{-# LANGUAGE PatternSynonyms #-} {-# language Trustworthy #-} -- | -- Module : Data.Group.Free -- Copyright : (c) 2020 Reed Mullanix, Emily Pillmore -- License : BSD-style -- -- Maintainer : Reed Mullanix <reedmullanix@gmail.com>, -- Emily Pillmore <emilypi@cohomolo.gy> -- -- Stability : stable -- Portability : non-portable -- -- This module provides definitions for 'FreeGroup's and 'Data.Group.Free.FreeAbelianGroup's, -- along with useful combinators. -- module Data.Group.Free ( -- * Free groups FreeGroup(..) -- ** Free group combinators , simplify , interpret , interpret' , present -- * Free abelian groups , FreeAbelianGroup , pattern FreeAbelianGroup , mkFreeAbelianGroup , runFreeAbelianGroup -- ** Free abelian group combinators , abfoldMap , abmap , abjoin , singleton , abInterpret ) where import Control.Applicative import Control.Monad import Data.Bifunctor import Data.List (foldl') import Data.Map (Map) import qualified Data.Map.Strict as Map import Data.Group import Data.Group.Free.Internal import Data.Group.Order import Data.Semigroup(Semigroup(..)) -- $setup -- -- >>> import qualified Prelude -- >>> import Data.Group -- >>> import Data.Monoid -- >>> import Data.Semigroup -- >>> import Data.Word -- >>> :set -XTypeApplications -- >>> :set -XFlexibleContexts -- -------------------------------------------------------------------- -- -- Free groups -- | A representation of a free group over an alphabet @a@. -- -- The intuition here is that @Left a@ represents a "negative" @a@, -- whereas @Right a@ represents "positive" @a@. -- -- __Note:__ This does not perform simplification upon multiplication or construction. -- To do this, one should use 'simplify'. -- newtype FreeGroup a = FreeGroup { runFreeGroup :: [Either a a] } deriving (Show, Eq, Ord) instance Semigroup (FreeGroup a) where (FreeGroup g) <> (FreeGroup g') = FreeGroup (g ++ g') instance Monoid (FreeGroup a) where mempty = FreeGroup [] instance Group (FreeGroup a) where invert = FreeGroup . fmap (either Right Left) . reverse . runFreeGroup instance Eq a => GroupOrder (FreeGroup a) where -- TODO: It performs simplify each time @order@ is called. -- Once "auto-simplify" is implemented, this -- call of simplify should be removed. order g | simplify g == mempty = Finite 1 | otherwise = Infinite instance Functor FreeGroup where fmap f (FreeGroup g) = FreeGroup $ fmap (bimap f f) g instance Applicative FreeGroup where pure a = FreeGroup $ pure $ pure a (<*>) = ap instance Monad FreeGroup where return = pure (FreeGroup g) >>= f = FreeGroup $ concatMap go g where go (Left a) = runFreeGroup $ invert (f a) go (Right a) = runFreeGroup $ f a instance Alternative FreeGroup where empty = mempty (<|>) = (<>) -- | /O(n)/ Simplifies a word in a free group. -- -- === __Examples:__ -- -- >>> simplify $ FreeGroup [Right 'a', Left 'b', Right 'c', Left 'c', Right 'b', Right 'a'] -- FreeGroup {runFreeGroup = [Right 'a',Right 'a']} -- simplify :: (Eq a) => FreeGroup a -> FreeGroup a simplify (FreeGroup g) = FreeGroup $ foldr go [] g where go (Left a) ((Right a'):as) | a == a' = as go (Right a) ((Left a'):as) | a == a' = as go a as = a:as -- | /O(n)/ Interpret a word in a free group over some group @g@ as an element in a group @g@. -- interpret :: (Group g) => FreeGroup g -> g interpret (FreeGroup g) = foldr go mempty g where go (Left a) acc = invert a <> acc go (Right a) acc = a <> acc -- | /O(n)/ Strict variant of 'interpret'. -- interpret' :: (Group g) => FreeGroup g -> g interpret' (FreeGroup g) = foldl' go mempty g where go acc (Left a) = acc <> invert a go acc (Right a) = acc <> a -- | Present a 'Group' as a 'FreeGroup' modulo relations. -- present :: Group g => FreeGroup g -> (FreeGroup g -> g) -> g present = flip ($) {-# inline present #-} -- -------------------------------------------------------------------- -- -- Free abelian groups -- | /O(n)/ Constructs a 'Data.Group.Free.FreeAbelianGroup' from a finite 'Map' from -- the set of generators (@a@) to its multiplicities. mkFreeAbelianGroup :: Ord a => Map a Integer -> FreeAbelianGroup a mkFreeAbelianGroup = MkFreeAbelianGroup . Map.filter (/= 0) -- | /O(1)/ Gets a representation of 'Data.Group.Free.FreeAbelianGroup' as -- 'Map'. The returned map contains no records with -- multiplicity @0@ i.e. @'Map.lookup' a@ on the returned map -- never returns @Just 0@. -- runFreeAbelianGroup :: FreeAbelianGroup a -> Map a Integer runFreeAbelianGroup (MkFreeAbelianGroup g) = g -- NOTE: We can't implement Functor/Applicative/Monad here -- due to the Ord constraint. C'est La Vie! -- | Given a function from generators to an abelian group @g@, -- lift that function to a group homomorphism from 'Data.Group.Free.FreeAbelianGroup' to @g@. -- -- In other words, it's a function analogus to 'foldMap' for 'Monoid' or -- 'Data.Group.Foldable.goldMap' for @Group@. -- abfoldMap :: (Abelian g) => (a -> g) -> FreeAbelianGroup a -> g abfoldMap f = Map.foldlWithKey' step mempty . runFreeAbelianGroup where step g a n = g <> pow (f a) n -- | Functorial 'fmap' for a 'Data.Group.Free.FreeAbelianGroup'. -- -- === __Examples__: -- -- >>> singleton 'a' <> singleton 'A' -- FreeAbelianGroup $ fromList [('A',1),('a',1)] -- >>> import Data.Char (toUpper) -- >>> abmap toUpper $ singleton 'a' <> singleton 'A' -- FreeAbelianGroup $ fromList [('A',2)] -- abmap :: (Ord b) => (a -> b) -> FreeAbelianGroup a -> FreeAbelianGroup b abmap f = abfoldMap (singleton . f) -- | Lift a singular value into a 'Data.Group.Free.FreeAbelianGroup'. Analogous to 'pure'. -- -- === __Examples__: -- -- >>> singleton "foo" -- FreeAbelianGroup $ fromList [("foo",1)] -- singleton :: a -> FreeAbelianGroup a singleton a = MkFreeAbelianGroup $ Map.singleton a 1 -- | Monadic 'join' for a 'Data.Group.Free.FreeAbelianGroup'. -- abjoin :: (Ord a) => FreeAbelianGroup (FreeAbelianGroup a) -> FreeAbelianGroup a abjoin = abInterpret -- | Interpret a free group as a word in the underlying group @g@. -- abInterpret :: (Abelian g) => FreeAbelianGroup g -> g abInterpret = abfoldMap id -- | Bidirectional pattern synonym for the construction of -- 'Data.Group.Free.Internal.FreeAbelianGroup's. -- pattern FreeAbelianGroup :: Ord a => Map a Integer -> FreeAbelianGroup a pattern FreeAbelianGroup g <- MkFreeAbelianGroup g where FreeAbelianGroup g = mkFreeAbelianGroup g {-# complete FreeAbelianGroup #-}