{- | Copyright : Will Thompson, Iñaki García Etxebarria and Jonas Platte License : LGPL-2.1 Maintainer : Iñaki García Etxebarria (inaki@blueleaf.cc) This section introduces the GVariant type system. It is based, in large part, on the D-Bus type system, with two major changes and some minor lifting of restrictions. The <http://dbus.freedesktop.org/doc/dbus-specification.html D-Bus specification>, therefore, provides a significant amount of information that is useful when working with GVariant. The first major change with respect to the D-Bus type system is the introduction of maybe (or \"nullable\") types. Any type in GVariant can be converted to a maybe type, in which case, \"nothing\" (or \"null\") becomes a valid value. Maybe types have been added by introducing the character \"m\" to type strings. The second major change is that the GVariant type system supports the concept of \"indefinite types\" -- types that are less specific than the normal types found in D-Bus. For example, it is possible to speak of \"an array of any type\" in GVariant, where the D-Bus type system would require you to speak of \"an array of integers\" or \"an array of strings\". Indefinite types have been added by introducing the characters \"*\", \"?\" and \"r\" to type strings. Finally, all arbitrary restrictions relating to the complexity of types are lifted along with the restriction that dictionary entries may only appear nested inside of arrays. Just as in D-Bus, GVariant types are described with strings (\"type strings\"). Subject to the differences mentioned above, these strings are of the same form as those found in DBus. Note, however: D-Bus always works in terms of messages and therefore individual type strings appear nowhere in its interface. Instead, \"signatures\" are a concatenation of the strings of the type of each argument in a message. GVariant deals with single values directly so GVariant type strings always describe the type of exactly one value. This means that a D-Bus signature string is generally not a valid GVariant type string -- except in the case that it is the signature of a message containing exactly one argument. An indefinite type is similar in spirit to what may be called an abstract type in other type systems. No value can exist that has an indefinite type as its type, but values can exist that have types that are subtypes of indefinite types. That is to say, 'GI.GLib.Structs.Variant.variantGetType' will never return an indefinite type, but calling 'GI.GLib.Structs.Variant.variantIsOfType' with an indefinite type may return 'True'. For example, you cannot have a value that represents \"an array of no particular type\", but you can have an \"array of integers\" which certainly matches the type of \"an array of no particular type\", since \"array of integers\" is a subtype of \"array of no particular type\". This is similar to how instances of abstract classes may not directly exist in other type systems, but instances of their non-abstract subtypes may. For example, in GTK, no object that has the type of @/GtkBin/@ can exist (since @/GtkBin/@ is an abstract class), but a @/GtkWindow/@ can certainly be instantiated, and you would say that the @/GtkWindow/@ is a @/GtkBin/@ (since @/GtkWindow/@ is a subclass of @/GtkBin/@). == GVariant Type Strings A GVariant type string can be any of the following: * any basic type string (listed below) * \"v\", \"r\" or \"*\" * one of the characters \'a\' or \'m\', followed by another type string * the character \'(\', followed by a concatenation of zero or more other type strings, followed by the character \')\' * the character \'{\', followed by a basic type string (see below), followed by another type string, followed by the character \'}\' A basic type string describes a basic type (as per 'GI.GLib.Structs.VariantType.variantTypeIsBasic') and is always a single character in length. The valid basic type strings are \"b\", \"y\", \"n\", \"q\", \"i\", \"u\", \"x\", \"t\", \"h\", \"d\", \"s\", \"o\", \"g\" and \"?\". The above definition is recursive to arbitrary depth. \"aaaaai\" and \"(ui(nq((y)))s)\" are both valid type strings, as is \"a(aa(ui)(qna{ya(yd)}))\". In order to not hit memory limits, 'GVariant' imposes a limit on recursion depth of 65 nested containers. This is the limit in the D-Bus specification (64) plus one to allow a @/GDBusMessage/@ to be nested in a top-level tuple. The meaning of each of the characters is as follows: * @b@: the type string of @/G_VARIANT_TYPE_BOOLEAN/@; a boolean value. * @y@: the type string of @/G_VARIANT_TYPE_BYTE/@; a byte. * @n@: the type string of @/G_VARIANT_TYPE_INT16/@; a signed 16 bit integer. * @q@: the type string of @/G_VARIANT_TYPE_UINT16/@; an unsigned 16 bit integer. * @i@: the type string of @/G_VARIANT_TYPE_INT32/@; a signed 32 bit integer. * @u@: the type string of @/G_VARIANT_TYPE_UINT32/@; an unsigned 32 bit integer. * @x@: the type string of @/G_VARIANT_TYPE_INT64/@; a signed 64 bit integer. * @t@: the type string of @/G_VARIANT_TYPE_UINT64/@; an unsigned 64 bit integer. * @h@: the type string of @/G_VARIANT_TYPE_HANDLE/@; a signed 32 bit value that, by convention, is used as an index into an array of file descriptors that are sent alongside a D-Bus message. * @d@: the type string of @/G_VARIANT_TYPE_DOUBLE/@; a double precision floating point value. * @s@: the type string of @/G_VARIANT_TYPE_STRING/@; a string. * @o@: the type string of @/G_VARIANT_TYPE_OBJECT_PATH/@; a string in the form of a D-Bus object path. * @g@: the type string of @/G_VARIANT_TYPE_SIGNATURE/@; a string in the form of a D-Bus type signature. * @?