{-# LANGUAGE MagicHash #-}
module GHC.TypeLits.Extra.Solver.Operations
( ExtraOp (..)
, ExtraDefs (..)
, reifyEOP
, mergeMax
, mergeMin
, mergeDiv
, mergeMod
, mergeFLog
, mergeCLog
, mergeLog
, mergeGCD
, mergeLCM
, mergeExp
)
where
import Control.Monad.Trans.Writer.Strict
import GHC.Base (isTrue#,(==#),(+#))
import GHC.Integer (smallInteger)
import GHC.Integer.Logarithms (integerLogBase#)
import GHC.TypeLits.Normalise.Unify (CType (..), normaliseNat, isNatural)
import Outputable (Outputable (..), (<+>), integer, text)
import TcTypeNats (typeNatExpTyCon, typeNatSubTyCon)
import TyCon (TyCon)
import Type (Type, TyVar, mkNumLitTy, mkTyConApp, mkTyVarTy)
data ExtraOp
= I Integer
| V TyVar
| C CType
| Max ExtraOp ExtraOp
| Min ExtraOp ExtraOp
| Div ExtraOp ExtraOp
| Mod ExtraOp ExtraOp
| FLog ExtraOp ExtraOp
| CLog ExtraOp ExtraOp
| Log ExtraOp ExtraOp
| GCD ExtraOp ExtraOp
| LCM ExtraOp ExtraOp
| Exp ExtraOp ExtraOp
deriving Eq
instance Outputable ExtraOp where
ppr (I i) = integer i
ppr (V v) = ppr v
ppr (C c) = ppr c
ppr (Max x y) = text "Max (" <+> ppr x <+> text "," <+> ppr y <+> text ")"
ppr (Min x y) = text "Min (" <+> ppr x <+> text "," <+> ppr y <+> text ")"
ppr (Div x y) = text "Div (" <+> ppr x <+> text "," <+> ppr y <+> text ")"
ppr (Mod x y) = text "Mod (" <+> ppr x <+> text "," <+> ppr y <+> text ")"
ppr (FLog x y) = text "FLog (" <+> ppr x <+> text "," <+> ppr y <+> text ")"
ppr (CLog x y) = text "CLog (" <+> ppr x <+> text "," <+> ppr y <+> text ")"
ppr (Log x y) = text "Log (" <+> ppr x <+> text "," <+> ppr y <+> text ")"
ppr (GCD x y) = text "GCD (" <+> ppr x <+> text "," <+> ppr y <+> text ")"
ppr (LCM x y) = text "GCD (" <+> ppr x <+> text "," <+> ppr y <+> text ")"
ppr (Exp x y) = text "Exp (" <+> ppr x <+> text "," <+> ppr y <+> text ")"
data ExtraDefs = ExtraDefs
{ maxTyCon :: TyCon
, minTyCon :: TyCon
, divTyCon :: TyCon
, modTyCon :: TyCon
, flogTyCon :: TyCon
, clogTyCon :: TyCon
, logTyCon :: TyCon
, gcdTyCon :: TyCon
, lcmTyCon :: TyCon
}
reifyEOP :: ExtraDefs -> ExtraOp -> Type
reifyEOP _ (I i) = mkNumLitTy i
reifyEOP _ (V v) = mkTyVarTy v
reifyEOP _ (C (CType c)) = c
reifyEOP defs (Max x y) = mkTyConApp (maxTyCon defs) [reifyEOP defs x
,reifyEOP defs y]
reifyEOP defs (Min x y) = mkTyConApp (minTyCon defs) [reifyEOP defs x
,reifyEOP defs y]
reifyEOP defs (Div x y) = mkTyConApp (divTyCon defs) [reifyEOP defs x
,reifyEOP defs y]
reifyEOP defs (Mod x y) = mkTyConApp (modTyCon defs) [reifyEOP defs x
,reifyEOP defs y]
reifyEOP defs (CLog x y) = mkTyConApp (clogTyCon defs) [reifyEOP defs x
,reifyEOP defs y]
reifyEOP defs (FLog x y) = mkTyConApp (flogTyCon defs) [reifyEOP defs x
,reifyEOP defs y]
reifyEOP defs (Log x y) = mkTyConApp (logTyCon defs) [reifyEOP defs x
