{- | Copyright : Will Thompson, Iñaki García Etxebarria and Jonas Platte License : LGPL-2.1 Maintainer : Iñaki García Etxebarria (garetxe@gmail.com) The 'GI.GLib.Structs.Cond.Cond' struct is an opaque data structure that represents a condition. Threads can block on a 'GI.GLib.Structs.Cond.Cond' if they find a certain condition to be false. If other threads change the state of this condition they signal the 'GI.GLib.Structs.Cond.Cond', and that causes the waiting threads to be woken up. Consider the following example of a shared variable. One or more threads can wait for data to be published to the variable and when another thread publishes the data, it can signal one of the waiting threads to wake up to collect the data. Here is an example for using GCond to block a thread until a condition is satisfied: === /C code/ > > gpointer current_data = NULL; > GMutex data_mutex; > GCond data_cond; > > void > push_data (gpointer data) > { > g_mutex_lock (&data_mutex); > current_data = data; > g_cond_signal (&data_cond); > g_mutex_unlock (&data_mutex); > } > > gpointer > pop_data (void) > { > gpointer data; > > g_mutex_lock (&data_mutex); > while (!current_data) > g_cond_wait (&data_cond, &data_mutex); > data = current_data; > current_data = NULL; > g_mutex_unlock (&data_mutex); > > return data; > } Whenever a thread calls @/pop_data()/@ now, it will wait until current_data is non-'Nothing', i.e. until some other thread has called @/push_data()/@. The example shows that use of a condition variable must always be paired with a mutex. Without the use of a mutex, there would be a race between the check of /@currentData@/ by the while loop in @/pop_data()/@ and waiting. Specifically, another thread could set /@currentData@/ after the check, and signal the cond (with nobody waiting on it) before the first thread goes to sleep. 'GI.GLib.Structs.Cond.Cond' is specifically useful for its ability to release the mutex and go to sleep atomically. It is also important to use the 'GI.GLib.Structs.Cond.condWait' and 'GI.GLib.Structs.Cond.condWaitUntil' functions only inside a loop which checks for the condition to be true. See 'GI.GLib.Structs.Cond.condWait' for an explanation of why the condition may not be true even after it returns. If a 'GI.GLib.Structs.Cond.Cond' is allocated in static storage then it can be used without initialisation. Otherwise, you should call 'GI.GLib.Structs.Cond.condInit' on it and 'GI.GLib.Structs.Cond.condClear' when done. A 'GI.GLib.Structs.Cond.Cond' should only be accessed via the g_cond_ functions. -} #define ENABLE_OVERLOADING (MIN_VERSION_haskell_gi_overloading(1,0,0) \ && !defined(__HADDOCK_VERSION__)) module GI.GLib.Structs.Cond ( -- * Exported types Cond(..) , newZeroCond , noCond , -- * Methods -- ** broadcast #method:broadcast# #if ENABLE_OVERLOADING CondBroadcastMethodInfo , #endif condBroadcast , -- ** clear #method:clear# #if ENABLE_OVERLOADING CondClearMethodInfo , #endif condClear , -- ** init #method:init# #if ENABLE_OVERLOADING CondInitMethodInfo , #endif condInit , -- ** signal #method:signal# #if ENABLE_OVERLOADING CondSignalMethodInfo , #endif condSignal , -- ** wait #method:wait# #if ENABLE_OVERLOADING CondWaitMethodInfo , #endif condWait , -- ** waitUntil #method:waitUntil# #if ENABLE_OVERLOADING CondWaitUntilMethodInfo , #endif condWaitUntil , ) where import Data.GI.Base.ShortPrelude import qualified Data.GI.Base.ShortPrelude as SP import qualified Data.GI.Base.Overloading as O import qualified Prelude as P import qualified Data.GI.Base.Attributes as GI.Attributes import qualified Data.GI.Base.ManagedPtr as B.ManagedPtr import qualified Data.GI.Base.GError as B.GError import qualified Data.GI.Base.GVariant as B.GVariant import qualified Data.GI.Base.GValue as B.GValue import qualified Data.GI.Base.GParamSpec as B.GParamSpec import qualified Data.GI.Base.CallStack as B.CallStack import qualified Data.Text as T import qualified Data.ByteString.Char8 as B import qualified Data.Map as Map import qualified Foreign.Ptr as FP import {-# SOURCE #-} qualified GI.GLib.Unions.Mutex as GLib.Mutex -- | Memory-managed wrapper type. newtype Cond = Cond (ManagedPtr Cond) instance WrappedPtr Cond where wrappedPtrCalloc = callocBytes 16 wrappedPtrCopy = \p -> withManagedPtr p (copyBytes 16 >=> wrapPtr Cond) wrappedPtrFree = Just ptr_to_g_free -- | Construct a `Cond` struct initialized to zero. newZeroCond :: MonadIO m => m Cond newZeroCond = liftIO $ wrappedPtrCalloc >>= wrapPtr Cond instance tag ~ 'AttrSet => Constructible Cond tag where new _ attrs = do o <- newZeroCond GI.Attributes.set o attrs return o -- | A convenience alias for `Nothing` :: `Maybe` `Cond`. noCond :: Maybe Cond noCond = Nothing #if ENABLE_OVERLOADING instance O.HasAttributeList Cond type instance O.AttributeList Cond = CondAttributeList type CondAttributeList = ('[ ] :: [(Symbol, *)]) #endif -- method Cond::broadcast -- method type : OrdinaryMethod -- Args : [Arg {argCName = "cond", argType = TInterface (Name {namespace = "GLib", name = "Cond"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GCond", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Nothing -- throws : False -- Skip return : False foreign import ccall "g_cond_broadcast" g_cond_broadcast :: Ptr Cond -> -- cond : TInterface (Name {namespace = "GLib", name = "Cond"}) IO () {- | If threads are waiting for /@cond@/, all of them are unblocked. If no threads are waiting for /@cond@/, this function has no effect. It is good practice to lock the same mutex as the waiting threads while calling this function, though not required. -} condBroadcast :: (B.CallStack.HasCallStack, MonadIO m) => Cond {- ^ /@cond@/: a 'GI.GLib.Structs.Cond.Cond' -} -> m () condBroadcast cond = liftIO $ do cond' <- unsafeManagedPtrGetPtr cond g_cond_broadcast cond' touchManagedPtr cond return () #if ENABLE_OVERLOADING data CondBroadcastMethodInfo instance (signature ~ (m ()), MonadIO m) => O.MethodInfo CondBroadcastMethodInfo Cond signature where overloadedMethod _ = condBroadcast #endif -- method Cond::clear -- method type : OrdinaryMethod -- Args : [Arg {argCName = "cond", argType = TInterface (Name {namespace = "GLib", name = "Cond"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "an initialised #GCond", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Nothing -- throws : False -- Skip return : False foreign import ccall "g_cond_clear" g_cond_clear :: Ptr Cond -> -- cond : TInterface (Name {namespace = "GLib", name = "Cond"}) IO () {- | Frees the resources allocated to a 'GI.GLib.Structs.Cond.Cond' with 'GI.GLib.Structs.Cond.condInit'. This function should not be used with a 'GI.GLib.Structs.Cond.Cond' that has been statically allocated. Calling 'GI.GLib.Structs.Cond.condClear' for a 'GI.GLib.Structs.Cond.Cond' on which threads are blocking leads to undefined behaviour. /Since: 2.32/ -} condClear :: (B.CallStack.HasCallStack, MonadIO m) => Cond {- ^ /@cond@/: an initialised 'GI.GLib.Structs.Cond.Cond' -} -> m () condClear cond = liftIO $ do cond' <- unsafeManagedPtrGetPtr cond g_cond_clear cond' touchManagedPtr cond return () #if ENABLE_OVERLOADING data CondClearMethodInfo instance (signature ~ (m ()), MonadIO m) => O.MethodInfo CondClearMethodInfo Cond signature where overloadedMethod _ = condClear #endif -- method Cond::init -- method type : OrdinaryMethod -- Args : [Arg {argCName = "cond", argType = TInterface (Name {namespace = "GLib", name = "Cond"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "an uninitialized #GCond", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Nothing -- throws : False -- Skip return : False foreign import ccall "g_cond_init" g_cond_init :: Ptr Cond -> -- cond : TInterface (Name {namespace = "GLib", name = "Cond"}) IO () {- | Initialises a 'GI.GLib.Structs.Cond.Cond' so that it can be used. This function is useful to initialise a 'GI.GLib.Structs.Cond.Cond' that has been allocated as part of a larger structure. It is not necessary to initialise a 'GI.GLib.Structs.Cond.Cond' that has been statically allocated. To undo the effect of 'GI.GLib.Structs.Cond.condInit' when a 'GI.GLib.Structs.Cond.Cond' is no longer needed, use 'GI.GLib.Structs.Cond.condClear'. Calling 'GI.GLib.Structs.Cond.condInit' on an already-initialised 'GI.GLib.Structs.Cond.Cond' leads