{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE DataKinds #-}

--
--  (c) The University of Glasgow 2002-2006
--

-- Functions over HsSyn specialised to RdrName.

module GHC.Parser.PostProcess (
        mkRdrGetField, mkRdrProjection, Fbind, -- RecordDot
        mkHsOpApp,
        mkHsIntegral, mkHsFractional, mkHsIsString,
        mkHsDo, mkSpliceDecl,
        mkRoleAnnotDecl,
        mkClassDecl,
        mkTyData, mkDataFamInst,
        mkTySynonym, mkTyFamInstEqn,
        mkStandaloneKindSig,
        mkTyFamInst,
        mkFamDecl,
        mkInlinePragma,
        mkOpaquePragma,
        mkPatSynMatchGroup,
        mkRecConstrOrUpdate,
        mkTyClD, mkInstD,
        mkRdrRecordCon, mkRdrRecordUpd,
        setRdrNameSpace,
        fromSpecTyVarBndr, fromSpecTyVarBndrs,
        annBinds,
        fixValbindsAnn,
        stmtsAnchor, stmtsLoc,

        cvBindGroup,
        cvBindsAndSigs,
        cvTopDecls,
        placeHolderPunRhs,

        -- Stuff to do with Foreign declarations
        mkImport,
        parseCImport,
        mkExport,
        mkExtName,    -- RdrName -> CLabelString
        mkGadtDecl,   -- [LocatedA RdrName] -> LHsType RdrName -> ConDecl RdrName
        mkConDeclH98,

        -- Bunch of functions in the parser monad for
        -- checking and constructing values
        checkImportDecl,
        checkExpBlockArguments, checkCmdBlockArguments,
        checkPrecP,           -- Int -> P Int
        checkContext,         -- HsType -> P HsContext
        checkPattern,         -- HsExp -> P HsPat
        checkPattern_details,
        incompleteDoBlock,
        ParseContext(..),
        checkMonadComp,       -- P (HsStmtContext GhcPs)
        checkValDef,          -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
        checkValSigLhs,
        LRuleTyTmVar, RuleTyTmVar(..),
        mkRuleBndrs, mkRuleTyVarBndrs,
        checkRuleTyVarBndrNames,
        checkRecordSyntax,
        checkEmptyGADTs,
        addFatalError, hintBangPat,
        mkBangTy,
        UnpackednessPragma(..),
        mkMultTy,

        -- Token location
        mkTokenLocation,

        -- Help with processing exports
        ImpExpSubSpec(..),
        ImpExpQcSpec(..),
        mkModuleImpExp,
        mkTypeImpExp,
        mkImpExpSubSpec,
        checkImportSpec,

        -- Token symbols
        starSym,

        -- Warnings and errors
        warnStarIsType,
        warnPrepositiveQualifiedModule,
        failOpFewArgs,
        failNotEnabledImportQualifiedPost,
        failImportQualifiedTwice,

        SumOrTuple (..),

        -- Expression/command/pattern ambiguity resolution
        PV,
        runPV,
        ECP(ECP, unECP),
        DisambInfixOp(..),
        DisambECP(..),
        ecpFromExp,
        ecpFromCmd,
        PatBuilder,

        -- Type/datacon ambiguity resolution
        DisambTD(..),
        addUnpackednessP,
        dataConBuilderCon,
        dataConBuilderDetails,
    ) where

import GHC.Prelude
import GHC.Hs           -- Lots of it
import GHC.Core.TyCon          ( TyCon, isTupleTyCon, tyConSingleDataCon_maybe )
import GHC.Core.DataCon        ( DataCon, dataConTyCon )
import GHC.Core.ConLike        ( ConLike(..) )
import GHC.Core.Coercion.Axiom ( Role, fsFromRole )
import GHC.Types.Name.Reader
import GHC.Types.Name
import GHC.Types.Basic
import GHC.Types.Error
import GHC.Types.Fixity
import GHC.Types.Hint
import GHC.Types.SourceText
import GHC.Parser.Types
import GHC.Parser.Lexer
import GHC.Parser.Errors.Types
import GHC.Parser.Errors.Ppr ()
import GHC.Utils.Lexeme ( okConOcc )
import GHC.Types.TyThing
import GHC.Core.Type    ( Specificity(..) )
import GHC.Builtin.Types( cTupleTyConName, tupleTyCon, tupleDataCon,
                          nilDataConName, nilDataConKey,
                          listTyConName, listTyConKey,
                          unrestrictedFunTyCon )
import GHC.Types.ForeignCall
import GHC.Types.SrcLoc
import GHC.Types.Unique ( hasKey )
import GHC.Data.OrdList
import GHC.Utils.Outputable as Outputable
import GHC.Data.FastString
import GHC.Data.Maybe
import GHC.Utils.Error
import GHC.Utils.Misc
import Data.Either
import Data.List        ( findIndex )
import Data.Foldable
import qualified Data.Semigroup as Semi
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import qualified GHC.Data.Strict as Strict

import Language.Haskell.Syntax.Basic (FieldLabelString(..))

import Control.Monad
import Text.ParserCombinators.ReadP as ReadP
import Data.Char
import Data.Data       ( dataTypeOf, fromConstr, dataTypeConstrs )
import Data.Kind       ( Type )
import Data.List.NonEmpty (NonEmpty)

{- **********************************************************************

  Construction functions for Rdr stuff

  ********************************************************************* -}

-- | mkClassDecl builds a RdrClassDecl, filling in the names for tycon and
-- datacon by deriving them from the name of the class.  We fill in the names
-- for the tycon and datacon corresponding to the class, by deriving them
-- from the name of the class itself.  This saves recording the names in the
-- interface file (which would be equally good).

-- Similarly for mkConDecl, mkClassOpSig and default-method names.

--         *** See Note [The Naming story] in GHC.Hs.Decls ****

mkTyClD :: LTyClDecl (GhcPass p) -> LHsDecl (GhcPass p)
mkTyClD :: forall (p :: Pass). LTyClDecl (GhcPass p) -> LHsDecl (GhcPass p)
mkTyClD (L SrcSpanAnnA
loc TyClDecl (GhcPass p)
d) = forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc (forall p. XTyClD p -> TyClDecl p -> HsDecl p
TyClD NoExtField
noExtField TyClDecl (GhcPass p)
d)

mkInstD :: LInstDecl (GhcPass p) -> LHsDecl (GhcPass p)
mkInstD :: forall (p :: Pass). LInstDecl (GhcPass p) -> LHsDecl (GhcPass p)
mkInstD (L SrcSpanAnnA
loc InstDecl (GhcPass p)
d) = forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc (forall p. XInstD p -> InstDecl p -> HsDecl p
InstD NoExtField
noExtField InstDecl (GhcPass p)
d)

mkClassDecl :: SrcSpan
            -> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
            -> Located (a,[LHsFunDep GhcPs])
            -> OrdList (LHsDecl GhcPs)
            -> LayoutInfo GhcPs
            -> [AddEpAnn]
            -> P (LTyClDecl GhcPs)

mkClassDecl :: forall a.
SrcSpan
-> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
-> Located (a, [LHsFunDep GhcPs])
-> OrdList (LHsDecl GhcPs)
-> LayoutInfo GhcPs
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkClassDecl SrcSpan
loc' (L SrcSpan
_ (Maybe (LHsContext GhcPs)
mcxt, LHsType GhcPs
tycl_hdr)) Located (a, [LHsFunDep GhcPs])
fds OrdList (LHsDecl GhcPs)
where_cls LayoutInfo GhcPs
layoutInfo [AddEpAnn]
annsIn
  = do { let loc :: SrcSpanAnnA
loc = forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc'
       ; (Bag (GenLocated SrcSpanAnnA (HsBindLR GhcPs GhcPs))
binds, [GenLocated SrcSpanAnnA (Sig GhcPs)]
sigs, [GenLocated SrcSpanAnnA (FamilyDecl GhcPs)]
ats, [GenLocated SrcSpanAnnA (TyFamInstDecl GhcPs)]
at_defs, [GenLocated SrcSpanAnnA (DataFamInstDecl GhcPs)]
_, [GenLocated SrcSpanAnnA (DocDecl GhcPs)]
docs) <- OrdList (LHsDecl GhcPs)
-> P (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs],
      [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl GhcPs])
cvBindsAndSigs OrdList (LHsDecl GhcPs)
where_cls
       ; (GenLocated SrcSpanAnnN RdrName
cls, [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams, LexicalFixity
fixity, [AddEpAnn]
ann) <- Bool
-> LHsType GhcPs
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
checkTyClHdr Bool
True LHsType GhcPs
tycl_hdr
       ; LHsQTyVars GhcPs
tyvars <- SDoc
-> SDoc
-> GenLocated SrcSpanAnnN RdrName
-> [LHsTypeArg GhcPs]
-> P (LHsQTyVars GhcPs)
checkTyVars (forall doc. IsLine doc => String -> doc
text String
"class") SDoc
whereDots GenLocated SrcSpanAnnN RdrName
cls [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams
       ; EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) -- Get any remaining comments
       ; let anns' :: EpAnn [AddEpAnn]
anns' = EpAnn [AddEpAnn] -> [AddEpAnn] -> EpAnnComments -> EpAnn [AddEpAnn]
addAnns (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) [AddEpAnn]
annsIn EpAnnComments
emptyComments) [AddEpAnn]
ann EpAnnComments
cs
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc (ClassDecl { tcdCExt :: XClassDecl GhcPs
tcdCExt = (EpAnn [AddEpAnn]
anns', AnnSortKey
NoAnnSortKey)
                                  , tcdLayout :: LayoutInfo GhcPs
tcdLayout = LayoutInfo GhcPs
layoutInfo
                                  , tcdCtxt :: Maybe (LHsContext GhcPs)
tcdCtxt = Maybe (LHsContext GhcPs)
mcxt
                                  , tcdLName :: XRec GhcPs (IdP GhcPs)
tcdLName = GenLocated SrcSpanAnnN RdrName
cls, tcdTyVars :: LHsQTyVars GhcPs
tcdTyVars = LHsQTyVars GhcPs
tyvars
                                  , tcdFixity :: LexicalFixity
tcdFixity = LexicalFixity
fixity
                                  , tcdFDs :: [LHsFunDep GhcPs]
tcdFDs = forall a b. (a, b) -> b
snd (forall l e. GenLocated l e -> e
unLoc Located (a, [LHsFunDep GhcPs])
fds)
                                  , tcdSigs :: [LSig GhcPs]
tcdSigs = [LSig GhcPs] -> [LSig GhcPs]
mkClassOpSigs [GenLocated SrcSpanAnnA (Sig GhcPs)]
sigs
                                  , tcdMeths :: LHsBinds GhcPs
tcdMeths = Bag (GenLocated SrcSpanAnnA (HsBindLR GhcPs GhcPs))
binds
                                  , tcdATs :: [LFamilyDecl GhcPs]
tcdATs = [GenLocated SrcSpanAnnA (FamilyDecl GhcPs)]
ats, tcdATDefs :: [LTyFamInstDecl GhcPs]
tcdATDefs = [GenLocated SrcSpanAnnA (TyFamInstDecl GhcPs)]
at_defs
                                  , tcdDocs :: [LDocDecl GhcPs]
tcdDocs  = [GenLocated SrcSpanAnnA (DocDecl GhcPs)]
docs })) }