@: the type string of @/G_VARIANT_TYPE_BASIC/@; an indefinite type that is a supertype of any of the basic types. * @v@: the type string of @/G_VARIANT_TYPE_VARIANT/@; a container type that contain any other type of value. * @a@: used as a prefix on another type string to mean an array of that type; the type string \"ai\", for example, is the type of an array of signed 32-bit integers. * @m@: used as a prefix on another type string to mean a \"maybe\", or \"nullable\", version of that type; the type string \"ms\", for example, is the type of a value that maybe contains a string, or maybe contains nothing. * @()@: used to enclose zero or more other concatenated type strings to create a tuple type; the type string \"(is)\", for example, is the type of a pair of an integer and a string. * @r@: the type string of @/G_VARIANT_TYPE_TUPLE/@; an indefinite type that is a supertype of any tuple type, regardless of the number of items. * @{}@: used to enclose a basic type string concatenated with another type string to create a dictionary entry type, which usually appears inside of an array to form a dictionary; the type string \"a{sd}\", for example, is the type of a dictionary that maps strings to double precision floating point values. The first type (the basic type) is the key type and the second type is the value type. The reason that the first type is restricted to being a basic type is so that it can easily be hashed. * @*@: the type string of @/G_VARIANT_TYPE_ANY/@; the indefinite type that is a supertype of all types. Note that, as with all type strings, this character represents exactly one type. It cannot be used inside of tuples to mean \"any number of items\". Any type string of a container that contains an indefinite type is, itself, an indefinite type. For example, the type string \"a*\" (corresponding to @/G_VARIANT_TYPE_ARRAY/@) is an indefinite type that is a supertype of every array type. \"(*s)\" is a supertype of all tuples that contain exactly two items where the second item is a string. \"a{?*}\" is an indefinite type that is a supertype of all arrays containing dictionary entries where the key is any basic type and the value is any type at all. This is, by definition, a dictionary, so this type string corresponds to @/G_VARIANT_TYPE_DICTIONARY/@. Note that, due to the restriction that the key of a dictionary entry must be a basic type, \"{**}\" is not a valid type string. -} #define ENABLE_OVERLOADING (MIN_VERSION_haskell_gi_overloading(1,0,0) \ && !defined(__HADDOCK_VERSION__)) module GI.GLib.Structs.VariantType ( -- * Exported types VariantType(..) , noVariantType , -- * Methods -- ** checked_ #method:checked_# variantTypeChecked_ , -- ** copy #method:copy# #if ENABLE_OVERLOADING VariantTypeCopyMethodInfo , #endif variantTypeCopy , -- ** dupString #method:dupString# #if ENABLE_OVERLOADING VariantTypeDupStringMethodInfo , #endif variantTypeDupString , -- ** element #method:element# #if ENABLE_OVERLOADING VariantTypeElementMethodInfo , #endif variantTypeElement , -- ** equal #method:equal# #if ENABLE_OVERLOADING VariantTypeEqualMethodInfo , #endif variantTypeEqual , -- ** first #method:first# #if ENABLE_OVERLOADING VariantTypeFirstMethodInfo , #endif variantTypeFirst , -- ** free #method:free# #if ENABLE_OVERLOADING VariantTypeFreeMethodInfo , #endif variantTypeFree , -- ** getStringLength #method:getStringLength# #if ENABLE_OVERLOADING VariantTypeGetStringLengthMethodInfo , #endif variantTypeGetStringLength , -- ** hash #method:hash# #if ENABLE_OVERLOADING VariantTypeHashMethodInfo , #endif variantTypeHash , -- ** isArray #method:isArray# #if ENABLE_OVERLOADING VariantTypeIsArrayMethodInfo , #endif variantTypeIsArray , -- ** isBasic #method:isBasic# #if ENABLE_OVERLOADING VariantTypeIsBasicMethodInfo , #endif variantTypeIsBasic , -- ** isContainer #method:isContainer# #if ENABLE_OVERLOADING VariantTypeIsContainerMethodInfo , #endif variantTypeIsContainer , -- ** isDefinite #method:isDefinite# #if ENABLE_OVERLOADING VariantTypeIsDefiniteMethodInfo , #endif variantTypeIsDefinite , -- ** isDictEntry #method:isDictEntry# #if ENABLE_OVERLOADING VariantTypeIsDictEntryMethodInfo , #endif variantTypeIsDictEntry , -- ** isMaybe #method:isMaybe# #if ENABLE_OVERLOADING VariantTypeIsMaybeMethodInfo , #endif variantTypeIsMaybe , -- ** isSubtypeOf #method:isSubtypeOf# #if ENABLE_OVERLOADING VariantTypeIsSubtypeOfMethodInfo , #endif variantTypeIsSubtypeOf , -- ** isTuple #method:isTuple# #if ENABLE_OVERLOADING VariantTypeIsTupleMethodInfo , #endif variantTypeIsTuple , -- ** isVariant #method:isVariant# #if ENABLE_OVERLOADING VariantTypeIsVariantMethodInfo , #endif variantTypeIsVariant , -- ** key #method:key# #if ENABLE_OVERLOADING VariantTypeKeyMethodInfo , #endif variantTypeKey , -- ** nItems #method:nItems# #if ENABLE_OVERLOADING VariantTypeNItemsMethodInfo , #endif variantTypeNItems , -- ** new #method:new# variantTypeNew , -- ** newArray #method:newArray# variantTypeNewArray , -- ** newDictEntry #method:newDictEntry# variantTypeNewDictEntry , -- ** newMaybe #method:newMaybe# variantTypeNewMaybe , -- ** newTuple #method:newTuple# variantTypeNewTuple , -- ** next #method:next# #if ENABLE_OVERLOADING VariantTypeNextMethodInfo , #endif variantTypeNext , -- ** stringGetDepth_ #method:stringGetDepth_# variantTypeStringGetDepth_ , -- ** stringIsValid #method:stringIsValid# variantTypeStringIsValid , -- ** stringScan #method:stringScan# variantTypeStringScan , -- ** value #method:value# #if ENABLE_OVERLOADING VariantTypeValueMethodInfo , #endif variantTypeValue , ) where import Data.GI.Base.ShortPrelude import qualified Data.GI.Base.ShortPrelude as SP import qualified Data.GI.Base.Overloading as O import qualified Prelude as P import qualified Data.GI.Base.Attributes as GI.Attributes import qualified Data.GI.Base.ManagedPtr as B.ManagedPtr import qualified Data.GI.Base.GClosure as B.GClosure import qualified Data.GI.Base.GError as B.GError import qualified Data.GI.Base.GVariant as B.GVariant import qualified Data.GI.Base.GValue as B.GValue import qualified Data.GI.Base.GParamSpec as B.GParamSpec import qualified Data.GI.Base.CallStack as B.CallStack import qualified Data.GI.Base.Properties as B.Properties import qualified Data.Text as T import qualified Data.ByteString.Char8 as B import qualified Data.Map as Map import qualified Foreign.Ptr as FP import qualified GHC.OverloadedLabels as OL -- | Memory-managed wrapper type. newtype VariantType = VariantType (ManagedPtr VariantType) foreign import ccall "g_variant_type_get_gtype" c_g_variant_type_get_gtype :: IO GType instance BoxedObject VariantType where boxedType _ = c_g_variant_type_get_gtype -- | A convenience alias for `Nothing` :: `Maybe` `VariantType`. noVariantType :: Maybe VariantType