray #-}
vectorArray :: GenericVector.Vector vector element => NullableOrNot Value element -> Value (vector element)
vectorArray :: forall (vector :: * -> *) element.
Vector vector element =>
NullableOrNot Value element -> Value (vector element)
vectorArray = forall a. Array a -> Value a
array forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b.
(forall (m :: * -> *). Monad m => Int -> m a -> m b)
-> Array a -> Array b
dimension forall (m :: * -> *) (v :: * -> *) a.
(Monad m, Vector v a) =>
Int -> m a -> m (v a)
GenericVector.replicateM forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. NullableOrNot Value a -> Array a
element

-- |
-- Lift a 'Composite' decoder to a 'Value' decoder.
{-# INLINEABLE composite #-}
composite :: Composite a -> Value a
composite :: forall a. Composite a -> Value a
composite (Composite Composite a
imp) = forall a. Value a -> Value a
Value (forall a. (Bool -> Value a) -> Value a
Value.decoder (forall a. Composite a -> Bool -> Value a
Composite.run Composite a
imp))

-- * Array decoders

-- |
-- A generic array decoder.
--
-- Here's how you can use it to produce a specific array value decoder:
--
-- @
-- x :: 'Value' [[Text]]
-- x = 'array' ('dimension' 'replicateM' ('dimension' 'replicateM' ('element' ('nonNullable' 'text'))))
-- @
newtype Array a = Array (Array.Array a)
  deriving (forall a b. a -> Array b -> Array a
forall a b. (a -> b) -> Array a -> Array b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Array b -> Array a
$c<$ :: forall a b. a -> Array b -> Array a
fmap :: forall a b. (a -> b) -> Array a -> Array b
$cfmap :: forall a b. (a -> b) -> Array a -> Array b
Functor)

-- |
-- A function for parsing a dimension of an array.
-- Provides support for multi-dimensional arrays.
--
-- Accepts:
--
-- * An implementation of the @replicateM@ function
-- (@Control.Monad.'Control.Monad.replicateM'@, @Data.Vector.'Data.Vector.replicateM'@),
-- which determines the output value.
--
-- * A decoder of its components, which can be either another 'dimension' or 'element'.
{-# INLINEABLE dimension #-}
dimension :: (forall m. Monad m => Int -> m a -> m b) -> Array a -> Array b
dimension :: forall a b.
(forall (m :: * -> *). Monad m => Int -> m a -> m b)
-> Array a -> Array b
dimension forall (m :: * -> *). Monad m => Int -> m a -> m b
replicateM (Array Array a
imp) = forall a. Array a -> Array a
Array (forall a b.
(forall (m :: * -> *). Monad m => Int -> m a -> m b)
-> Array a -> Array b
Array.dimension forall (m :: * -> *). Monad m => Int -> m a -> m b
replicateM Array a
imp)

-- |
-- Lift a 'Value' decoder into an 'Array' decoder for parsing of leaf values.
{-# INLINEABLE element #-}
element :: NullableOrNot Value a -> Array a
element :: forall a. NullableOrNot Value a -> Array a
element = \case
  NonNullable (Value Value a
imp) -> forall a. Array a -> Array a
Array (forall a. (Bool -> Value a) -> Array a
Array.nonNullValue (forall a. Value a -> Bool -> Value a
Value.run Value a
imp))
  Nullable (Value Value a
imp) -> forall a. Array a -> Array a
Array (forall a. (Bool -> Value a) -> Array (Maybe a)
Array.value (forall a. Value a -> Bool -> Value a
Value.run Value a
imp))

-- * Composite decoders

-- |
-- Composable decoder of composite values (rows, records).
newtype Composite a = Composite (Composite.Composite a)
  deriving (forall a b. a -> Composite b -> Composite a
forall a b. (a -> b) -> Composite a -> Composite b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Composite b -> Composite a
$c<$ :: forall a b. a -> Composite b -> Composite a
fmap :: forall a b. (a -> b) -> Composite a -> Composite b
$cfmap :: forall a b. (a -> b) -> Composite a -> Composite b
Functor, Functor Composite
forall a. a -> Composite a
forall a b. Composite a -> Composite b -> Composite a
forall a b. Composite a -> Composite b -> Composite b
forall a b. Composite (a -> b) -> Composite a -> Composite b
forall a b c.
(a -> b -> c) -> Composite a -> Composite b -> Composite c
forall (f :: * -> *).
Functor f
-> (forall a. a -> f a)
-> (forall a b. f (a -> b) -> f a -> f b)
-> (forall a b c. (a -> b -> c) -> f a -> f b -> f c)
-> (forall a b. f a -> f b -> f b)
-> (forall a b. f a -> f b -> f a)
-> Applicative f
<* :: forall a b. Composite a -> Composite b -> Composite a
$c<* :: forall a b. Composite a -> Composite b -> Composite a
*> :: forall a b. Composite a -> Composite b -> Composite b
$c*> :: forall a b. Composite a -> Composite b -> Composite b
liftA2 :: forall a b c.
(a -> b -> c) -> Composite a -> Composite b -> Composite c
$cliftA2 :: forall a b c.
(a -> b -> c) -> Composite a -> Composite b -> Composite c
<*> :: forall a b. Composite (a -> b) -> Composite a -> Composite b
$c<*> :: forall a b. Composite (a -> b) -> Composite a -> Composite b
pure :: forall a. a -> Composite a
$cpure :: forall a. a -> Composite a
Applicative, Applicative Composite
forall a. a -> Composite a
forall a b. Composite a -> Composite b -> Composite b
forall a b. Composite a -> (a -> Composite b) -> Composite b
forall (m :: * -> *).
Applicative m
-> (forall a b. m a -> (a -> m b) -> m b)
-> (forall a b. m a -> m b -> m b)
-> (forall a. a -> m a)
-> Monad m
return :: forall a. a -> Composite a
$creturn :: forall a. a -> Composite a
>> :: forall a b. Composite a -> Composite b -> Composite b
$c>> :: forall a b. Composite a -> Composite b -> Composite b
>>= :: forall a b. Composite a -> (a -> Composite b) -> Composite b
$c>>= :: forall a b. Composite a -> (a -> Composite b) -> Composite b
Monad, Monad Composite
forall a. String -> Composite a
forall (m :: * -> *).
Monad m -> (forall a. String -> m a) -> MonadFail m
fail :: forall a. String -> Composite a
$cfail :: forall a. String -> Composite a
MonadFail)

-- |
-- Lift a 'Value' decoder into a 'Composite' decoder for parsing of component values.
field :: NullableOrNot Value a -> Composite a
field :: forall a. NullableOrNot Value a -> Composite a
field = \case
  NonNullable (Value Value a
imp) -> forall a. Composite a -> Composite a
Composite (forall a. (Bool -> Value a) -> Composite a
Composite.nonNullValue (forall a. Value a -> Bool -> Value a
Value.run Value a
imp))
  Nullable (Value Value a
imp) -> forall a. Composite a -> Composite a
Composite (forall a. (Bool -> Value a) -> Composite (Maybe a)
Composite.value (forall a. Value a -> Bool -> Value a
Value.run Value a
imp))