mkTyData :: SrcSpan
         -> Bool
         -> NewOrData
         -> Maybe (LocatedP CType)
         -> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
         -> Maybe (LHsKind GhcPs)
         -> [LConDecl GhcPs]
         -> Located (HsDeriving GhcPs)
         -> [AddEpAnn]
         -> P (LTyClDecl GhcPs)
mkTyData :: SrcSpan
-> Bool
-> NewOrData
-> Maybe (LocatedP CType)
-> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
-> Maybe (LHsType GhcPs)
-> [LConDecl GhcPs]
-> Located (HsDeriving GhcPs)
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkTyData SrcSpan
loc' Bool
is_type_data NewOrData
new_or_data Maybe (LocatedP CType)
cType (L SrcSpan
_ (Maybe (LHsContext GhcPs)
mcxt, LHsType GhcPs
tycl_hdr))
         Maybe (LHsType GhcPs)
ksig [LConDecl GhcPs]
data_cons (L SrcSpan
_ HsDeriving GhcPs
maybe_deriv) [AddEpAnn]
annsIn
  = do { let loc :: SrcSpanAnnA
loc = forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc'
       ; (GenLocated SrcSpanAnnN RdrName
tc, [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams, LexicalFixity
fixity, [AddEpAnn]
ann) <- Bool
-> LHsType GhcPs
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
checkTyClHdr Bool
False LHsType GhcPs
tycl_hdr
       ; LHsQTyVars GhcPs
tyvars <- SDoc
-> SDoc
-> GenLocated SrcSpanAnnN RdrName
-> [LHsTypeArg GhcPs]
-> P (LHsQTyVars GhcPs)
checkTyVars (forall a. Outputable a => a -> SDoc
ppr NewOrData
new_or_data) SDoc
equalsDots GenLocated SrcSpanAnnN RdrName
tc [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams
       ; EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) -- Get any remaining comments
       ; let anns' :: EpAnn [AddEpAnn]
anns' = EpAnn [AddEpAnn] -> [AddEpAnn] -> EpAnnComments -> EpAnn [AddEpAnn]
addAnns (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) [AddEpAnn]
annsIn EpAnnComments
emptyComments) [AddEpAnn]
ann EpAnnComments
cs
       ; DataDefnCons (GenLocated SrcSpanAnnA (ConDecl GhcPs))
data_cons <- SrcSpan
-> RdrName
-> Bool
-> NewOrData
-> [LConDecl GhcPs]
-> P (DataDefnCons (LConDecl GhcPs))
checkNewOrData (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
tc) Bool
is_type_data NewOrData
new_or_data [LConDecl GhcPs]
data_cons
       ; HsDataDefn GhcPs
defn <- Maybe (LocatedP CType)
-> Maybe (LHsContext GhcPs)
-> Maybe (LHsType GhcPs)
-> DataDefnCons (LConDecl GhcPs)
-> HsDeriving GhcPs
-> P (HsDataDefn GhcPs)
mkDataDefn Maybe (LocatedP CType)
cType Maybe (LHsContext GhcPs)
mcxt Maybe (LHsType GhcPs)
ksig DataDefnCons (GenLocated SrcSpanAnnA (ConDecl GhcPs))
data_cons HsDeriving GhcPs
maybe_deriv
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc (DataDecl { tcdDExt :: XDataDecl GhcPs
tcdDExt = EpAnn [AddEpAnn]
anns',
                                   tcdLName :: XRec GhcPs (IdP GhcPs)
tcdLName = GenLocated SrcSpanAnnN RdrName
tc, tcdTyVars :: LHsQTyVars GhcPs
tcdTyVars = LHsQTyVars GhcPs
tyvars,
                                   tcdFixity :: LexicalFixity
tcdFixity = LexicalFixity
fixity,
                                   tcdDataDefn :: HsDataDefn GhcPs
tcdDataDefn = HsDataDefn GhcPs
defn })) }

mkDataDefn :: Maybe (LocatedP CType)
           -> Maybe (LHsContext GhcPs)
           -> Maybe (LHsKind GhcPs)
           -> DataDefnCons (LConDecl GhcPs)
           -> HsDeriving GhcPs
           -> P (HsDataDefn GhcPs)
mkDataDefn :: Maybe (LocatedP CType)
-> Maybe (LHsContext GhcPs)
-> Maybe (LHsType GhcPs)
-> DataDefnCons (LConDecl GhcPs)
-> HsDeriving GhcPs
-> P (HsDataDefn GhcPs)
mkDataDefn Maybe (LocatedP CType)
cType Maybe (LHsContext GhcPs)
mcxt Maybe (LHsType GhcPs)
ksig DataDefnCons (LConDecl GhcPs)
data_cons HsDeriving GhcPs
maybe_deriv
  = do { Maybe (LHsContext GhcPs) -> P ()
checkDatatypeContext Maybe (LHsContext GhcPs)
mcxt
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (HsDataDefn { dd_ext :: XCHsDataDefn GhcPs
dd_ext = NoExtField
noExtField
                            , dd_cType :: Maybe (XRec GhcPs CType)
dd_cType = Maybe (LocatedP CType)
cType
                            , dd_ctxt :: Maybe (LHsContext GhcPs)
dd_ctxt = Maybe (LHsContext GhcPs)
mcxt
                            , dd_cons :: DataDefnCons (LConDecl GhcPs)
dd_cons = DataDefnCons (LConDecl GhcPs)
data_cons
                            , dd_kindSig :: Maybe (LHsType GhcPs)
dd_kindSig = Maybe (LHsType GhcPs)
ksig
                            , dd_derivs :: HsDeriving GhcPs
dd_derivs = HsDeriving GhcPs
maybe_deriv }) }

mkTySynonym :: SrcSpan
            -> LHsType GhcPs  -- LHS
            -> LHsType GhcPs  -- RHS
            -> [AddEpAnn]
            -> P (LTyClDecl GhcPs)
mkTySynonym :: SrcSpan
-> LHsType GhcPs
-> LHsType GhcPs
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkTySynonym SrcSpan
loc LHsType GhcPs
lhs LHsType GhcPs
rhs [AddEpAnn]
annsIn
  = do { (GenLocated SrcSpanAnnN RdrName
tc, [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams, LexicalFixity
fixity, [AddEpAnn]
ann) <- Bool
-> LHsType GhcPs
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
checkTyClHdr Bool
False LHsType GhcPs
lhs
       ; EpAnnComments
cs1 <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc -- Add any API Annotations to the top SrcSpan [temp]
       ; LHsQTyVars GhcPs
tyvars <- SDoc
-> SDoc
-> GenLocated SrcSpanAnnN RdrName
-> [LHsTypeArg GhcPs]
-> P (LHsQTyVars GhcPs)
checkTyVars (forall doc. IsLine doc => String -> doc
text String
"type") SDoc
equalsDots GenLocated SrcSpanAnnN RdrName
tc [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams
       ; EpAnnComments
cs2 <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc -- Add any API Annotations to the top SrcSpan [temp]
       ; let anns' :: EpAnn [AddEpAnn]
anns' = EpAnn [AddEpAnn] -> [AddEpAnn] -> EpAnnComments -> EpAnn [AddEpAnn]
addAnns (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
loc) [AddEpAnn]
annsIn EpAnnComments
emptyComments) [AddEpAnn]
ann (EpAnnComments
cs1 forall a. Semigroup a => a -> a -> a
Semi.<> EpAnnComments
cs2)
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) (SynDecl
                                { tcdSExt :: XSynDecl GhcPs
tcdSExt = EpAnn [AddEpAnn]
anns'
                                , tcdLName :: XRec GhcPs (IdP GhcPs)
tcdLName = GenLocated SrcSpanAnnN RdrName
tc, tcdTyVars :: LHsQTyVars GhcPs
tcdTyVars = LHsQTyVars GhcPs
tyvars
                                , tcdFixity :: LexicalFixity
tcdFixity = LexicalFixity
fixity
                                , tcdRhs :: LHsType GhcPs
tcdRhs = LHsType GhcPs
rhs })) }

mkStandaloneKindSig
  :: SrcSpan
  -> Located [LocatedN RdrName]   -- LHS
  -> LHsSigType GhcPs             -- RHS
  -> [AddEpAnn]
  -> P (LStandaloneKindSig GhcPs)
mkStandaloneKindSig :: SrcSpan
-> Located [GenLocated SrcSpanAnnN RdrName]
-> LHsSigType GhcPs
-> [AddEpAnn]
-> P (LStandaloneKindSig GhcPs)
mkStandaloneKindSig SrcSpan
loc Located [GenLocated SrcSpanAnnN RdrName]
lhs LHsSigType GhcPs
rhs [AddEpAnn]
anns =
  do { [GenLocated SrcSpanAnnN RdrName]
vs <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall {m :: * -> *} {a}.
MonadP m =>
GenLocated (SrcSpanAnn' a) RdrName
-> m (GenLocated (SrcSpanAnn' a) RdrName)
check_lhs_name (forall l e. GenLocated l e -> e
unLoc Located [GenLocated SrcSpanAnnN RdrName]
lhs)
     ; GenLocated SrcSpanAnnN RdrName
v <- [GenLocated SrcSpanAnnN RdrName]
-> P (GenLocated SrcSpanAnnN RdrName)
check_singular_lhs (forall a. [a] -> [a]
reverse [GenLocated SrcSpanAnnN RdrName]
vs)
     ; EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc
     ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc)
       forall a b. (a -> b) -> a -> b
$ forall pass.
XStandaloneKindSig pass
-> LIdP pass -> LHsSigType pass -> StandaloneKindSig pass
StandaloneKindSig (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
loc) [AddEpAnn]
anns EpAnnComments
cs) GenLocated SrcSpanAnnN RdrName
v LHsSigType GhcPs
rhs }
  where
    check_lhs_name :: GenLocated (SrcSpanAnn' a) RdrName
-> m (GenLocated (SrcSpanAnn' a) RdrName)
check_lhs_name v :: GenLocated (SrcSpanAnn' a) RdrName
v@(forall l e. GenLocated l e -> e
unLoc->RdrName
name) =
      if RdrName -> Bool
isUnqual RdrName
name Bool -> Bool -> Bool
&& OccName -> Bool
isTcOcc (RdrName -> OccName
rdrNameOcc RdrName
name)
      then forall (m :: * -> *) a. Monad m => a -> m a
return GenLocated (SrcSpanAnn' a) RdrName
v
      else forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA GenLocated (SrcSpanAnn' a) RdrName
v) forall a b. (a -> b) -> a -> b
$
             (RdrName -> PsMessage
PsErrUnexpectedQualifiedConstructor (forall l e. GenLocated l e -> e
unLoc GenLocated (SrcSpanAnn' a) RdrName
v))
    check_singular_lhs :: [GenLocated SrcSpanAnnN RdrName]
-> P (GenLocated SrcSpanAnnN RdrName)
check_singular_lhs [GenLocated SrcSpanAnnN RdrName]
vs =
      case [GenLocated SrcSpanAnnN RdrName]
vs of
        [] -> forall a. HasCallStack => String -> a
panic String
"mkStandaloneKindSig: empty left-hand side"
        [GenLocated SrcSpanAnnN RdrName
v] -> forall (m :: * -> *) a. Monad m => a -> m a
return GenLocated SrcSpanAnnN RdrName
v
        [GenLocated SrcSpanAnnN RdrName]
_ -> forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall l e. GenLocated l e -> l
getLoc Located [GenLocated SrcSpanAnnN RdrName]
lhs) forall a b. (a -> b) -> a -> b
$
               ([XRec GhcPs (IdP GhcPs)] -> PsMessage
PsErrMultipleNamesInStandaloneKindSignature [GenLocated SrcSpanAnnN RdrName]
vs)