,reifyEOP defs y]
reifyEOP defs (GCD x y) = mkTyConApp (gcdTyCon defs) [reifyEOP defs x
,reifyEOP defs y]
reifyEOP defs (LCM x y) = mkTyConApp (lcmTyCon defs) [reifyEOP defs x
,reifyEOP defs y]
reifyEOP defs (Exp x y) = mkTyConApp typeNatExpTyCon [reifyEOP defs x
,reifyEOP defs y]
mergeMax :: ExtraDefs -> ExtraOp -> ExtraOp -> ExtraOp
mergeMax defs x y =
let x' = reifyEOP defs x
y' = reifyEOP defs y
z = fst (runWriter (normaliseNat (mkTyConApp typeNatSubTyCon [y',x'])))
in case isNatural z of
Just True -> y
Just False -> x
_ -> Max x y
mergeMin :: ExtraDefs -> ExtraOp -> ExtraOp -> ExtraOp
mergeMin defs x y =
let x' = reifyEOP defs x
y' = reifyEOP defs y
z = fst (runWriter (normaliseNat (mkTyConApp typeNatSubTyCon [y',x'])))
in case isNatural z of
Just True -> x
Just False -> y
_ -> Min x y
mergeDiv :: ExtraOp -> ExtraOp -> Maybe ExtraOp
mergeDiv _ (I 0) = Nothing
mergeDiv (I i) (I j) = Just (I (div i j))
mergeDiv x y = Just (Div x y)
mergeMod :: ExtraOp -> ExtraOp -> Maybe ExtraOp
mergeMod _ (I 0) = Nothing
mergeMod (I i) (I j) = Just (I (mod i j))
mergeMod x y = Just (Mod x y)
mergeFLog :: ExtraOp -> ExtraOp -> Maybe ExtraOp
mergeFLog (I i) _ | i < 2 = Nothing
mergeFLog i (Exp j k) | i == j = Just k
mergeFLog (I i) (I j) = I <$> flogBase i j
mergeFLog x y = Just (FLog x y)
mergeCLog :: ExtraOp -> ExtraOp -> Maybe ExtraOp
mergeCLog (I i) _ | i < 2 = Nothing
mergeCLog i (Exp j k) | i == j = Just k
mergeCLog (I i) (I j) = I <$> clogBase i j
mergeCLog x y = Just (CLog x y)
mergeLog :: ExtraOp -> ExtraOp -> Maybe ExtraOp
mergeLog (I i) _ | i < 2 = Nothing
mergeLog b (Exp b' y) | b == b' = Just y
mergeLog (I i) (I j) = I <$> exactLogBase i j
mergeLog x y = Just (Log x y)
mergeGCD :: ExtraOp -> ExtraOp -> ExtraOp
mergeGCD (I i) (I j) = I (gcd i j)
mergeGCD x y = GCD x y
mergeLCM :: ExtraOp -> ExtraOp -> ExtraOp
mergeLCM (I i) (I j) = I (lcm i j)
mergeLCM x y = LCM x y
mergeExp :: ExtraOp -> ExtraOp -> ExtraOp
mergeExp (I i) (I j) = I (i^j)
mergeExp b (Log b' y) | b == b' = y
mergeExp x y = Exp x y
flogBase :: Integer -> Integer -> Maybe Integer
flogBase x y | y > 0 = Just (smallInteger (integerLogBase# x y))
flogBase _ _ = Nothing
clogBase :: Integer -> Integer -> Maybe Integer
clogBase x y | y > 0 =
let z1 = integerLogBase# x y
z2 = integerLogBase# x (y-1)
in case y of
1 -> Just 0
_ | isTrue# (z1 ==# z2) -> Just (smallInteger (z1 +# 1#))
| otherwise -> Just (smallInteger z1)
clogBase _ _ = Nothing
exactLogBase :: Integer -> Integer -> Maybe Integer
exactLogBase x y | y > 0 =
let z1 = integerLogBase# x y
z2 = integerLogBase# x (y-1)
in case y of
1 -> Just 0
_ | isTrue# (z1 ==# z2) -> Nothing
| otherwise -> Just (smallInteger z1)
exactLogBase _ _ = Nothing