noVariantType = Nothing #if ENABLE_OVERLOADING instance O.HasAttributeList VariantType type instance O.AttributeList VariantType = VariantTypeAttributeList type VariantTypeAttributeList = ('[ ] :: [(Symbol, *)]) #endif -- method VariantType::new -- method type : Constructor -- Args : [Arg {argCName = "type_string", argType = TBasicType TUTF8, direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a valid GVariant type string", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_new" g_variant_type_new :: CString -> -- type_string : TBasicType TUTF8 IO (Ptr VariantType) {- | Creates a new 'GI.GLib.Structs.VariantType.VariantType' corresponding to the type string given by /@typeString@/. It is appropriate to call 'GI.GLib.Structs.VariantType.variantTypeFree' on the return value. It is a programmer error to call this function with an invalid type string. Use 'GI.GLib.Functions.variantTypeStringIsValid' if you are unsure. /Since: 2.24/ -} variantTypeNew :: (B.CallStack.HasCallStack, MonadIO m) => T.Text {- ^ /@typeString@/: a valid GVariant type string -} -> m VariantType {- ^ __Returns:__ a new 'GI.GLib.Structs.VariantType.VariantType' -} variantTypeNew typeString = liftIO $ do typeString' <- textToCString typeString result <- g_variant_type_new typeString' checkUnexpectedReturnNULL "variantTypeNew" result result' <- (wrapBoxed VariantType) result freeMem typeString' return result' #if ENABLE_OVERLOADING #endif -- method VariantType::new_array -- method type : Constructor -- Args : [Arg {argCName = "element", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_new_array" g_variant_type_new_array :: Ptr VariantType -> -- element : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO (Ptr VariantType) {- | Constructs the type corresponding to an array of elements of the type /@type@/. It is appropriate to call 'GI.GLib.Structs.VariantType.variantTypeFree' on the return value. -} variantTypeNewArray :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@element@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m VariantType {- ^ __Returns:__ a new array 'GI.GLib.Structs.VariantType.VariantType' Since 2.24 -} variantTypeNewArray element = liftIO $ do element' <- unsafeManagedPtrGetPtr element result <- g_variant_type_new_array element' checkUnexpectedReturnNULL "variantTypeNewArray" result result' <- (wrapBoxed VariantType) result touchManagedPtr element return result' #if ENABLE_OVERLOADING #endif -- method VariantType::new_dict_entry -- method type : Constructor -- Args : [Arg {argCName = "key", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a basic #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing},Arg {argCName = "value", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_new_dict_entry" g_variant_type_new_dict_entry :: Ptr VariantType -> -- key : TInterface (Name {namespace = "GLib", name = "VariantType"}) Ptr VariantType -> -- value : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO (Ptr VariantType) {- | Constructs the type corresponding to a dictionary entry with a key of type /@key@/ and a value of type /@value@/. It is appropriate to call 'GI.GLib.Structs.VariantType.variantTypeFree' on the return value. -} variantTypeNewDictEntry :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@key@/: a basic 'GI.GLib.Structs.VariantType.VariantType' -} -> VariantType {- ^ /@value@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m VariantType {- ^ __Returns:__ a new dictionary entry 'GI.GLib.Structs.VariantType.VariantType' Since 2.24 -} variantTypeNewDictEntry key value = liftIO $ do key' <- unsafeManagedPtrGetPtr key value' <- unsafeManagedPtrGetPtr value result <- g_variant_type_new_dict_entry key' value' checkUnexpectedReturnNULL "variantTypeNewDictEntry" result result' <- (wrapBoxed VariantType) result touchManagedPtr key touchManagedPtr value return result' #if ENABLE_OVERLOADING #endif -- method VariantType::new_maybe -- method type : Constructor -- Args : [Arg {argCName = "element", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_new_maybe" g_variant_type_new_maybe :: Ptr VariantType -> -- element : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO (Ptr VariantType) {- | Constructs the type corresponding to a maybe instance containing type /@type@/ or Nothing. It is appropriate to call 'GI.GLib.Structs.VariantType.variantTypeFree' on the return value. -} variantTypeNewMaybe :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@element@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m VariantType {- ^ __Returns:__ a new maybe 'GI.GLib.Structs.VariantType.VariantType' Since 2.24 -} variantTypeNewMaybe element = liftIO $ do element' <- unsafeManagedPtrGetPtr element result <- g_variant_type_new_maybe element' checkUnexpectedReturnNULL "variantTypeNewMaybe" result result' <- (wrapBoxed VariantType) result touchManagedPtr element return result' #if ENABLE_OVERLOADING #endif -- method VariantType::new_tuple -- method type : Constructor -- Args : [Arg {argCName = "items", argType = TCArray False (-1) 1 (TInterface (Name {namespace = "GLib", name = "VariantType"})), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "an array of #GVariantTypes, one for each item", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing},Arg {argCName = "length", argType = TBasicType TInt, direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "the length of @items, or -1", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [Arg {argCName = "length", argType = TBasicType TInt, direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "the length of @items, or -1", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_new_tuple" g_variant_type_new_tuple :: Ptr (Ptr VariantType) -> -- items : TCArray False (-1) 1 (TInterface (Name {namespace = "GLib", name = "VariantType"})) Int32 -> -- length : TBasicType TInt IO (Ptr VariantType) {- | Constructs a new tuple type, from /@items@/. /@length@/ is the number of items in /@items@/, or -1 to indicate that /@items@/ is 'Nothing'-terminated. It is appropriate to call 'GI.GLib.Structs.VariantType.variantTypeFree' on the return value. -} variantTypeNewTuple :: (B.CallStack.HasCallStack, MonadIO m) => [VariantType] {- ^ /@items@/: an array of @/GVariantTypes/@, one for each item -} -> m VariantType {- ^ __Returns:__ a new tuple 'GI.GLib.Structs.VariantType.VariantType' Since 2.24 -} variantTypeNewTuple items = liftIO $ do let length_ = fromIntegral $ length items items' <- mapM unsafeManagedPtrGetPtr items items'' <- packPtrArray items' result <- g_variant_type_new_tuple items'' length_ checkUnexpectedReturnNULL "variantTypeNewTuple" result result' <- (wrapBoxed VariantType) result mapM_ touchManagedPtr items freeMem items'' return result' #if ENABLE_OVERLOADING #endif -- method VariantType::copy -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_copy" g_variant_type_copy :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO (Ptr VariantType) {- | Makes a copy of a 'GI.GLib.Structs.VariantType.VariantType'. It is appropriate to call 'GI.GLib.Structs.VariantType.variantTypeFree' on the return value. /@type@/ may not be 'Nothing'. -} variantTypeCopy :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m VariantType {- ^ __Returns:__ a new 'GI.GLib.Structs.VariantType.VariantType' Since 2.24 -} variantTypeCopy type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_copy type_' checkUnexpectedReturnNULL "variantTypeCopy" result result' <- (wrapBoxed VariantType) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeCopyMethodInfo instance (signature ~ (m VariantType), MonadIO m) => O.MethodInfo VariantTypeCopyMethodInfo VariantType signature where overloadedMethod _ = variantTypeCopy #endif -- method VariantType::dup_string -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TUTF8) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_dup_string" g_variant_type_dup_string :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CString {- | Returns a newly-allocated copy of the type string corresponding to /@type@/. The returned string is nul-terminated. It is appropriate to call 'GI.GLib.Functions.free' on the return value. -} variantTypeDupString :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m T.Text {- ^ __Returns:__ the corresponding type string Since 2.24 -} variantTypeDupString type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_dup_string type_' checkUnexpectedReturnNULL "variantTypeDupString" result result' <- cstringToText result freeMem result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeDupStringMethodInfo instance (signature ~ (m T.Text), MonadIO m) => O.MethodInfo VariantTypeDupStringMethodInfo VariantType signature where overloadedMethod _ = variantTypeDupString #endif -- method VariantType::element -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "an array or maybe #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_element" g_variant_type_element :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO (Ptr VariantType) {- | Determines the element type of an array or maybe type. This function may only be used with array or maybe types. -} variantTypeElement :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: an array or maybe 'GI.GLib.Structs.VariantType.VariantType' -} -> m VariantType {- ^ __Returns:__ the element type of /@type@/ Since 2.24 -} variantTypeElement type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_element type_' checkUnexpectedReturnNULL "variantTypeElement" result result' <- (newBoxed VariantType) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeElementMethodInfo instance (signature ~ (m VariantType), MonadIO m) => O.MethodInfo VariantTypeElementMethodInfo VariantType signature where overloadedMethod _ = variantTypeElement #endif -- method VariantType::equal -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type1", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing},Arg {argCName = "type2", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_equal" g_variant_type_equal :: Ptr VariantType -> -- type1 : TInterface (Name {namespace = "GLib", name = "VariantType"}) Ptr VariantType -> -- type2 : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CInt {- | Compares /@type1@/ and /@type2@/ for equality. Only returns 'True' if the types are exactly equal. Even if one type is an indefinite type and the other is a subtype of it, 'False' will be returned if they are not exactly equal. If you want to check for subtypes, use 'GI.GLib.Structs.VariantType.variantTypeIsSubtypeOf'. The argument types of /@type1@/ and /@type2@/ are only @/gconstpointer/@ to allow use with 'GI.GLib.Structs.HashTable.HashTable' without function pointer casting. For both arguments, a valid 'GI.GLib.Structs.VariantType.VariantType' must be provided. -} variantTypeEqual :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type1@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> VariantType {- ^ /@type2@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Bool {- ^ __Returns:__ 'True' if /@type1@/ and /@type2@/ are exactly equal Since 2.24 -} variantTypeEqual type1 type2 = liftIO $ do type1' <- unsafeManagedPtrGetPtr type1 type2' <- unsafeManagedPtrGetPtr type2 result <- g_variant_type_equal type1' type2' let result' = (/= 0) result touchManagedPtr type1 touchManagedPtr type2 return result' #if ENABLE_OVERLOADING data VariantTypeEqualMethodInfo instance (signature ~ (VariantType -> m Bool), MonadIO m) => O.MethodInfo VariantTypeEqualMethodInfo VariantType signature where overloadedMethod _ = variantTypeEqual #endif -- method VariantType::first -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a tuple or dictionary entry #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_first" g_variant_type_first :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO (Ptr VariantType) {- | Determines the first item type of a tuple or dictionary entry type. This function may only be used with tuple or dictionary entry types, but must not be used with the generic tuple type @/G_VARIANT_TYPE_TUPLE/@. In the case of a dictionary entry type, this returns the type of the key. 