mkTyFamInstEqn :: SrcSpan
               -> HsOuterFamEqnTyVarBndrs GhcPs
               -> LHsType GhcPs
               -> LHsType GhcPs
               -> [AddEpAnn]
               -> P (LTyFamInstEqn GhcPs)
mkTyFamInstEqn :: SrcSpan
-> HsOuterFamEqnTyVarBndrs GhcPs
-> LHsType GhcPs
-> LHsType GhcPs
-> [AddEpAnn]
-> P (LTyFamInstEqn GhcPs)
mkTyFamInstEqn SrcSpan
loc HsOuterFamEqnTyVarBndrs GhcPs
bndrs LHsType GhcPs
lhs LHsType GhcPs
rhs [AddEpAnn]
anns
  = do { (GenLocated SrcSpanAnnN RdrName
tc, [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams, LexicalFixity
fixity, [AddEpAnn]
ann) <- Bool
-> LHsType GhcPs
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
checkTyClHdr Bool
False LHsType GhcPs
lhs
       ; EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) forall a b. (a -> b) -> a -> b
$ FamEqn
                        { feqn_ext :: XCFamEqn GhcPs (GenLocated SrcSpanAnnA (HsType GhcPs))
feqn_ext    = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
loc) ([AddEpAnn]
anns forall a. Monoid a => a -> a -> a
`mappend` [AddEpAnn]
ann) EpAnnComments
cs
                        , feqn_tycon :: XRec GhcPs (IdP GhcPs)
feqn_tycon  = GenLocated SrcSpanAnnN RdrName
tc
                        , feqn_bndrs :: HsOuterFamEqnTyVarBndrs GhcPs
feqn_bndrs  = HsOuterFamEqnTyVarBndrs GhcPs
bndrs
                        , feqn_pats :: [LHsTypeArg GhcPs]
feqn_pats   = [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams
                        , feqn_fixity :: LexicalFixity
feqn_fixity = LexicalFixity
fixity
                        , feqn_rhs :: GenLocated SrcSpanAnnA (HsType GhcPs)
feqn_rhs    = LHsType GhcPs
rhs })}

mkDataFamInst :: SrcSpan
              -> NewOrData
              -> Maybe (LocatedP CType)
              -> (Maybe ( LHsContext GhcPs), HsOuterFamEqnTyVarBndrs GhcPs
                        , LHsType GhcPs)
              -> Maybe (LHsKind GhcPs)
              -> [LConDecl GhcPs]
              -> Located (HsDeriving GhcPs)
              -> [AddEpAnn]
              -> P (LInstDecl GhcPs)
mkDataFamInst :: SrcSpan
-> NewOrData
-> Maybe (LocatedP CType)
-> (Maybe (LHsContext GhcPs), HsOuterFamEqnTyVarBndrs GhcPs,
    LHsType GhcPs)
-> Maybe (LHsType GhcPs)
-> [LConDecl GhcPs]
-> Located (HsDeriving GhcPs)
-> [AddEpAnn]
-> P (LInstDecl GhcPs)
mkDataFamInst SrcSpan
loc NewOrData
new_or_data Maybe (LocatedP CType)
cType (Maybe (LHsContext GhcPs)
mcxt, HsOuterFamEqnTyVarBndrs GhcPs
bndrs, LHsType GhcPs
tycl_hdr)
              Maybe (LHsType GhcPs)
ksig [LConDecl GhcPs]
data_cons (L SrcSpan
_ HsDeriving GhcPs
maybe_deriv) [AddEpAnn]
anns
  = do { (GenLocated SrcSpanAnnN RdrName
tc, [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams, LexicalFixity
fixity, [AddEpAnn]
ann) <- Bool
-> LHsType GhcPs
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
checkTyClHdr Bool
False LHsType GhcPs
tycl_hdr
       ; EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc -- Add any API Annotations to the top SrcSpan
       ; let fam_eqn_ans :: EpAnn [AddEpAnn]
fam_eqn_ans = EpAnn [AddEpAnn] -> [AddEpAnn] -> EpAnnComments -> EpAnn [AddEpAnn]
addAnns (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
loc) [AddEpAnn]
ann EpAnnComments
cs) [AddEpAnn]
anns EpAnnComments
emptyComments
       ; DataDefnCons (GenLocated SrcSpanAnnA (ConDecl GhcPs))
data_cons <- SrcSpan
-> RdrName
-> Bool
-> NewOrData
-> [LConDecl GhcPs]
-> P (DataDefnCons (LConDecl GhcPs))
checkNewOrData SrcSpan
loc (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
tc) Bool
False NewOrData
new_or_data [LConDecl GhcPs]
data_cons
       ; HsDataDefn GhcPs
defn <- Maybe (LocatedP CType)
-> Maybe (LHsContext GhcPs)
-> Maybe (LHsType GhcPs)
-> DataDefnCons (LConDecl GhcPs)
-> HsDeriving GhcPs
-> P (HsDataDefn GhcPs)
mkDataDefn Maybe (LocatedP CType)
cType Maybe (LHsContext GhcPs)
mcxt Maybe (LHsType GhcPs)
ksig DataDefnCons (GenLocated SrcSpanAnnA (ConDecl GhcPs))
data_cons HsDeriving GhcPs
maybe_deriv
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) (forall pass.
XDataFamInstD pass -> DataFamInstDecl pass -> InstDecl pass
DataFamInstD NoExtField
noExtField (forall pass. FamEqn pass (HsDataDefn pass) -> DataFamInstDecl pass
DataFamInstDecl
                  (FamEqn { feqn_ext :: XCFamEqn GhcPs (HsDataDefn GhcPs)
feqn_ext    = EpAnn [AddEpAnn]
fam_eqn_ans
                          , feqn_tycon :: XRec GhcPs (IdP GhcPs)
feqn_tycon  = GenLocated SrcSpanAnnN RdrName
tc
                          , feqn_bndrs :: HsOuterFamEqnTyVarBndrs GhcPs
feqn_bndrs  = HsOuterFamEqnTyVarBndrs GhcPs
bndrs
                          , feqn_pats :: [LHsTypeArg GhcPs]
feqn_pats   = [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams
                          , feqn_fixity :: LexicalFixity
feqn_fixity = LexicalFixity
fixity
                          , feqn_rhs :: HsDataDefn GhcPs
feqn_rhs    = HsDataDefn GhcPs
defn })))) }

-- mkDataFamInst loc new_or_data cType (mcxt, bndrs, tycl_hdr)
--               ksig data_cons (L _ maybe_deriv) anns
--   = do { (tc, tparams, fixity, ann) <- checkTyClHdr False tycl_hdr
--        ; cs <- getCommentsFor loc -- Add any API Annotations to the top SrcSpan
--        ; let anns' = addAnns (EpAnn (spanAsAnchor loc) ann cs) anns emptyComments
--        ; defn <- mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
--        ; return (L (noAnnSrcSpan loc) (DataFamInstD anns' (DataFamInstDecl
--                   (FamEqn { feqn_ext    = anns'
--                           , feqn_tycon  = tc
--                           , feqn_bndrs  = bndrs
--                           , feqn_pats   = tparams
--                           , feqn_fixity = fixity
--                           , feqn_rhs    = defn })))) }



mkTyFamInst :: SrcSpan
            -> TyFamInstEqn GhcPs
            -> [AddEpAnn]
            -> P (LInstDecl GhcPs)
mkTyFamInst :: SrcSpan -> TyFamInstEqn GhcPs -> [AddEpAnn] -> P (LInstDecl GhcPs)
mkTyFamInst SrcSpan
loc TyFamInstEqn GhcPs
eqn [AddEpAnn]
anns = do
  EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc
  forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) (forall pass.
XTyFamInstD pass -> TyFamInstDecl pass -> InstDecl pass
TyFamInstD NoExtField
noExtField
              (forall pass.
XCTyFamInstDecl pass -> TyFamInstEqn pass -> TyFamInstDecl pass
TyFamInstDecl (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
loc) [AddEpAnn]
anns EpAnnComments
cs) TyFamInstEqn GhcPs
eqn)))

mkFamDecl :: SrcSpan
          -> FamilyInfo GhcPs
          -> TopLevelFlag
          -> LHsType GhcPs                   -- LHS
          -> LFamilyResultSig GhcPs          -- Optional result signature
          -> Maybe (LInjectivityAnn GhcPs)   -- Injectivity annotation
          -> [AddEpAnn]
          -> P (LTyClDecl GhcPs)
mkFamDecl :: SrcSpan
-> FamilyInfo GhcPs
-> TopLevelFlag
-> LHsType GhcPs
-> LFamilyResultSig GhcPs
-> Maybe (LInjectivityAnn GhcPs)
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkFamDecl SrcSpan
loc FamilyInfo GhcPs
info TopLevelFlag
topLevel LHsType GhcPs
lhs LFamilyResultSig GhcPs
ksig Maybe (LInjectivityAnn GhcPs)
injAnn [AddEpAnn]
annsIn
  = do { (GenLocated SrcSpanAnnN RdrName
tc, [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams, LexicalFixity
fixity, [AddEpAnn]
ann) <- Bool
-> LHsType GhcPs
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
checkTyClHdr Bool
False LHsType GhcPs
lhs
       ; EpAnnComments
cs1 <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc -- Add any API Annotations to the top SrcSpan [temp]
       ; LHsQTyVars GhcPs
tyvars <- SDoc
-> SDoc
-> GenLocated SrcSpanAnnN RdrName
-> [LHsTypeArg GhcPs]
-> P (LHsQTyVars GhcPs)
checkTyVars (forall a. Outputable a => a -> SDoc
ppr FamilyInfo GhcPs
info) SDoc
equals_or_where GenLocated SrcSpanAnnN RdrName
tc [HsArg
   (GenLocated SrcSpanAnnA (HsType GhcPs))
   (GenLocated SrcSpanAnnA (HsType GhcPs))]
tparams
       ; EpAnnComments
cs2 <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc -- Add any API Annotations to the top SrcSpan [temp]
       ; let anns' :: EpAnn [AddEpAnn]
anns' = EpAnn [AddEpAnn] -> [AddEpAnn] -> EpAnnComments -> EpAnn [AddEpAnn]
addAnns (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
loc) [AddEpAnn]
annsIn EpAnnComments
emptyComments) [AddEpAnn]
ann (EpAnnComments
cs1 forall a. Semigroup a => a -> a -> a
Semi.<> EpAnnComments
cs2)
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) (forall pass. XFamDecl pass -> FamilyDecl pass -> TyClDecl pass
FamDecl NoExtField
noExtField
                                         (FamilyDecl
                                           { fdExt :: XCFamilyDecl GhcPs
fdExt       = EpAnn [AddEpAnn]
anns'
                                           , fdTopLevel :: TopLevelFlag
fdTopLevel  = TopLevelFlag
topLevel
                                           , fdInfo :: FamilyInfo GhcPs
fdInfo      = FamilyInfo GhcPs
info, fdLName :: XRec GhcPs (IdP GhcPs)
fdLName = GenLocated SrcSpanAnnN RdrName
tc
                                           , fdTyVars :: LHsQTyVars GhcPs
fdTyVars    = LHsQTyVars GhcPs
tyvars
                                           , fdFixity :: LexicalFixity
fdFixity    = LexicalFixity
fixity
                                           , fdResultSig :: LFamilyResultSig GhcPs
fdResultSig = LFamilyResultSig GhcPs
ksig
                                           , fdInjectivityAnn :: Maybe (LInjectivityAnn GhcPs)
fdInjectivityAnn = Maybe (LInjectivityAnn GhcPs)
injAnn }))) }
  where
    equals_or_where :: SDoc
equals_or_where = case FamilyInfo GhcPs
info of
                        FamilyInfo GhcPs
DataFamily          -> forall doc. IsOutput doc => doc
empty
                        FamilyInfo GhcPs
OpenTypeFamily      -> forall doc. IsOutput doc => doc
empty
                        ClosedTypeFamily {} -> SDoc
whereDots