to undefined behaviour. /Since: 2.32/ -} condInit :: (B.CallStack.HasCallStack, MonadIO m) => Cond {- ^ /@cond@/: an uninitialized 'GI.GLib.Structs.Cond.Cond' -} -> m () condInit cond = liftIO $ do cond' <- unsafeManagedPtrGetPtr cond g_cond_init cond' touchManagedPtr cond return () #if ENABLE_OVERLOADING data CondInitMethodInfo instance (signature ~ (m ()), MonadIO m) => O.MethodInfo CondInitMethodInfo Cond signature where overloadedMethod _ = condInit #endif -- method Cond::signal -- method type : OrdinaryMethod -- Args : [Arg {argCName = "cond", argType = TInterface (Name {namespace = "GLib", name = "Cond"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GCond", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Nothing -- throws : False -- Skip return : False foreign import ccall "g_cond_signal" g_cond_signal :: Ptr Cond -> -- cond : TInterface (Name {namespace = "GLib", name = "Cond"}) IO () {- | If threads are waiting for /@cond@/, at least one of them is unblocked. If no threads are waiting for /@cond@/, this function has no effect. It is good practice to hold the same lock as the waiting thread while calling this function, though not required. -} condSignal :: (B.CallStack.HasCallStack, MonadIO m) => Cond {- ^ /@cond@/: a 'GI.GLib.Structs.Cond.Cond' -} -> m () condSignal cond = liftIO $ do cond' <- unsafeManagedPtrGetPtr cond g_cond_signal cond' touchManagedPtr cond return () #if ENABLE_OVERLOADING data CondSignalMethodInfo instance (signature ~ (m ()), MonadIO m) => O.MethodInfo CondSignalMethodInfo Cond signature where overloadedMethod _ = condSignal #endif -- method Cond::wait -- method type : OrdinaryMethod -- Args : [Arg {argCName = "cond", argType = TInterface (Name {namespace = "GLib", name = "Cond"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GCond", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing},Arg {argCName = "mutex", argType = TInterface (Name {namespace = "GLib", name = "Mutex"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GMutex that is currently locked", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Nothing -- throws : False -- Skip return : False foreign import ccall "g_cond_wait" g_cond_wait :: Ptr Cond -> -- cond : TInterface (Name {namespace = "GLib", name = "Cond"}) Ptr GLib.Mutex.Mutex -> -- mutex : TInterface (Name {namespace = "GLib", name = "Mutex"}) IO () {- | Atomically releases /@mutex@/ and waits until /@cond@/ is signalled. When this function returns, /@mutex@/ is locked again and owned by the calling thread. When using condition variables, it is possible that a spurious wakeup may occur (ie: 'GI.GLib.Structs.Cond.condWait' returns even though 'GI.GLib.Structs.Cond.condSignal' was not called). It\'s also possible that a stolen wakeup may occur. This is when 'GI.GLib.Structs.Cond.condSignal' is called, but another thread acquires /@mutex@/ before this thread and modifies the state of the program in such a way that when 'GI.GLib.Structs.Cond.condWait' is able to return, the expected condition is no longer met. For this reason, 'GI.GLib.Structs.Cond.condWait' must always be used in a loop. See the documentation for 'GI.GLib.Structs.Cond.Cond' for a complete example. -} condWait :: (B.CallStack.HasCallStack, MonadIO m) => Cond {- ^ /@cond@/: a 'GI.GLib.Structs.Cond.Cond' -} -> GLib.Mutex.Mutex {- ^ /@mutex@/: a 'GI.GLib.Unions.Mutex.Mutex' that is currently locked -} -> m () condWait cond mutex = liftIO $ do cond' <- unsafeManagedPtrGetPtr cond mutex' <- unsafeManagedPtrGetPtr mutex g_cond_wait cond' mutex' touchManagedPtr cond touchManagedPtr mutex return () #if ENABLE_OVERLOADING data CondWaitMethodInfo instance (signature ~ (GLib.Mutex.Mutex -> m ()), MonadIO m) => O.MethodInfo CondWaitMethodInfo Cond signature where overloadedMethod _ = condWait #endif -- method Cond::wait_until -- method type : OrdinaryMethod -- Args : [Arg {argCName = "cond", argType = TInterface (Name {namespace = "GLib", name = "Cond"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GCond", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing},Arg {argCName = "mutex", argType = TInterface (Name {namespace = "GLib", name = "Mutex"}), direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "a #GMutex that is currently locked", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing},Arg {argCName = "end_time", argType = TBasicType TInt64, direction = DirectionIn, mayBeNull = False, argDoc = Documentation {rawDocText = Just "the monotonic time to wait until", sinceVersion = Nothing}, argScope = ScopeTypeInvalid, argClosure = -1, argDestroy = -1, argCallerAllocates = False, transfer = TransferNothing}] -- Lengths : [] -- returnType : Just (TBasicType TBoolean) -- throws : False -- Skip return : False foreign import ccall "g_cond_wait_until" g_cond_wait_until :: Ptr Cond -> -- cond : TInterface (Name {namespace = "GLib", name = "Cond"}) Ptr GLib.Mutex.Mutex -> -- mutex : TInterface (Name {namespace = "GLib", name = "Mutex"}) Int64 -> -- end_time : TBasicType TInt64 IO CInt {- | Waits until either /@cond@/ is signalled or /@endTime@/ has passed. As with 'GI.GLib.Structs.Cond.condWait' it is possible that a spurious or stolen wakeup could occur. For that reason, waiting on a condition variable should always be in a loop, based on an explicitly-checked predicate. 'True' is returned if the condition variable was signalled (or in the case of a spurious wakeup). 'False' is returned if /@endTime@/ has passed. The following code shows how to correctly perform a timed wait on a condition variable (extending the example presented in the documentation for 'GI.GLib.Structs.Cond.Cond'): === /C code/ > >gpointer >pop_data_timed (void) >{ > gint64 end_time; > gpointer data; > > g_mutex_lock (&data_mutex); > > end_time = g_get_monotonic_time () + 5 * G_TIME_SPAN_SECOND; > while (!current_data) > if (!g_cond_wait_until (&data_cond, &data_mutex, end_time)) > { > // timeout has passed. > g_mutex_unlock (&data_mutex); > return NULL; > } > > // there is data for us > data = current_data; > current_data = NULL; > > g_mutex_unlock (&data_mutex); > > return data; >} Notice that the end time is calculated once, before entering the loop and reused. This is the motivation behind the use of absolute time on this API -- if a relative time of 5 seconds were passed directly to the call and a spurious wakeup occurred, the program would have to start over waiting again (which would lead to a total wait time of more than 5 seconds). /Since: 2.32/ -} condWaitUntil :: (B.CallStack.HasCallStack, MonadIO m) => Cond {- ^ /@cond@/: a 'GI.GLib.Structs.Cond.Cond' -} -> GLib.Mutex.Mutex {- ^ /@mutex@/: a 'GI.GLib.Unions.Mutex.Mutex' that is currently locked -} -> Int64 {- ^ /@endTime@/: the monotonic time to wait until -} -> m Bool {- ^ __Returns:__ 'True' on a signal, 'False' on a timeout -} condWaitUntil cond mutex endTime = liftIO $ do cond' <- unsafeManagedPtrGetPtr cond mutex' <- unsafeManagedPtrGetPtr mutex result <- g_cond_wait_until cond' mutex' endTime let result' = (/= 0) result touchManagedPtr cond touchManagedPtr mutex return result' #if ENABLE_OVERLOADING data CondWaitUntilMethodInfo instance (signature ~ (GLib.Mutex.Mutex -> Int64 -> m Bool), MonadIO m) => O.MethodInfo CondWaitUntilMethodInfo Cond signature where overloadedMethod _ = condWaitUntil #endif #if ENABLE_OVERLOADING type family ResolveCondMethod (t :: Symbol) (o :: *) :: * where ResolveCondMethod "broadcast" o = CondBroadcastMethodInfo ResolveCondMethod "clear" o = CondClearMethodInfo ResolveCondMethod "init" o = CondInitMethodInfo ResolveCondMethod "signal" o = CondSignalMethodInfo ResolveCondMethod "wait" o = CondWaitMethodInfo ResolveCondMethod "waitUntil" o = CondWaitUntilMethodInfo ResolveCondMethod l o = O.MethodResolutionFailed l o instance (info ~ ResolveCondMethod t Cond, O.MethodInfo info Cond p) => O.IsLabelProxy t (Cond -> p) where fromLabelProxy _ = O.overloadedMethod (O.MethodProxy :: O.MethodProxy info) #if MIN_VERSION_base(4,9,0) instance (info ~ ResolveCondMethod t Cond, O.MethodInfo info Cond p) => O.IsLabel t (Cond -> p) where #if MIN_VERSION_base(4,10,0) fromLabel = O.overloadedMethod (O.MethodProxy :: O.MethodProxy info) #else fromLabel _ = O.overloadedMethod (O.MethodProxy :: O.MethodProxy info) #endif #endif #endif