'Nothing' is returned in case of /@type@/ being @/G_VARIANT_TYPE_UNIT/@. This call, together with 'GI.GLib.Structs.VariantType.variantTypeNext' provides an iterator interface over tuple and dictionary entry types. -} variantTypeFirst :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a tuple or dictionary entry 'GI.GLib.Structs.VariantType.VariantType' -} -> m VariantType {- ^ __Returns:__ the first item type of /@type@/, or 'Nothing' Since 2.24 -} variantTypeFirst type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_first type_' checkUnexpectedReturnNULL "variantTypeFirst" result result' <- (newBoxed VariantType) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeFirstMethodInfo instance (signature ~ (m VariantType), MonadIO m) => O.MethodInfo VariantTypeFirstMethodInfo VariantType signature where overloadedMethod _ = variantTypeFirst #endif -- method VariantType::free -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType, or %NULL", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Nothing -- throws : False -- Skip return : False foreign import ccall "g_variant_type_free" g_variant_type_free :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO () {- | Frees a 'GI.GLib.Structs.VariantType.VariantType' that was allocated with 'GI.GLib.Structs.VariantType.variantTypeCopy', 'GI.GLib.Structs.VariantType.variantTypeNew' or one of the container type constructor functions. In the case that /@type@/ is 'Nothing', this function does nothing. Since 2.24 -} variantTypeFree :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType', or 'Nothing' -} -> m () variantTypeFree type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ g_variant_type_free type_' touchManagedPtr type_ return () #if ENABLE_OVERLOADING data VariantTypeFreeMethodInfo instance (signature ~ (m ()), MonadIO m) => O.MethodInfo VariantTypeFreeMethodInfo VariantType signature where overloadedMethod _ = variantTypeFree #endif -- method VariantType::get_string_length -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TUInt64) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_get_string_length" g_variant_type_get_string_length :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO Word64 {- | Returns the length of the type string corresponding to the given /@type@/. This function must be used to determine the valid extent of the memory region returned by @/g_variant_type_peek_string()/@. -} variantTypeGetStringLength :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Word64 {- ^ __Returns:__ the length of the corresponding type string Since 2.24 -} variantTypeGetStringLength type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_get_string_length type_' touchManagedPtr type_ return result #if ENABLE_OVERLOADING data VariantTypeGetStringLengthMethodInfo instance (signature ~ (m Word64), MonadIO m) => O.MethodInfo VariantTypeGetStringLengthMethodInfo VariantType signature where overloadedMethod _ = variantTypeGetStringLength #endif -- method VariantType::hash -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TUInt) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_hash" g_variant_type_hash :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO Word32 {- | Hashes /@type@/. The argument type of /@type@/ is only @/gconstpointer/@ to allow use with 'GI.GLib.Structs.HashTable.HashTable' without function pointer casting. A valid 'GI.GLib.Structs.VariantType.VariantType' must be provided. -} variantTypeHash :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Word32 {- ^ __Returns:__ the hash value Since 2.24 -} variantTypeHash type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_hash type_' touchManagedPtr type_ return result #if ENABLE_OVERLOADING data VariantTypeHashMethodInfo instance (signature ~ (m Word32), MonadIO m) => O.MethodInfo VariantTypeHashMethodInfo VariantType signature where overloadedMethod _ = variantTypeHash #endif -- method VariantType::is_array -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_is_array" g_variant_type_is_array :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CInt {- | Determines if the given /@type@/ is an array type. This is true if the type string for /@type@/ starts with an \'a\'. This function returns 'True' for any indefinite type for which every definite subtype is an array type -- @/G_VARIANT_TYPE_ARRAY/@, for example. -} variantTypeIsArray :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Bool {- ^ __Returns:__ 'True' if /@type@/ is an array type Since 2.24 -} variantTypeIsArray type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_is_array type_' let result' = (/= 0) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeIsArrayMethodInfo instance (signature ~ (m Bool), MonadIO m) => O.MethodInfo VariantTypeIsArrayMethodInfo VariantType signature where overloadedMethod _ = variantTypeIsArray #endif -- method VariantType::is_basic -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_is_basic" g_variant_type_is_basic :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CInt {- | Determines if the given /@type@/ is a basic type. Basic types are booleans, bytes, integers, doubles, strings, object paths and signatures. Only a basic type may be used as the key of a dictionary entry. This function returns 'False' for all indefinite types except @/G_VARIANT_TYPE_BASIC/@. -} variantTypeIsBasic :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Bool {- ^ __Returns:__ 'True' if /@type@/ is a basic type Since 2.24 -} variantTypeIsBasic type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_is_basic type_' let result' = (/= 0) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeIsBasicMethodInfo instance (signature ~ (m Bool), MonadIO m) => O.MethodInfo VariantTypeIsBasicMethodInfo VariantType signature where overloadedMethod _ = variantTypeIsBasic #endif -- method VariantType::is_container -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_is_container" g_variant_type_is_container :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CInt {- | Determines if the given /@type@/ is a container type. Container types are any array, maybe, tuple, or dictionary entry types plus the variant type. This function returns 'True' for any indefinite type for which every definite subtype is a container -- @/G_VARIANT_TYPE_ARRAY/@, for example. -} variantTypeIsContainer :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Bool {- ^ __Returns:__ 'True' if /@type@/ is a container type Since 2.24 -} variantTypeIsContainer type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_is_container type_' let result' = (/= 0) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeIsContainerMethodInfo instance (signature ~ (m Bool), MonadIO m) => O.MethodInfo VariantTypeIsContainerMethodInfo VariantType signature where overloadedMethod _ = variantTypeIsContainer #endif -- method VariantType::is_definite -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_is_definite" g_variant_type_is_definite :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CInt {- | Determines if the given /@type@/ is definite (ie: not indefinite). A type is definite if its type string does not contain any indefinite type characters (\'*\', \'?