mkSpliceDecl :: LHsExpr GhcPs -> P (LHsDecl GhcPs)
-- If the user wrote
--      [pads| ... ]   then return a QuasiQuoteD
--      $(e)           then return a SpliceD
-- but if they wrote, say,
--      f x            then behave as if they'd written $(f x)
--                     ie a SpliceD
--
-- Typed splices are not allowed at the top level, thus we do not represent them
-- as spliced declaration.  See #10945
mkSpliceDecl :: LHsExpr GhcPs -> P (LHsDecl GhcPs)
mkSpliceDecl lexpr :: LHsExpr GhcPs
lexpr@(L SrcSpanAnnA
loc HsExpr GhcPs
expr)
  | HsUntypedSplice XUntypedSplice GhcPs
_ splice :: HsUntypedSplice GhcPs
splice@(HsUntypedSpliceExpr {}) <- HsExpr GhcPs
expr = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. Monoid ann => SrcAnn ann -> EpAnnComments -> SrcAnn ann
addCommentsToSrcAnn SrcSpanAnnA
loc EpAnnComments
cs) forall a b. (a -> b) -> a -> b
$ forall p. XSpliceD p -> SpliceDecl p -> HsDecl p
SpliceD NoExtField
noExtField (forall p.
XSpliceDecl p
-> XRec p (HsUntypedSplice p) -> SpliceDecoration -> SpliceDecl p
SpliceDecl NoExtField
noExtField (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc HsUntypedSplice GhcPs
splice) SpliceDecoration
DollarSplice)

  | HsUntypedSplice XUntypedSplice GhcPs
_ splice :: HsUntypedSplice GhcPs
splice@(HsQuasiQuote {}) <- HsExpr GhcPs
expr = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. Monoid ann => SrcAnn ann -> EpAnnComments -> SrcAnn ann
addCommentsToSrcAnn SrcSpanAnnA
loc EpAnnComments
cs) forall a b. (a -> b) -> a -> b
$ forall p. XSpliceD p -> SpliceDecl p -> HsDecl p
SpliceD NoExtField
noExtField (forall p.
XSpliceDecl p
-> XRec p (HsUntypedSplice p) -> SpliceDecoration -> SpliceDecl p
SpliceDecl NoExtField
noExtField (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc HsUntypedSplice GhcPs
splice) SpliceDecoration
DollarSplice)

  | Bool
otherwise = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. Monoid ann => SrcAnn ann -> EpAnnComments -> SrcAnn ann
addCommentsToSrcAnn SrcSpanAnnA
loc EpAnnComments
cs) forall a b. (a -> b) -> a -> b
$ forall p. XSpliceD p -> SpliceDecl p -> HsDecl p
SpliceD NoExtField
noExtField (forall p.
XSpliceDecl p
-> XRec p (HsUntypedSplice p) -> SpliceDecoration -> SpliceDecl p
SpliceDecl NoExtField
noExtField
                                 (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc (forall id.
XUntypedSpliceExpr id -> LHsExpr id -> HsUntypedSplice id
HsUntypedSpliceExpr forall a. EpAnn a
noAnn LHsExpr GhcPs
lexpr))
                                       SpliceDecoration
BareSplice)

mkRoleAnnotDecl :: SrcSpan
                -> LocatedN RdrName                -- type being annotated
                -> [Located (Maybe FastString)]    -- roles
                -> [AddEpAnn]
                -> P (LRoleAnnotDecl GhcPs)
mkRoleAnnotDecl :: SrcSpan
-> GenLocated SrcSpanAnnN RdrName
-> [Located (Maybe FastString)]
-> [AddEpAnn]
-> P (LRoleAnnotDecl GhcPs)
mkRoleAnnotDecl SrcSpan
loc GenLocated SrcSpanAnnN RdrName
tycon [Located (Maybe FastString)]
roles [AddEpAnn]
anns
  = do { [GenLocated (SrcAnn NoEpAnns) (Maybe Role)]
roles' <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Located (Maybe FastString)
-> P (GenLocated (SrcAnn NoEpAnns) (Maybe Role))
parse_role [Located (Maybe FastString)]
roles
       ; EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc
       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc)
         forall a b. (a -> b) -> a -> b
$ forall pass.
XCRoleAnnotDecl pass
-> LIdP pass -> [XRec pass (Maybe Role)] -> RoleAnnotDecl pass
RoleAnnotDecl (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
loc) [AddEpAnn]
anns EpAnnComments
cs) GenLocated SrcSpanAnnN RdrName
tycon [GenLocated (SrcAnn NoEpAnns) (Maybe Role)]
roles' }
  where
    role_data_type :: DataType
role_data_type = forall a. Data a => a -> DataType
dataTypeOf (forall a. HasCallStack => a
undefined :: Role)
    all_roles :: [Role]
all_roles = forall a b. (a -> b) -> [a] -> [b]
map forall a. Data a => Constr -> a
fromConstr forall a b. (a -> b) -> a -> b
$ DataType -> [Constr]
dataTypeConstrs DataType
role_data_type
    possible_roles :: [(FastString, Role)]
possible_roles = [(Role -> FastString
fsFromRole Role
role, Role
role) | Role
role <- [Role]
all_roles]

    parse_role :: Located (Maybe FastString)
-> P (GenLocated (SrcAnn NoEpAnns) (Maybe Role))
parse_role (L SrcSpan
loc_role Maybe FastString
Nothing) = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc_role) forall a. Maybe a
Nothing
    parse_role (L SrcSpan
loc_role (Just FastString
role))
      = case forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup FastString
role [(FastString, Role)]
possible_roles of
          Just Role
found_role -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc_role) forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just Role
found_role
          Maybe Role
Nothing         ->
            let nearby :: [Role]
nearby = forall a. String -> [(String, a)] -> [a]
fuzzyLookup (FastString -> String
unpackFS FastString
role)
                  (forall (f :: * -> *) a c b.
Functor f =>
(a -> c) -> f (a, b) -> f (c, b)
mapFst FastString -> String
unpackFS [(FastString, Role)]
possible_roles)
            in
            forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc_role forall a b. (a -> b) -> a -> b
$
              (FastString -> [Role] -> PsMessage
PsErrIllegalRoleName FastString
role [Role]
nearby)

-- | Converts a list of 'LHsTyVarBndr's annotated with their 'Specificity' to
-- binders without annotations. Only accepts specified variables, and errors if
-- any of the provided binders has an 'InferredSpec' annotation.
fromSpecTyVarBndrs :: [LHsTyVarBndr Specificity GhcPs] -> P [LHsTyVarBndr () GhcPs]
fromSpecTyVarBndrs :: [LHsTyVarBndr Specificity GhcPs] -> P [LHsTyVarBndr () GhcPs]
fromSpecTyVarBndrs = forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM LHsTyVarBndr Specificity GhcPs -> P (LHsTyVarBndr () GhcPs)
fromSpecTyVarBndr

-- | Converts 'LHsTyVarBndr' annotated with its 'Specificity' to one without
-- annotations. Only accepts specified variables, and errors if the provided
-- binder has an 'InferredSpec' annotation.
fromSpecTyVarBndr :: LHsTyVarBndr Specificity GhcPs -> P (LHsTyVarBndr () GhcPs)
fromSpecTyVarBndr :: LHsTyVarBndr Specificity GhcPs -> P (LHsTyVarBndr () GhcPs)
fromSpecTyVarBndr LHsTyVarBndr Specificity GhcPs
bndr = case LHsTyVarBndr Specificity GhcPs
bndr of
  (L SrcSpanAnnA
loc (UserTyVar XUserTyVar GhcPs
xtv Specificity
flag XRec GhcPs (IdP GhcPs)
idp))     -> (Specificity -> SrcSpanAnnA -> P ()
check_spec Specificity
flag SrcSpanAnnA
loc)
                                          forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc forall a b. (a -> b) -> a -> b
$ forall flag pass.
XUserTyVar pass -> flag -> LIdP pass -> HsTyVarBndr flag pass
UserTyVar XUserTyVar GhcPs
xtv () XRec GhcPs (IdP GhcPs)
idp)
  (L SrcSpanAnnA
loc (KindedTyVar XKindedTyVar GhcPs
xtv Specificity
flag XRec GhcPs (IdP GhcPs)
idp LHsType GhcPs
k)) -> (Specificity -> SrcSpanAnnA -> P ()
check_spec Specificity
flag SrcSpanAnnA
loc)
                                          forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc forall a b. (a -> b) -> a -> b
$ forall flag pass.
XKindedTyVar pass
-> flag -> LIdP pass -> LHsKind pass -> HsTyVarBndr flag pass
KindedTyVar XKindedTyVar GhcPs
xtv () XRec GhcPs (IdP GhcPs)
idp LHsType GhcPs
k)
  where
    check_spec :: Specificity -> SrcSpanAnnA -> P ()
    check_spec :: Specificity -> SrcSpanAnnA -> P ()
check_spec Specificity
SpecifiedSpec SrcSpanAnnA
_   = forall (m :: * -> *) a. Monad m => a -> m a
return ()
    check_spec Specificity
InferredSpec  SrcSpanAnnA
loc = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) forall a b. (a -> b) -> a -> b
$
                                     PsMessage
PsErrInferredTypeVarNotAllowed

-- | Add the annotation for a 'where' keyword to existing @HsLocalBinds@
annBinds :: AddEpAnn -> EpAnnComments -> HsLocalBinds GhcPs
  -> (HsLocalBinds GhcPs, Maybe EpAnnComments)
annBinds :: AddEpAnn
-> EpAnnComments
-> HsLocalBinds GhcPs
-> (HsLocalBinds GhcPs, Maybe EpAnnComments)
annBinds AddEpAnn
a EpAnnComments
cs (HsValBinds XHsValBinds GhcPs GhcPs
an HsValBindsLR GhcPs GhcPs
bs)  = (forall idL idR.
XHsValBinds idL idR
-> HsValBindsLR idL idR -> HsLocalBindsLR idL idR
HsValBinds (AddEpAnn -> EpAnn AnnList -> EpAnnComments -> EpAnn AnnList
add_where AddEpAnn
a XHsValBinds GhcPs GhcPs
an EpAnnComments
cs) HsValBindsLR GhcPs GhcPs
bs, forall a. Maybe a
Nothing)
annBinds AddEpAnn
a EpAnnComments
cs (HsIPBinds XHsIPBinds GhcPs GhcPs
an HsIPBinds GhcPs
bs)   = (forall idL idR.
XHsIPBinds idL idR -> HsIPBinds idR -> HsLocalBindsLR idL idR
HsIPBinds (AddEpAnn -> EpAnn AnnList -> EpAnnComments -> EpAnn AnnList
add_where AddEpAnn
a XHsIPBinds GhcPs GhcPs
an EpAnnComments
cs) HsIPBinds GhcPs
bs, forall a. Maybe a
Nothing)
annBinds AddEpAnn
_ EpAnnComments
cs  (EmptyLocalBinds XEmptyLocalBinds GhcPs GhcPs
x) = (forall idL idR. XEmptyLocalBinds idL idR -> HsLocalBindsLR idL idR
EmptyLocalBinds XEmptyLocalBinds GhcPs GhcPs
x, forall a. a -> Maybe a
Just EpAnnComments
cs)

