{-# language DefaultSignatures #-} {-# language Safe #-} -- | -- Module : Control.Applicative.Cancellative -- Copyright : (c) 2020 Emily Pillmore -- License : BSD-style -- -- Maintainer : Emily Pillmore <emilypi@cohomolo.gy>, -- Reed Mullanix <reedmullanix@gmail.com> -- -- Stability : stable -- Portability : non-portable -- -- This module contains definitions for 'Cancellative' functors -- along with the relevant combinators. -- module Control.Applicative.Cancellative ( -- * Cancellative Cancellative(..) -- ** Cancellative combinators , cancel1 , annihilate ) where import Control.Applicative import Data.Group import Data.Group.Free import Data.Group.Free.Church import Data.Proxy -- $setup -- -- >>> import qualified Prelude -- >>> import Data.Group -- >>> import Data.Monoid -- >>> import Data.Semigroup -- >>> import Data.Word -- >>> import Data.Group.Free -- >>> import Data.Group.Foldable -- >>> :set -XTypeApplications -- >>> :set -XFlexibleContexts -- -------------------------------------------------------------------- -- -- Cancellative functors -- | A group on 'Applicative' functors. -- -- 'Cancellative' functors have the following laws in addition to those of -- 'Alternative': -- -- [Left Cancellation] @ 'cancel' a '<|>' a = 'empty' @ -- [Rigth Cancellation] @ a '<|>' 'cancel' a = 'empty' @ -- -- This is analogous to a group operation on applicative functors, -- in the sense that 'Alternative' forms a monoid. A straight- -- forward implementation exists whenever @f a@ forms a 'Group' -- for all @a@, in which case, @cancel == invert@. -- class Alternative f => Cancellative f where -- | Invert (or 'cancel') a 'Cancellative' functor, such that, if the -- functor is also a 'Data.Group.Foldable.GroupFoldable', then @'Data.Group.Foldable.gold' '.' 'cancel'@ -- amounts to evaluating the inverse of a word in the functor. -- -- === __Examples:__ -- -- >>> let x = FreeGroup [Left (Sum (2 :: Word8)), Right (Sum 3)] -- >>> cancel x -- FreeGroup {runFreeGroup = [Left (Sum {getSum = 3}),Right (Sum {getSum = 2})]} -- cancel :: f a -> f a default cancel :: Group (f a) => f a -> f a cancel = f a -> f a forall m. Group m => m -> m invert instance Cancellative FG instance Cancellative FA instance Cancellative FreeGroup instance Cancellative Proxy where cancel :: Proxy a -> Proxy a cancel Proxy a _ = Proxy a forall k (t :: k). Proxy t Proxy -- -------------------------------------------------------------------- -- -- Cancellative functor combinators -- | Cancel a single element in a 'Cancellative' functor. -- -- === __Examples:__ -- -- >>> let x = FreeGroup [Left (Sum (2 :: Word8)), Right (Sum 3)] -- >>> gold x -- Sum {getSum = 1} -- >>> gold $ cancel1 (Sum 1) x -- Sum {getSum = 0} -- cancel1 :: (Group a, Cancellative f) => a -> f a -> f a cancel1 :: a -> f a -> f a cancel1 a a f a f = f a -> f a forall (f :: * -> *) a. Cancellative f => f a -> f a cancel (a -> f a forall (f :: * -> *) a. Applicative f => a -> f a pure a a) f a -> f a -> f a forall (f :: * -> *) a. Alternative f => f a -> f a -> f a <|> f a f -- | Annihilate a 'Traversable'\'s worth of elements in a 'Cancellative' -- functor. -- annihilate :: (Cancellative f, Traversable t) => (a -> f a) -> t a -> f (t a) annihilate :: (a -> f a) -> t a -> f (t a) annihilate a -> f a f = (a -> f a) -> t a -> f (t a) forall (t :: * -> *) (f :: * -> *) a b. (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) traverse (f a -> f a forall (f :: * -> *) a. Cancellative f => f a -> f a cancel (f a -> f a) -> (a -> f a) -> a -> f a forall b c a. (b -> c) -> (a -> b) -> a -> c . a -> f a f)