\', or \'r\'). A 'GVariant' instance may not have an indefinite type, so calling this function on the result of 'GI.GLib.Structs.Variant.variantGetType' will always result in 'True' being returned. Calling this function on an indefinite type like @/G_VARIANT_TYPE_ARRAY/@, however, will result in 'False' being returned. -} variantTypeIsDefinite :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Bool {- ^ __Returns:__ 'True' if /@type@/ is definite Since 2.24 -} variantTypeIsDefinite type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_is_definite type_' let result' = (/= 0) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeIsDefiniteMethodInfo instance (signature ~ (m Bool), MonadIO m) => O.MethodInfo VariantTypeIsDefiniteMethodInfo VariantType signature where overloadedMethod _ = variantTypeIsDefinite #endif -- method VariantType::is_dict_entry -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_is_dict_entry" g_variant_type_is_dict_entry :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CInt {- | Determines if the given /@type@/ is a dictionary entry type. This is true if the type string for /@type@/ starts with a \'{\'. This function returns 'True' for any indefinite type for which every definite subtype is a dictionary entry type -- @/G_VARIANT_TYPE_DICT_ENTRY/@, for example. -} variantTypeIsDictEntry :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Bool {- ^ __Returns:__ 'True' if /@type@/ is a dictionary entry type Since 2.24 -} variantTypeIsDictEntry type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_is_dict_entry type_' let result' = (/= 0) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeIsDictEntryMethodInfo instance (signature ~ (m Bool), MonadIO m) => O.MethodInfo VariantTypeIsDictEntryMethodInfo VariantType signature where overloadedMethod _ = variantTypeIsDictEntry #endif -- method VariantType::is_maybe -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_is_maybe" g_variant_type_is_maybe :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CInt {- | Determines if the given /@type@/ is a maybe type. This is true if the type string for /@type@/ starts with an \'m\'. This function returns 'True' for any indefinite type for which every definite subtype is a maybe type -- @/G_VARIANT_TYPE_MAYBE/@, for example. -} variantTypeIsMaybe :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Bool {- ^ __Returns:__ 'True' if /@type@/ is a maybe type Since 2.24 -} variantTypeIsMaybe type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_is_maybe type_' let result' = (/= 0) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeIsMaybeMethodInfo instance (signature ~ (m Bool), MonadIO m) => O.MethodInfo VariantTypeIsMaybeMethodInfo VariantType signature where overloadedMethod _ = variantTypeIsMaybe #endif -- method VariantType::is_subtype_of -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing},Arg {argCName = "supertype", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_is_subtype_of" g_variant_type_is_subtype_of :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) Ptr VariantType -> -- supertype : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CInt {- | Checks if /@type@/ is a subtype of /@supertype@/. This function returns 'True' if /@type@/ is a subtype of /@supertype@/. All types are considered to be subtypes of themselves. Aside from that, only indefinite types can have subtypes. -} variantTypeIsSubtypeOf :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> VariantType {- ^ /@supertype@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Bool {- ^ __Returns:__ 'True' if /@type@/ is a subtype of /@supertype@/ Since 2.24 -} variantTypeIsSubtypeOf type_ supertype = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ supertype' <- unsafeManagedPtrGetPtr supertype result <- g_variant_type_is_subtype_of type_' supertype' let result' = (/= 0) result touchManagedPtr type_ touchManagedPtr supertype return result' #if ENABLE_OVERLOADING data VariantTypeIsSubtypeOfMethodInfo instance (signature ~ (VariantType -> m Bool), MonadIO m) => O.MethodInfo VariantTypeIsSubtypeOfMethodInfo VariantType signature where overloadedMethod _ = variantTypeIsSubtypeOf #endif -- method VariantType::is_tuple -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_is_tuple" g_variant_type_is_tuple :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CInt {- | Determines if the given /@type@/ is a tuple type. This is true if the type string for /@type@/ starts with a \'(\' or if /@type@/ is @/G_VARIANT_TYPE_TUPLE/@. This function returns 'True' for any indefinite type for which every definite subtype is a tuple type -- @/G_VARIANT_TYPE_TUPLE/@, for example. -} variantTypeIsTuple :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Bool {- ^ __Returns:__ 'True' if /@type@/ is a tuple type Since 2.24 -} variantTypeIsTuple type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_is_tuple type_' let result' = (/= 0) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeIsTupleMethodInfo instance (signature ~ (m Bool), MonadIO m) => O.MethodInfo VariantTypeIsTupleMethodInfo VariantType signature where overloadedMethod _ = variantTypeIsTuple #endif -- method VariantType::is_variant -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_is_variant" g_variant_type_is_variant :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO CInt {- | Determines if the given /@type@/ is the variant type. -} variantTypeIsVariant :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' -} -> m