add_where :: AddEpAnn -> EpAnn AnnList -> EpAnnComments -> EpAnn AnnList
add_where :: AddEpAnn -> EpAnn AnnList -> EpAnnComments -> EpAnn AnnList
add_where an :: AddEpAnn
an@(AddEpAnn AnnKeywordId
_ (EpaSpan RealSrcSpan
rs Maybe BufSpan
_)) (EpAnn Anchor
a (AnnList Maybe Anchor
anc Maybe AddEpAnn
o Maybe AddEpAnn
c [AddEpAnn]
r [TrailingAnn]
t) EpAnnComments
cs) EpAnnComments
cs2
  | RealSrcSpan -> Bool
valid_anchor (Anchor -> RealSrcSpan
anchor Anchor
a)
  = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (Anchor -> [AddEpAnn] -> Anchor
widenAnchor Anchor
a [AddEpAnn
an]) (Maybe Anchor
-> Maybe AddEpAnn
-> Maybe AddEpAnn
-> [AddEpAnn]
-> [TrailingAnn]
-> AnnList
AnnList Maybe Anchor
anc Maybe AddEpAnn
o Maybe AddEpAnn
c (AddEpAnn
anforall a. a -> [a] -> [a]
:[AddEpAnn]
r) [TrailingAnn]
t) (EpAnnComments
cs forall a. Semigroup a => a -> a -> a
Semi.<> EpAnnComments
cs2)
  | Bool
otherwise
  = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (RealSrcSpan -> Anchor -> Anchor
patch_anchor RealSrcSpan
rs Anchor
a)
          (Maybe Anchor
-> Maybe AddEpAnn
-> Maybe AddEpAnn
-> [AddEpAnn]
-> [TrailingAnn]
-> AnnList
AnnList (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (RealSrcSpan -> Anchor -> Anchor
patch_anchor RealSrcSpan
rs) Maybe Anchor
anc) Maybe AddEpAnn
o Maybe AddEpAnn
c (AddEpAnn
anforall a. a -> [a] -> [a]
:[AddEpAnn]
r) [TrailingAnn]
t) (EpAnnComments
cs forall a. Semigroup a => a -> a -> a
Semi.<> EpAnnComments
cs2)
add_where an :: AddEpAnn
an@(AddEpAnn AnnKeywordId
_ (EpaSpan RealSrcSpan
rs Maybe BufSpan
_)) EpAnn AnnList
EpAnnNotUsed EpAnnComments
cs
  = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (RealSrcSpan -> AnchorOperation -> Anchor
Anchor RealSrcSpan
rs AnchorOperation
UnchangedAnchor)
           (Maybe Anchor
-> Maybe AddEpAnn
-> Maybe AddEpAnn
-> [AddEpAnn]
-> [TrailingAnn]
-> AnnList
AnnList (forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ RealSrcSpan -> AnchorOperation -> Anchor
Anchor RealSrcSpan
rs AnchorOperation
UnchangedAnchor) forall a. Maybe a
Nothing forall a. Maybe a
Nothing [AddEpAnn
an] []) EpAnnComments
cs
add_where (AddEpAnn AnnKeywordId
_ (EpaDelta DeltaPos
_ [LEpaComment]
_)) EpAnn AnnList
_ EpAnnComments
_ = forall a. HasCallStack => String -> a
panic String
"add_where"
 -- EpaDelta should only be used for transformations

valid_anchor :: RealSrcSpan -> Bool
valid_anchor :: RealSrcSpan -> Bool
valid_anchor RealSrcSpan
r = RealSrcSpan -> Int
srcSpanStartLine RealSrcSpan
r forall a. Ord a => a -> a -> Bool
>= Int
0

-- If the decl list for where binds is empty, the anchor ends up
-- invalid. In this case, use the parent one
patch_anchor :: RealSrcSpan -> Anchor -> Anchor
patch_anchor :: RealSrcSpan -> Anchor -> Anchor
patch_anchor RealSrcSpan
r1 (Anchor RealSrcSpan
r0 AnchorOperation
op) = RealSrcSpan -> AnchorOperation -> Anchor
Anchor RealSrcSpan
r AnchorOperation
op
  where
    r :: RealSrcSpan
r = if RealSrcSpan -> Int
srcSpanStartLine RealSrcSpan
r0 forall a. Ord a => a -> a -> Bool
< Int
0 then RealSrcSpan
r1 else RealSrcSpan
r0

fixValbindsAnn :: EpAnn AnnList -> EpAnn AnnList
fixValbindsAnn :: EpAnn AnnList -> EpAnn AnnList
fixValbindsAnn EpAnn AnnList
EpAnnNotUsed = forall a. EpAnn a
EpAnnNotUsed
fixValbindsAnn (EpAnn Anchor
anchor (AnnList Maybe Anchor
ma Maybe AddEpAnn
o Maybe AddEpAnn
c [AddEpAnn]
r [TrailingAnn]
t) EpAnnComments
cs)
  = (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (Anchor -> [AddEpAnn] -> Anchor
widenAnchor Anchor
anchor (forall a b. (a -> b) -> [a] -> [b]
map TrailingAnn -> AddEpAnn
trailingAnnToAddEpAnn [TrailingAnn]
t)) (Maybe Anchor
-> Maybe AddEpAnn
-> Maybe AddEpAnn
-> [AddEpAnn]
-> [TrailingAnn]
-> AnnList
AnnList Maybe Anchor
ma Maybe AddEpAnn
o Maybe AddEpAnn
c [AddEpAnn]
r [TrailingAnn]
t) EpAnnComments
cs)

-- | The 'Anchor' for a stmtlist is based on either the location or
-- the first semicolon annotion.
stmtsAnchor :: Located (OrdList AddEpAnn,a) -> Anchor
stmtsAnchor :: forall a. Located (OrdList AddEpAnn, a) -> Anchor
stmtsAnchor (L SrcSpan
l ((ConsOL (AddEpAnn AnnKeywordId
_ (EpaSpan RealSrcSpan
r Maybe BufSpan
_)) OrdList AddEpAnn
_), a
_))
  = Anchor -> RealSrcSpan -> Anchor
widenAnchorR (RealSrcSpan -> AnchorOperation -> Anchor
Anchor (SrcSpan -> RealSrcSpan
realSrcSpan SrcSpan
l) AnchorOperation
UnchangedAnchor) RealSrcSpan
r
stmtsAnchor (L SrcSpan
l (OrdList AddEpAnn, a)
_) = RealSrcSpan -> AnchorOperation -> Anchor
Anchor (SrcSpan -> RealSrcSpan
realSrcSpan SrcSpan
l) AnchorOperation
UnchangedAnchor

stmtsLoc :: Located (OrdList AddEpAnn,a) -> SrcSpan
stmtsLoc :: forall a. Located (OrdList AddEpAnn, a) -> SrcSpan
stmtsLoc (L SrcSpan
l ((ConsOL AddEpAnn
aa OrdList AddEpAnn
_), a
_))
  = SrcSpan -> [AddEpAnn] -> SrcSpan
widenSpan SrcSpan
l [AddEpAnn
aa]
stmtsLoc (L SrcSpan
l (OrdList AddEpAnn, a)
_) = SrcSpan
l

{- **********************************************************************

  #cvBinds-etc# Converting to @HsBinds@, etc.

  ********************************************************************* -}

-- | Function definitions are restructured here. Each is assumed to be recursive
-- initially, and non recursive definitions are discovered by the dependency
-- analyser.


--  | Groups together bindings for a single function
cvTopDecls :: OrdList (LHsDecl GhcPs) -> [LHsDecl GhcPs]
cvTopDecls :: OrdList (LHsDecl GhcPs) -> [LHsDecl GhcPs]
cvTopDecls OrdList (LHsDecl GhcPs)
decls = [LHsDecl GhcPs] -> [LHsDecl GhcPs]
getMonoBindAll (forall a. OrdList a -> [a]
fromOL OrdList (LHsDecl GhcPs)
decls)

-- Declaration list may only contain value bindings and signatures.
cvBindGroup :: OrdList (LHsDecl GhcPs) -> P (HsValBinds GhcPs)
cvBindGroup :: OrdList (LHsDecl GhcPs) -> P (HsValBindsLR GhcPs GhcPs)
cvBindGroup OrdList (LHsDecl GhcPs)
binding
  = do { (Bag (GenLocated SrcSpanAnnA (HsBindLR GhcPs GhcPs))
mbs, [GenLocated SrcSpanAnnA (Sig GhcPs)]
sigs, [GenLocated SrcSpanAnnA (FamilyDecl GhcPs)]
fam_ds, [GenLocated SrcSpanAnnA (TyFamInstDecl GhcPs)]
tfam_insts
         , [GenLocated SrcSpanAnnA (DataFamInstDecl GhcPs)]
dfam_insts, [GenLocated SrcSpanAnnA (DocDecl GhcPs)]
_) <- OrdList (LHsDecl GhcPs)
-> P (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs],
      [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl GhcPs])
cvBindsAndSigs OrdList (LHsDecl GhcPs)
binding
       ; forall (m :: * -> *). (HasCallStack, Applicative m) => Bool -> m ()
massert (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated SrcSpanAnnA (FamilyDecl GhcPs)]
fam_ds Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated SrcSpanAnnA (TyFamInstDecl GhcPs)]
tfam_insts Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated SrcSpanAnnA (DataFamInstDecl GhcPs)]
dfam_insts)
       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall idL idR.
XValBinds idL idR
-> LHsBindsLR idL idR -> [LSig idR] -> HsValBindsLR idL idR
ValBinds AnnSortKey
NoAnnSortKey Bag (GenLocated SrcSpanAnnA (HsBindLR GhcPs GhcPs))
mbs [GenLocated SrcSpanAnnA (Sig GhcPs)]
sigs }

cvBindsAndSigs :: OrdList (LHsDecl GhcPs)
  -> P (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs]
          , [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl GhcPs])
-- Input decls contain just value bindings and signatures
-- and in case of class or instance declarations also
-- associated type declarations. They might also contain Haddock comments.
cvBindsAndSigs :: OrdList (LHsDecl GhcPs)
-> P (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs],
      [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl GhcPs])
cvBindsAndSigs OrdList (LHsDecl GhcPs)
fb = do
  [GenLocated SrcSpanAnnA (HsDecl GhcPs)]
fb' <- forall {m :: * -> *} {a}.
MonadP m =>
[GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
-> m [GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
drop_bad_decls (forall a. OrdList a -> [a]
fromOL OrdList (LHsDecl GhcPs)
fb)
  forall (m :: * -> *) a. Monad m => a -> m a
return ([LHsDecl GhcPs]
-> (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs],
    [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl GhcPs])
partitionBindsAndSigs ([LHsDecl GhcPs] -> [LHsDecl GhcPs]
getMonoBindAll [GenLocated SrcSpanAnnA (HsDecl GhcPs)]
fb'))
  where
    -- cvBindsAndSigs is called in several places in the parser,
    -- and its items can be produced by various productions:
    --
    --    * decl       (when parsing a where clause or a let-expression)
    --    * decl_inst  (when parsing an instance declaration)
    --    * decl_cls   (when parsing a class declaration)
    --
    -- partitionBindsAndSigs can handle almost all declaration forms produced
    -- by the aforementioned productions, except for SpliceD, which we filter
    -- out here (in drop_bad_decls).
    --
    -- We're not concerned with every declaration form possible, such as those
    -- produced by the topdecl parser production, because cvBindsAndSigs is not
    -- called on top-level declarations.
    drop_bad_decls :: [GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
-> m [GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
drop_bad_decls [] = forall (m :: * -> *) a. Monad m => a -> m a
return []
    drop_bad_decls (L SrcSpanAnn' a
l (SpliceD XSpliceD GhcPs
_ SpliceDecl GhcPs
d) : [GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
ds) = do
      forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnn' a
l) forall a b. (a -> b) -> a -> b
$ SpliceDecl GhcPs -> PsMessage
PsErrDeclSpliceNotAtTopLevel SpliceDecl GhcPs
d
      [GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
-> m [GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
drop_bad_decls [GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
ds
    drop_bad_decls (GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)
d:[GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
ds) = (GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)
dforall a. a -> [a] -> [a]
:) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
-> m [GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
drop_bad_decls [GenLocated (SrcSpanAnn' a) (HsDecl GhcPs)]
ds

-----------------------------------------------------------------------------
-- Group function bindings into equation groups

getMonoBind :: LHsBind GhcPs -> [LHsDecl GhcPs]
  -> (LHsBind GhcPs, [LHsDecl GhcPs])
-- Suppose      (b',ds') = getMonoBind b ds
--      ds is a list of parsed bindings
--      b is a MonoBinds that has just been read off the front

-- Then b' is the result of grouping more equations from ds that
-- belong with b into a single MonoBinds, and ds' is the depleted
-- list of parsed bindings.
--
-- All Haddock comments between equations inside the group are
-- discarded.
--
-- No AndMonoBinds or EmptyMonoBinds here; just single equations

getMonoBind :: LHsBind GhcPs
-> [LHsDecl GhcPs] -> (LHsBind GhcPs, [LHsDecl GhcPs])
getMonoBind (L SrcSpanAnnA
loc1 (FunBind { fun_id :: forall idL idR. HsBindLR idL idR -> LIdP idL
fun_id = fun_id1 :: XRec GhcPs (IdP GhcPs)
fun_id1@(L SrcSpanAnnN
_ RdrName
f1)
                             , fun_matches :: forall idL idR. HsBindLR idL idR -> MatchGroup idR (LHsExpr idR)
fun_matches =
                               MG { mg_alts :: forall p body. MatchGroup p body -> XRec p [LMatch p body]
mg_alts = (L SrcSpanAnnL
_ m1 :: [GenLocated
   SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
m1@[L SrcSpanAnnA
_ Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mtchs1]) } }))
            [LHsDecl GhcPs]
binds
  | [LMatch GhcPs (LHsExpr GhcPs)] -> Bool
has_args [GenLocated
   SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
m1
  = [LMatch GhcPs (LHsExpr GhcPs)]
-> SrcSpanAnnA
-> [LHsDecl GhcPs]
-> [LHsDecl GhcPs]
-> (LHsBind GhcPs, [LHsDecl GhcPs])
go [forall l e. l -> e -> GenLocated l e
L (forall ann. SrcAnn ann -> SrcAnn ann
removeCommentsA SrcSpanAnnA
loc1) Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mtchs1] (forall ann. Monoid ann => SrcAnn ann -> SrcAnn ann
commentsOnlyA SrcSpanAnnA
loc1) [LHsDecl GhcPs]
binds []
  where
    go :: [LMatch GhcPs (LHsExpr GhcPs)] -> SrcSpanAnnA
       -> [LHsDecl GhcPs] -> [LHsDecl GhcPs]
       -> (LHsBind GhcPs,[LHsDecl GhcPs]) -- AZ
    go :: [LMatch GhcPs (LHsExpr GhcPs)]
-> SrcSpanAnnA
-> [LHsDecl GhcPs]
-> [LHsDecl GhcPs]
-> (LHsBind GhcPs, [LHsDecl GhcPs])
go [LMatch GhcPs (LHsExpr GhcPs)]
mtchs SrcSpanAnnA
loc
       ((L SrcSpanAnnA
loc2 (ValD XValD GhcPs
_ (FunBind { fun_id :: forall idL idR. HsBindLR idL idR -> LIdP idL
fun_id = (L SrcSpanAnnN
_ RdrName
f2)
                                 , fun_matches :: forall idL idR. HsBindLR idL idR -> MatchGroup idR (LHsExpr idR)
fun_matches =
                                    MG { mg_alts :: forall p body. MatchGroup p body -> XRec p [LMatch p body]
mg_alts = (L SrcSpanAnnL
_ [L SrcSpanAnnA
lm2 Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mtchs2]) } })))
         : [LHsDecl GhcPs]
binds) [LHsDecl GhcPs]
_
        | RdrName
f1 forall a. Eq a => a -> a -> Bool
== RdrName
f2 =
          let (SrcSpanAnnA
loc2', SrcSpanAnnA
lm2') = SrcSpanAnnA -> SrcSpanAnnA -> (SrcSpanAnnA, SrcSpanAnnA)
transferAnnsA SrcSpanAnnA
loc2 SrcSpanAnnA
lm2
          in [LMatch GhcPs (LHsExpr GhcPs)]
-> SrcSpanAnnA
-> [LHsDecl GhcPs]
-> [LHsDecl GhcPs]
-> (LHsBind GhcPs, [LHsDecl GhcPs])
go (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
lm2' Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mtchs2 forall a. a -> [a] -> [a]
: [LMatch GhcPs (LHsExpr GhcPs)]
mtchs)
                        (forall a. Semigroup a => SrcAnn a -> SrcAnn a -> SrcAnn a
combineSrcSpansA SrcSpanAnnA
loc SrcSpanAnnA
loc2') [LHsDecl GhcPs]
binds []
    go [LMatch GhcPs (LHsExpr GhcPs)]
mtchs SrcSpanAnnA
loc (doc_decl :: LHsDecl GhcPs
doc_decl@(L SrcSpanAnnA
loc2 (DocD {})) : [LHsDecl GhcPs]
binds) [LHsDecl GhcPs]
doc_decls
        = let doc_decls' :: [GenLocated SrcSpanAnnA (HsDecl GhcPs)]
doc_decls' = LHsDecl GhcPs
doc_decl forall a. a -> [a] -> [a]
: [LHsDecl GhcPs]
doc_decls
          in [LMatch GhcPs (LHsExpr GhcPs)]
-> SrcSpanAnnA
-> [LHsDecl GhcPs]
-> [LHsDecl GhcPs]
-> (LHsBind GhcPs, [LHsDecl GhcPs])
go [LMatch GhcPs (LHsExpr GhcPs)]
mtchs (forall a. Semigroup a => SrcAnn a -> SrcAnn a -> SrcAnn a
combineSrcSpansA SrcSpanAnnA
loc SrcSpanAnnA
loc2) [LHsDecl GhcPs]
binds [GenLocated SrcSpanAnnA (HsDecl GhcPs)]
doc_decls'
    go [LMatch GhcPs (LHsExpr GhcPs)]
mtchs SrcSpanAnnA
loc [LHsDecl GhcPs]
binds [LHsDecl GhcPs]
doc_decls
        = ( forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc (GenLocated SrcSpanAnnN RdrName
-> LocatedL [LMatch GhcPs (LHsExpr GhcPs)] -> HsBindLR GhcPs GhcPs
makeFunBind XRec GhcPs (IdP GhcPs)
fun_id1 (forall a e2 an.
Semigroup a =>
[GenLocated (SrcAnn a) e2]
-> LocatedAn an [GenLocated (SrcAnn a) e2]
mkLocatedList forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
reverse [LMatch GhcPs (LHsExpr GhcPs)]
mtchs))
          , (forall a. [a] -> [a]
reverse [LHsDecl GhcPs]
doc_decls) forall a. [a] -> [a] -> [a]
++ [LHsDecl GhcPs]
binds)
        -- Reverse the final matches, to get it back in the right order
        -- Do the same thing with the trailing doc comments

getMonoBind LHsBind GhcPs
bind [LHsDecl GhcPs]
binds = (LHsBind GhcPs
bind, [LHsDecl GhcPs]
binds)

-- Group together adjacent FunBinds for every function.
getMonoBindAll :: [LHsDecl GhcPs] -> [LHsDecl GhcPs]
getMonoBindAll :: [LHsDecl GhcPs] -> [LHsDecl GhcPs]
getMonoBindAll [] = []
getMonoBindAll (L SrcSpanAnnA
l (ValD XValD GhcPs
_ HsBindLR GhcPs GhcPs
b) : [LHsDecl GhcPs]
ds) =
  let (L SrcSpanAnnA
l' HsBindLR GhcPs GhcPs
b', [LHsDecl GhcPs]
ds') = LHsBind GhcPs
-> [LHsDecl GhcPs] -> (LHsBind GhcPs, [LHsDecl GhcPs])
getMonoBind (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l HsBindLR GhcPs GhcPs
b) [LHsDecl GhcPs]
ds
  in forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l' (forall p. XValD p -> HsBind p -> HsDecl p
ValD NoExtField
noExtField HsBindLR GhcPs GhcPs
b') forall a. a -> [a] -> [a]
: [LHsDecl GhcPs] -> [LHsDecl GhcPs]
getMonoBindAll [LHsDecl GhcPs]
ds'
getMonoBindAll (LHsDecl GhcPs
d : [LHsDecl GhcPs]
ds) = LHsDecl GhcPs
d forall a. a -> [a] -> [a]
: [LHsDecl GhcPs] -> [LHsDecl GhcPs]
getMonoBindAll [LHsDecl GhcPs]
ds

has_args :: [LMatch GhcPs (LHsExpr GhcPs)] -> Bool
has_args :: [LMatch GhcPs (LHsExpr GhcPs)] -> Bool
has_args []                                  = forall a. HasCallStack => String -> a
panic String
"GHC.Parser.PostProcess.has_args"
has_args (L SrcSpanAnnA
_ (Match { m_pats :: forall p body. Match p body -> [LPat p]
m_pats = [LPat GhcPs]
args }) : [LMatch GhcPs (LHsExpr GhcPs)]
_) = Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LPat GhcPs]
args)
        -- Don't group together FunBinds if they have
        -- no arguments.  This is necessary now that variable bindings
        -- with no arguments are now treated as FunBinds rather
        -- than pattern bindings (tests/rename/should_fail/rnfail002).

{- **********************************************************************

  #PrefixToHS-utils# Utilities for conversion

  ********************************************************************* -}

{- Note [Parsing data constructors is hard]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The problem with parsing data constructors is that they look a lot like types.
Compare:

  (s1)   data T = C t1 t2
  (s2)   type T = C t1 t2

Syntactically, there's little difference between these declarations, except in
(s1) 'C' is a data constructor, but in (s2) 'C' is a type constructor.

This similarity would pose no problem if we knew ahead of time if we are
parsing a type or a constructor declaration. Looking at (s1) and (s2), a simple
(but wrong!) rule comes to mind: in 'data' declarations assume we are parsing
data constructors, and in other contexts (e.g. 'type' declarations) assume we
are parsing type constructors.

This simple rule does not work because of two problematic cases:

  (p1)   data T = C t1 t2 :+ t3
  (p2)   data T = C t1 t2 => t3

In (p1) we encounter (:+) and it turns out we are parsing an infix data
declaration, so (C t1 t2) is a type and 'C' is a type constructor.
In (p2) we encounter (=>) and it turns out we are parsing an existential
context, so (C t1 t2) is a constraint and 'C' is a type constructor.

As the result, in order to determine whether (C t1 t2) declares a data
constructor, a type, or a context, we would need unlimited lookahead which
'happy' is not so happy with.
-}

-- | Reinterpret a type constructor, including type operators, as a data
--   constructor.
-- See Note [Parsing data constructors is hard]
tyConToDataCon :: LocatedN RdrName -> Either (MsgEnvelope PsMessage) (LocatedN RdrName)
tyConToDataCon :: GenLocated SrcSpanAnnN RdrName
-> Either (MsgEnvelope PsMessage) (GenLocated SrcSpanAnnN RdrName)
tyConToDataCon (L SrcSpanAnnN
loc RdrName
tc)
  | String -> Bool
okConOcc (OccName -> String
occNameString OccName
occ)
  = forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
loc (RdrName -> NameSpace -> RdrName
setRdrNameSpace RdrName
tc NameSpace
srcDataName))

  | Bool
otherwise
  = forall a b. a -> Either a b
Left forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnN
loc) forall a b. (a -> b) -> a -> b
$ (RdrName -> PsMessage
PsErrNotADataCon RdrName
tc)
  where
    occ :: OccName
occ = RdrName -> OccName
rdrNameOcc RdrName
tc