Bool {- ^ __Returns:__ 'True' if /@type@/ is the variant type Since 2.24 -} variantTypeIsVariant type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_is_variant type_' let result' = (/= 0) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeIsVariantMethodInfo instance (signature ~ (m Bool), MonadIO m) => O.MethodInfo VariantTypeIsVariantMethodInfo VariantType signature where overloadedMethod _ = variantTypeIsVariant #endif -- method VariantType::key -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a dictionary entry #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_key" g_variant_type_key :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO (Ptr VariantType) {- | Determines the key type of a dictionary entry type. This function may only be used with a dictionary entry type. Other than the additional restriction, this call is equivalent to 'GI.GLib.Structs.VariantType.variantTypeFirst'. -} variantTypeKey :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a dictionary entry 'GI.GLib.Structs.VariantType.VariantType' -} -> m VariantType {- ^ __Returns:__ the key type of the dictionary entry Since 2.24 -} variantTypeKey type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_key type_' checkUnexpectedReturnNULL "variantTypeKey" result result' <- (newBoxed VariantType) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeKeyMethodInfo instance (signature ~ (m VariantType), MonadIO m) => O.MethodInfo VariantTypeKeyMethodInfo VariantType signature where overloadedMethod _ = variantTypeKey #endif -- method VariantType::n_items -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a tuple or dictionary entry #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TUInt64) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_n_items" g_variant_type_n_items :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO Word64 {- | Determines the number of items contained in a tuple or dictionary entry type. This function may only be used with tuple or dictionary entry types, but must not be used with the generic tuple type @/G_VARIANT_TYPE_TUPLE/@. In the case of a dictionary entry type, this function will always return 2. -} variantTypeNItems :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a tuple or dictionary entry 'GI.GLib.Structs.VariantType.VariantType' -} -> m Word64 {- ^ __Returns:__ the number of items in /@type@/ Since 2.24 -} variantTypeNItems type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_n_items type_' touchManagedPtr type_ return result #if ENABLE_OVERLOADING data VariantTypeNItemsMethodInfo instance (signature ~ (m Word64), MonadIO m) => O.MethodInfo VariantTypeNItemsMethodInfo VariantType signature where overloadedMethod _ = variantTypeNItems #endif -- method VariantType::next -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GVariantType from a previous call", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_next" g_variant_type_next :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO (Ptr VariantType) {- | Determines the next item type of a tuple or dictionary entry type. /@type@/ must be the result of a previous call to 'GI.GLib.Structs.VariantType.variantTypeFirst' or 'GI.GLib.Structs.VariantType.variantTypeNext'. If called on the key type of a dictionary entry then this call returns the value type. If called on the value type of a dictionary entry then this call returns 'Nothing'. For tuples, 'Nothing' is returned when /@type@/ is the last item in a tuple. -} variantTypeNext :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a 'GI.GLib.Structs.VariantType.VariantType' from a previous call -} -> m VariantType {- ^ __Returns:__ the next 'GI.GLib.Structs.VariantType.VariantType' after /@type@/, or 'Nothing' Since 2.24 -} variantTypeNext type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_next type_' checkUnexpectedReturnNULL "variantTypeNext" result result' <- (newBoxed VariantType) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeNextMethodInfo instance (signature ~ (m VariantType), MonadIO m) => O.MethodInfo VariantTypeNextMethodInfo VariantType signature where overloadedMethod _ = variantTypeNext #endif -- method VariantType::value -- method type : OrdinaryMethod -- Args : [Arg {argCName = "type", argType = TInterface (Name {namespace = "GLib", name = "VariantType"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a dictionary entry #GVariantType", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_value" g_variant_type_value :: Ptr VariantType -> -- type : TInterface (Name {namespace = "GLib", name = "VariantType"}) IO (Ptr VariantType) {- | Determines the value type of a dictionary entry type. This function may only be used with a dictionary entry type. -} variantTypeValue :: (B.CallStack.HasCallStack, MonadIO m) => VariantType {- ^ /@type@/: a dictionary entry 'GI.GLib.Structs.VariantType.VariantType' -} -> m VariantType {- ^ __Returns:__ the value type of the dictionary entry Since 2.24 -} variantTypeValue type_ = liftIO $ do type_' <- unsafeManagedPtrGetPtr type_ result <- g_variant_type_value type_' checkUnexpectedReturnNULL "variantTypeValue" result result' <- (newBoxed VariantType) result touchManagedPtr type_ return result' #if ENABLE_OVERLOADING data VariantTypeValueMethodInfo instance (signature ~ (m VariantType), MonadIO m) => O.MethodInfo VariantTypeValueMethodInfo VariantType signature where overloadedMethod _ = variantTypeValue #endif -- method VariantType::checked_ -- method type : MemberFunction -- Args : [Arg {argCName = "arg0", argType = TBasicType TUTF8, direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Nothing, sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TInterface (Name {namespace = "GLib", name = "VariantType"})) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_checked_" g_variant_type_checked_ :: CString -> -- arg0 : TBasicType TUTF8 IO (Ptr VariantType) {- | /No description available in the introspection data./ -} variantTypeChecked_ :: (B.CallStack.HasCallStack, MonadIO m) => T.Text -> m VariantType variantTypeChecked_ arg0 = liftIO $ do arg0' <- textToCString arg0 result <- g_variant_type_checked_ arg0' checkUnexpectedReturnNULL "variantTypeChecked_" result result' <- (newBoxed VariantType) result freeMem arg0' return result' #if ENABLE_OVERLOADING #endif -- method VariantType::string_get_depth_ -- method type : MemberFunction -- Args : [Arg {argCName = "type_string", argType = TBasicType TUTF8, direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Nothing, sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TUInt64) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_string_get_depth_" g_variant_type_string_get_depth_ :: CString -> -- type_string : TBasicType TUTF8 IO Word64 {- | /No description available in the introspection data./ -} variantTypeStringGetDepth_ :: (B.CallStack.HasCallStack, MonadIO m) => T.Text -> m Word64 variantTypeStringGetDepth_ typeString = liftIO $ do typeString' <- textToCString typeString result <- g_variant_type_string_get_depth_ typeString' freeMem typeString' return result #if ENABLE_OVERLOADING #endif -- method VariantType::string_is_valid -- method type : MemberFunction -- Args : [Arg {argCName = "type_string", argType = TBasicType TUTF8, direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a pointer to any string", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_string_is_valid" g_variant_type_string_is_valid :: CString -> -- type_string : TBasicType TUTF8 IO CInt {- | Checks if /@typeString@/ is a valid GVariant type string. This call is equivalent to calling 'GI.GLib.Functions.variantTypeStringScan' and confirming that the following character is a nul terminator. -} variantTypeStringIsValid :: (B.CallStack.HasCallStack, MonadIO m) => T.Text {- ^ /@typeString@/: a pointer to any string -} -> m Bool {- ^ __Returns:__ 'True' if /@typeString@/ is exactly one valid type string Since 2.24 -} variantTypeStringIsValid typeString = liftIO $ do typeString' <- textToCString typeString result <- g_variant_type_string_is_valid typeString' let result' = (/= 0) result freeMem typeString' return result' #if ENABLE_OVERLOADING #endif -- method VariantType::string_scan -- method type : MemberFunction -- Args : [Arg {argCName = "string", argType = TBasicType TUTF8, direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a pointer to any string", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing},Arg {argCName = "limit", argType = TBasicType TUTF8, direction = DirectionIn, mayBeNull = True, argDoc = Documentation {rawDocText = Just "the end of @string, or %NULL", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing},Arg {argCName = "endptr", argType = TBasicType TUTF8, direction = DirectionOut, mayBeNull = False, argDoc = Documentation {rawDocText = Just "location to store the end pointer, or %NULL", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferEverything}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_variant_type_string_scan" g_variant_type_string_scan :: CString -> -- string : TBasicType TUTF8 CString -> -- limit : TBasicType TUTF8 Ptr CString -> -- endptr : TBasicType TUTF8 IO CInt {- | Scan for a single complete and valid GVariant type string in /@string@/. The memory pointed to by /@limit@/ (or bytes beyond it) is never accessed. If a valid type string is found, /@endptr@/ is updated to point to the first character past the end of the string that was found and 'True' is returned. If there is no valid type string starting at /@string@/, or if the type string does not end before /@limit@/ then 'False' is returned. For the simple case of checking if a string is a valid type string, see 'GI.GLib.Functions.variantTypeStringIsValid'. /Since: 2.24/ -} variantTypeStringScan :: (B.CallStack.HasCallStack, MonadIO m) => T.Text {- ^ /@string@/: a pointer to any string -} -> Maybe (T.Text) {- ^ /@limit@/: the end of /@string@/, or 'Nothing' -} -> m ((Bool, T.Text)) {- ^ __Returns:__ 'True' if a valid type string was found -} variantTypeStringScan string limit = liftIO $ do string' <- textToCString string maybeLimit <- case limit of Nothing -> return nullPtr Just jLimit -> do jLimit' <- textToCString jLimit return jLimit' endptr <- allocMem :: IO (Ptr CString) result <- g_variant_type_string_scan string' maybeLimit endptr let result' = (/= 0) result endptr' <- peek endptr endptr'' <- cstringToText endptr' freeMem endptr' freeMem string' freeMem maybeLimit freeMem endptr return (result', endptr'') #if ENABLE_OVERLOADING #endif #if ENABLE_OVERLOADING type family ResolveVariantTypeMethod (t :: Symbol) (o :: *) :: * where ResolveVariantTypeMethod "copy" o = VariantTypeCopyMethodInfo ResolveVariantTypeMethod "dupString" o = VariantTypeDupStringMethodInfo ResolveVariantTypeMethod "element" o = VariantTypeElementMethodInfo ResolveVariantTypeMethod "equal" o = VariantTypeEqualMethodInfo ResolveVariantTypeMethod "first" o = VariantTypeFirstMethodInfo ResolveVariantTypeMethod "free" o = VariantTypeFreeMethodInfo ResolveVariantTypeMethod "hash" o = VariantTypeHashMethodInfo ResolveVariantTypeMethod "isArray" o = VariantTypeIsArrayMethodInfo ResolveVariantTypeMethod "isBasic" o = VariantTypeIsBasicMethodInfo ResolveVariantTypeMethod "isContainer" o = VariantTypeIsContainerMethodInfo ResolveVariantTypeMethod "isDefinite" o = VariantTypeIsDefiniteMethodInfo ResolveVariantTypeMethod "isDictEntry" o = VariantTypeIsDictEntryMethodInfo ResolveVariantTypeMethod "isMaybe" o = VariantTypeIsMaybeMethodInfo ResolveVariantTypeMethod "isSubtypeOf" o = VariantTypeIsSubtypeOfMethodInfo ResolveVariantTypeMethod "isTuple" o = VariantTypeIsTupleMethodInfo ResolveVariantTypeMethod "isVariant" o = VariantTypeIsVariantMethodInfo ResolveVariantTypeMethod "key" o = VariantTypeKeyMethodInfo ResolveVariantTypeMethod "nItems" o = VariantTypeNItemsMethodInfo ResolveVariantTypeMethod "next" o = VariantTypeNextMethodInfo ResolveVariantTypeMethod "value" o = VariantTypeValueMethodInfo ResolveVariantTypeMethod "getStringLength" o = VariantTypeGetStringLengthMethodInfo ResolveVariantTypeMethod l o = O.MethodResolutionFailed l o instance (info ~ ResolveVariantTypeMethod t VariantType, O.MethodInfo info VariantType p) => OL.IsLabel t (VariantType -> p) where #if MIN_VERSION_base(4,10,0) fromLabel = O.overloadedMethod (O.MethodProxy :: O.MethodProxy info) #else fromLabel _ = O.overloadedMethod (O.MethodProxy :: O.MethodProxy info) #endif #endif