mkPatSynMatchGroup :: LocatedN RdrName
                   -> LocatedL (OrdList (LHsDecl GhcPs))
                   -> P (MatchGroup GhcPs (LHsExpr GhcPs))
mkPatSynMatchGroup :: GenLocated SrcSpanAnnN RdrName
-> LocatedL (OrdList (LHsDecl GhcPs))
-> P (MatchGroup GhcPs (LHsExpr GhcPs))
mkPatSynMatchGroup (L SrcSpanAnnN
loc RdrName
patsyn_name) (L SrcSpanAnnL
ld OrdList (LHsDecl GhcPs)
decls) =
    do { [GenLocated
   SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
matches <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM GenLocated SrcSpanAnnA (HsDecl GhcPs)
-> P (GenLocated
        SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))))
fromDecl (forall a. OrdList a -> [a]
fromOL OrdList (LHsDecl GhcPs)
decls)
       ; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated
   SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
matches) (SrcSpan -> P ()
wrongNumberErr (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnN
loc))
       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall (p :: Pass) (body :: * -> *).
AnnoBody p body =>
Origin
-> LocatedL
     [LocatedA (Match (GhcPass p) (LocatedA (body (GhcPass p))))]
-> MatchGroup (GhcPass p) (LocatedA (body (GhcPass p)))
mkMatchGroup Origin
FromSource (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnL
ld [GenLocated
   SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
matches) }
  where
    fromDecl :: GenLocated SrcSpanAnnA (HsDecl GhcPs)
-> P (GenLocated
        SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))))
fromDecl (L SrcSpanAnnA
loc decl :: HsDecl GhcPs
decl@(ValD XValD GhcPs
_ (PatBind XPatBind GhcPs GhcPs
_
                                 -- AZ: where should these anns come from?
                         pat :: LPat GhcPs
pat@(L SrcSpanAnnA
_ (ConPat XConPat GhcPs
noAnn ln :: XRec GhcPs (ConLikeP GhcPs)
ln@(L SrcSpanAnnN
_ RdrName
name) HsConPatDetails GhcPs
details))
                               GRHSs GhcPs (LHsExpr GhcPs)
rhs))) =
        do { forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (RdrName
name forall a. Eq a => a -> a -> Bool
== RdrName
patsyn_name) forall a b. (a -> b) -> a -> b
$
               SrcSpan -> HsDecl GhcPs -> P ()
wrongNameBindingErr (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) HsDecl GhcPs
decl
           ; Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
match <- case HsConPatDetails GhcPs
details of
               PrefixCon [HsConPatTyArg (NoGhcTc GhcPs)]
_ [LPat GhcPs]
pats -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Match { m_ext :: XCMatch GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m_ext = XConPat GhcPs
noAnn
                                                  , m_ctxt :: HsMatchContext GhcPs
m_ctxt = HsMatchContext GhcPs
ctxt, m_pats :: [LPat GhcPs]
m_pats = [LPat GhcPs]
pats
                                                  , m_grhss :: GRHSs GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m_grhss = GRHSs GhcPs (LHsExpr GhcPs)
rhs }
                   where
                     ctxt :: HsMatchContext GhcPs
ctxt = FunRhs { mc_fun :: LIdP (NoGhcTc GhcPs)
mc_fun = XRec GhcPs (ConLikeP GhcPs)
ln
                                   , mc_fixity :: LexicalFixity
mc_fixity = LexicalFixity
Prefix
                                   , mc_strictness :: SrcStrictness
mc_strictness = SrcStrictness
NoSrcStrict }

               InfixCon LPat GhcPs
p1 LPat GhcPs
p2 -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Match { m_ext :: XCMatch GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m_ext = XConPat GhcPs
noAnn
                                                , m_ctxt :: HsMatchContext GhcPs
m_ctxt = HsMatchContext GhcPs
ctxt
                                                , m_pats :: [LPat GhcPs]
m_pats = [LPat GhcPs
p1, LPat GhcPs
p2]
                                                , m_grhss :: GRHSs GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m_grhss = GRHSs GhcPs (LHsExpr GhcPs)
rhs }
                   where
                     ctxt :: HsMatchContext GhcPs
ctxt = FunRhs { mc_fun :: LIdP (NoGhcTc GhcPs)
mc_fun = XRec GhcPs (ConLikeP GhcPs)
ln
                                   , mc_fixity :: LexicalFixity
mc_fixity = LexicalFixity
Infix
                                   , mc_strictness :: SrcStrictness
mc_strictness = SrcStrictness
NoSrcStrict }

               RecCon{} -> forall a. SrcSpan -> LPat GhcPs -> P a
recordPatSynErr (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) LPat GhcPs
pat
           ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
match }
    fromDecl (L SrcSpanAnnA
loc HsDecl GhcPs
decl) = SrcSpan
-> HsDecl GhcPs
-> P (GenLocated
        SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))))
extraDeclErr (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) HsDecl GhcPs
decl

    extraDeclErr :: SrcSpan
-> HsDecl GhcPs
-> P (GenLocated
        SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))))
extraDeclErr SrcSpan
loc HsDecl GhcPs
decl =
        forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$
          (RdrName -> HsDecl GhcPs -> PsMessage
PsErrNoSingleWhereBindInPatSynDecl RdrName
patsyn_name HsDecl GhcPs
decl)

    wrongNameBindingErr :: SrcSpan -> HsDecl GhcPs -> P ()
wrongNameBindingErr SrcSpan
loc HsDecl GhcPs
decl =
      forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$
          (RdrName -> HsDecl GhcPs -> PsMessage
PsErrInvalidWhereBindInPatSynDecl RdrName
patsyn_name HsDecl GhcPs
decl)

    wrongNumberErr :: SrcSpan -> P ()
wrongNumberErr SrcSpan
loc =
      forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$
        (RdrName -> PsMessage
PsErrEmptyWhereInPatSynDecl RdrName
patsyn_name)

recordPatSynErr :: SrcSpan -> LPat GhcPs -> P a
recordPatSynErr :: forall a. SrcSpan -> LPat GhcPs -> P a
recordPatSynErr SrcSpan
loc LPat GhcPs
pat =
    forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$
      (LPat GhcPs -> PsMessage
PsErrRecordSyntaxInPatSynDecl LPat GhcPs
pat)

mkConDeclH98 :: EpAnn [AddEpAnn] -> LocatedN RdrName -> Maybe [LHsTyVarBndr Specificity GhcPs]
                -> Maybe (LHsContext GhcPs) -> HsConDeclH98Details GhcPs
                -> ConDecl GhcPs

mkConDeclH98 :: EpAnn [AddEpAnn]
-> GenLocated SrcSpanAnnN RdrName
-> Maybe [LHsTyVarBndr Specificity GhcPs]
-> Maybe (LHsContext GhcPs)
-> HsConDeclH98Details GhcPs
-> ConDecl GhcPs
mkConDeclH98 EpAnn [AddEpAnn]
ann GenLocated SrcSpanAnnN RdrName
name Maybe [LHsTyVarBndr Specificity GhcPs]
mb_forall Maybe (LHsContext GhcPs)
mb_cxt HsConDeclH98Details GhcPs
args
  = ConDeclH98 { con_ext :: XConDeclH98 GhcPs
con_ext    = EpAnn [AddEpAnn]
ann
               , con_name :: XRec GhcPs (IdP GhcPs)
con_name   = GenLocated SrcSpanAnnN RdrName
name
               , con_forall :: Bool
con_forall = forall a. Maybe a -> Bool
isJust Maybe [LHsTyVarBndr Specificity GhcPs]
mb_forall
               , con_ex_tvs :: [LHsTyVarBndr Specificity GhcPs]
con_ex_tvs = Maybe [LHsTyVarBndr Specificity GhcPs]
mb_forall forall a. Maybe a -> a -> a
`orElse` []
               , con_mb_cxt :: Maybe (LHsContext GhcPs)
con_mb_cxt = Maybe (LHsContext GhcPs)
mb_cxt
               , con_args :: HsConDeclH98Details GhcPs
con_args   = HsConDeclH98Details GhcPs
args
               , con_doc :: Maybe (LHsDoc GhcPs)
con_doc    = forall a. Maybe a
Nothing }

-- | Construct a GADT-style data constructor from the constructor names and
-- their type. Some interesting aspects of this function:
--
-- * This splits up the constructor type into its quantified type variables (if
--   provided), context (if provided), argument types, and result type, and
--   records whether this is a prefix or record GADT constructor. See
--   Note [GADT abstract syntax] in "GHC.Hs.Decls" for more details.
mkGadtDecl :: SrcSpan
           -> NonEmpty (LocatedN RdrName)
           -> LHsUniToken "::" "∷" GhcPs
           -> LHsSigType GhcPs
           -> P (LConDecl GhcPs)
mkGadtDecl :: SrcSpan
-> NonEmpty (GenLocated SrcSpanAnnN RdrName)
-> LHsUniToken "::" "\8759" GhcPs
-> LHsSigType GhcPs
-> P (LConDecl GhcPs)
mkGadtDecl SrcSpan
loc NonEmpty (GenLocated SrcSpanAnnN RdrName)
names LHsUniToken "::" "\8759" GhcPs
dcol LHsSigType GhcPs
ty = do
  EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc
  let l :: SrcSpanAnnA
l = forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc

  (HsConDeclGADTDetails GhcPs
args, GenLocated SrcSpanAnnA (HsType GhcPs)
res_ty, [AddEpAnn]
annsa, EpAnnComments
csa) <-
    case LHsType GhcPs
body_ty of
     L SrcSpanAnnA
ll (HsFunTy XFunTy GhcPs
af HsArrow GhcPs
hsArr (L SrcSpanAnnA
loc' (HsRecTy XRecTy GhcPs
an [LConDeclField GhcPs]
rf)) LHsType GhcPs
res_ty) -> do
       let an' :: EpAnn AnnList
an' = forall a.
Monoid a =>
SrcSpan -> EpAnn a -> EpAnnComments -> EpAnn a
addCommentsToEpAnn (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc') XRecTy GhcPs
an (forall ann. EpAnn ann -> EpAnnComments
comments XFunTy GhcPs
af)
       GenLocated TokenLocation (HsUniToken "->" "\8594")
arr <- case HsArrow GhcPs
hsArr of
         HsUnrestrictedArrow LHsUniToken "->" "\8594" GhcPs
arr -> forall (m :: * -> *) a. Monad m => a -> m a
return LHsUniToken "->" "\8594" GhcPs
arr
         HsArrow GhcPs
_ -> do forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA LHsType GhcPs
body_ty) forall a b. (a -> b) -> a -> b
$
                                 (HsArrow GhcPs -> PsMessage
PsErrIllegalGadtRecordMultiplicity HsArrow GhcPs
hsArr)
                 forall (m :: * -> *) a. Monad m => a -> m a
return forall (tok :: Symbol) (utok :: Symbol).
GenLocated TokenLocation (HsUniToken tok utok)
noHsUniTok

       forall (m :: * -> *) a. Monad m => a -> m a
return ( forall pass.
XRec pass [LConDeclField pass]
-> LHsUniToken "->" "\8594" pass -> HsConDeclGADTDetails pass
RecConGADT (forall l e. l -> e -> GenLocated l e
L (forall a. a -> SrcSpan -> SrcSpanAnn' a
SrcSpanAnn EpAnn AnnList
an' (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc')) [LConDeclField GhcPs]
rf) GenLocated TokenLocation (HsUniToken "->" "\8594")
arr, LHsType GhcPs
res_ty
              , [], forall ann. EpAnn ann -> EpAnnComments
epAnnComments (forall a. SrcSpanAnn' a -> a
ann SrcSpanAnnA
ll))
     LHsType GhcPs
_ -> do
       let ([AddEpAnn]
anns, EpAnnComments
cs, [HsScaled GhcPs (LHsType GhcPs)]
arg_types, LHsType GhcPs
res_type) = forall (p :: Pass).
LHsType (GhcPass p)
-> ([AddEpAnn], EpAnnComments,
    [HsScaled (GhcPass p) (LHsType (GhcPass p))], LHsType (GhcPass p))
splitHsFunType LHsType GhcPs
body_ty
       forall (m :: * -> *) a. Monad m => a -> m a
return (forall pass.
[HsScaled pass (LBangType pass)] -> HsConDeclGADTDetails pass
PrefixConGADT [HsScaled GhcPs (LHsType GhcPs)]
arg_types, LHsType GhcPs
res_type, [AddEpAnn]
anns, EpAnnComments
cs)

  let an :: EpAnn [AddEpAnn]
an = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
loc) [AddEpAnn]
annsa (EpAnnComments
cs forall a. Semigroup a => a -> a -> a
Semi.<> EpAnnComments
csa)

  forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l ConDeclGADT
                     { con_g_ext :: XConDeclGADT GhcPs
con_g_ext  = EpAnn [AddEpAnn]
an
                     , con_names :: NonEmpty (XRec GhcPs (IdP GhcPs))
con_names  = NonEmpty (GenLocated SrcSpanAnnN RdrName)
names
                     , con_dcolon :: LHsUniToken "::" "\8759" GhcPs
con_dcolon = LHsUniToken "::" "\8759" GhcPs
dcol
                     , con_bndrs :: XRec GhcPs (HsOuterSigTyVarBndrs GhcPs)
con_bndrs  = forall l e. l -> e -> GenLocated l e
L (forall l e. GenLocated l e -> l
getLoc LHsSigType GhcPs
ty) HsOuterSigTyVarBndrs GhcPs
outer_bndrs
                     , con_mb_cxt :: Maybe (LHsContext GhcPs)
con_mb_cxt = Maybe (LHsContext GhcPs)
mcxt
                     , con_g_args :: HsConDeclGADTDetails GhcPs
con_g_args = HsConDeclGADTDetails GhcPs
args
                     , con_res_ty :: LHsType GhcPs
con_res_ty = GenLocated SrcSpanAnnA (HsType GhcPs)
res_ty
                     , con_doc :: Maybe (LHsDoc GhcPs)
con_doc    = forall a. Maybe a
Nothing }
  where
    (HsOuterSigTyVarBndrs GhcPs
outer_bndrs, Maybe (LHsContext GhcPs)
mcxt, LHsType GhcPs
body_ty) = LHsSigType GhcPs
-> (HsOuterSigTyVarBndrs GhcPs, Maybe (LHsContext GhcPs),
    LHsType GhcPs)
splitLHsGadtTy LHsSigType GhcPs
ty

setRdrNameSpace :: RdrName -> NameSpace -> RdrName
-- ^ This rather gruesome function is used mainly by the parser.
-- When parsing:
--
-- > data T a = T | T1 Int
--
-- we parse the data constructors as /types/ because of parser ambiguities,
-- so then we need to change the /type constr/ to a /data constr/
--
-- The exact-name case /can/ occur when parsing:
--
-- > data [] a = [] | a : [a]
--
-- For the exact-name case we return an original name.
setRdrNameSpace :: RdrName -> NameSpace -> RdrName
setRdrNameSpace (Unqual OccName
occ) NameSpace
ns = OccName -> RdrName
Unqual (NameSpace -> OccName -> OccName
setOccNameSpace NameSpace
ns OccName
occ)
setRdrNameSpace (Qual ModuleName
m OccName
occ) NameSpace
ns = ModuleName -> OccName -> RdrName
Qual ModuleName
m (NameSpace -> OccName -> OccName
setOccNameSpace NameSpace
ns OccName
occ)
setRdrNameSpace (Orig Module
m OccName
occ) NameSpace
ns = Module -> OccName -> RdrName
Orig Module
m (NameSpace -> OccName -> OccName
setOccNameSpace NameSpace
ns OccName
occ)
setRdrNameSpace (Exact Name
n)    NameSpace
ns
  | Just TyThing
thing <- Name -> Maybe TyThing
wiredInNameTyThing_maybe Name
n
  = TyThing -> NameSpace -> RdrName
setWiredInNameSpace TyThing
thing NameSpace
ns
    -- Preserve Exact Names for wired-in things,
    -- notably tuples and lists

  | Name -> Bool
isExternalName Name
n
  = Module -> OccName -> RdrName
Orig (HasDebugCallStack => Name -> Module
nameModule Name
n) OccName
occ

  | Bool
otherwise   -- This can happen when quoting and then
                -- splicing a fixity declaration for a type
  = Name -> RdrName
Exact (Unique -> OccName -> SrcSpan -> Name
mkSystemNameAt (Name -> Unique
nameUnique Name
n) OccName
occ (Name -> SrcSpan
nameSrcSpan Name
n))
  where
    occ :: OccName
occ = NameSpace -> OccName -> OccName
setOccNameSpace NameSpace
ns (Name -> OccName
nameOccName Name
n)

setWiredInNameSpace :: TyThing -> NameSpace -> RdrName
setWiredInNameSpace :: TyThing -> NameSpace -> RdrName
setWiredInNameSpace (ATyCon TyCon
tc) NameSpace
ns
  | NameSpace -> Bool
isDataConNameSpace NameSpace
ns
  = TyCon -> RdrName
ty_con_data_con TyCon
tc
  | NameSpace -> Bool
isTcClsNameSpace NameSpace
ns
  = Name -> RdrName
Exact (forall a. NamedThing a => a -> Name
getName TyCon
tc)      -- No-op

setWiredInNameSpace (AConLike (RealDataCon DataCon
dc)) NameSpace
ns
  | NameSpace -> Bool
isTcClsNameSpace NameSpace
ns
  = DataCon -> RdrName
data_con_ty_con DataCon
dc
  | NameSpace -> Bool
isDataConNameSpace NameSpace
ns
  = Name -> RdrName
Exact (forall a. NamedThing a => a -> Name
getName DataCon
dc)      -- No-op

setWiredInNameSpace TyThing
thing NameSpace
ns
  = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"setWiredinNameSpace" (NameSpace -> SDoc
pprNameSpace NameSpace
ns forall doc. IsLine doc => doc -> doc -> doc
<+> forall a. Outputable a => a -> SDoc
ppr TyThing
thing)

ty_con_data_con :: TyCon -> RdrName
ty_con_data_con :: TyCon -> RdrName
ty_con_data_con TyCon
tc
  | TyCon -> Bool
isTupleTyCon TyCon
tc
  , Just DataCon
dc <- TyCon -> Maybe DataCon
tyConSingleDataCon_maybe TyCon
tc
  = Name -> RdrName
Exact (forall a. NamedThing a => a -> Name
getName DataCon
dc)

  | TyCon
tc forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
listTyConKey
  = Name -> RdrName
Exact Name
nilDataConName

  | Bool
otherwise  -- See Note [setRdrNameSpace for wired-in names]
  = OccName -> RdrName
Unqual (NameSpace -> OccName -> OccName
setOccNameSpace NameSpace
srcDataName (forall a. NamedThing a => a -> OccName
getOccName TyCon
tc))

data_con_ty_con :: DataCon -> RdrName
data_con_ty_con :: DataCon -> RdrName
data_con_ty_con DataCon
dc
  | let tc :: TyCon
tc = DataCon -> TyCon
dataConTyCon DataCon
dc
  , TyCon -> Bool
isTupleTyCon TyCon
tc
  = Name -> RdrName
Exact (forall a. NamedThing a => a -> Name
getName TyCon
tc)

  | DataCon
dc forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
nilDataConKey
  = Name -> RdrName
Exact Name
listTyConName

  | Bool
otherwise  -- See Note [setRdrNameSpace for wired-in names]
  = OccName -> RdrName
Unqual (NameSpace -> OccName -> OccName
setOccNameSpace NameSpace
tcClsName (forall a. NamedThing a => a -> OccName
getOccName DataCon
dc))



{- Note [setRdrNameSpace for wired-in names]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In GHC.Types, which declares (:), we have
  infixr 5 :
The ambiguity about which ":" is meant is resolved by parsing it as a
data constructor, but then using dataTcOccs to try the type constructor too;
and that in turn calls setRdrNameSpace to change the name-space of ":" to
tcClsName.  There isn't a corresponding ":" type constructor, but it's painful
to make setRdrNameSpace partial, so we just make an Unqual name instead. It
really doesn't matter!
-}

eitherToP :: MonadP m => Either (MsgEnvelope PsMessage) a -> m a
-- Adapts the Either monad to the P monad
eitherToP :: forall (m :: * -> *) a.
MonadP m =>
Either (MsgEnvelope PsMessage) a -> m a
eitherToP (Left MsgEnvelope PsMessage
err)    = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError MsgEnvelope PsMessage
err
eitherToP (Right a
thing) = forall (m :: * -> *) a. Monad m => a -> m a
return a
thing

checkTyVars :: SDoc -> SDoc -> LocatedN RdrName -> [LHsTypeArg GhcPs]
            -> P (LHsQTyVars GhcPs)  -- the synthesized type variables
-- ^ Check whether the given list of type parameters are all type variables
-- (possibly with a kind signature).
checkTyVars :: SDoc
-> SDoc
-> GenLocated SrcSpanAnnN RdrName
-> [LHsTypeArg GhcPs]
-> P (LHsQTyVars GhcPs)
checkTyVars SDoc
pp_what SDoc
equals_or_where GenLocated SrcSpanAnnN RdrName
tc [LHsTypeArg GhcPs]
tparms
  = do { [GenLocated SrcSpanAnnA (HsTyVarBndr () GhcPs)]
tvs <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM HsArg
  (GenLocated SrcSpanAnnA (HsType GhcPs))
  (GenLocated SrcSpanAnnA (HsType GhcPs))
-> P (GenLocated SrcSpanAnnA (HsTyVarBndr () GhcPs))
check [LHsTypeArg GhcPs]
tparms
       ; forall (m :: * -> *) a. Monad m => a -> m a
return ([LHsTyVarBndr () GhcPs] -> LHsQTyVars GhcPs
mkHsQTvs [GenLocated SrcSpanAnnA (HsTyVarBndr () GhcPs)]
tvs) }
  where
    check :: HsArg
  (GenLocated SrcSpanAnnA (HsType GhcPs))
  (GenLocated SrcSpanAnnA (HsType GhcPs))
-> P (GenLocated SrcSpanAnnA (HsTyVarBndr () GhcPs))
check (HsTypeArg SrcSpan
_ ki :: GenLocated SrcSpanAnnA (HsType GhcPs)
ki@(L SrcSpanAnnA
loc HsType GhcPs
_)) = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) forall a b. (a -> b) -> a -> b
$
                                         (LHsType GhcPs -> SDoc -> RdrName -> PsMessage
PsErrUnexpectedTypeAppInDecl GenLocated SrcSpanAnnA (HsType GhcPs)
ki SDoc
pp_what (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
tc))
    check (HsValArg GenLocated SrcSpanAnnA (HsType GhcPs)
ty) = [AddEpAnn]
-> [AddEpAnn]
-> EpAnnComments
-> LHsType GhcPs
-> P (LHsTyVarBndr () GhcPs)
chkParens [] [] EpAnnComments
emptyComments GenLocated SrcSpanAnnA (HsType GhcPs)
ty
    check (HsArgPar SrcSpan
sp) = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
sp forall a b. (a -> b) -> a -> b
$
                            (SDoc -> RdrName -> PsMessage
PsErrMalformedDecl SDoc
pp_what (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
tc))
        -- Keep around an action for adjusting the annotations of extra parens
    chkParens :: [AddEpAnn] -> [AddEpAnn] -> EpAnnComments -> LHsType GhcPs
              -> P (LHsTyVarBndr () GhcPs)
    chkParens :: [AddEpAnn]
-> [AddEpAnn]
-> EpAnnComments
-> LHsType GhcPs
-> P (LHsTyVarBndr () GhcPs)
chkParens [AddEpAnn]
ops [AddEpAnn]
cps EpAnnComments
cs (L SrcSpanAnnA
l (HsParTy XParTy GhcPs
an LHsType GhcPs
ty))
      = let
          (AddEpAnn
o,AddEpAnn
c) = RealSrcSpan -> (AddEpAnn, AddEpAnn)
mkParensEpAnn (SrcSpan -> RealSrcSpan
realSrcSpan forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
        in
          [AddEpAnn]
-> [AddEpAnn]
-> EpAnnComments
-> LHsType GhcPs
-> P (LHsTyVarBndr () GhcPs)
chkParens (AddEpAnn
oforall a. a -> [a] -> [a]
:[AddEpAnn]
ops) (AddEpAnn
cforall a. a -> [a] -> [a]
:[AddEpAnn]
cps) (EpAnnComments
cs forall a. Semigroup a => a -> a -> a
Semi.<> forall ann. EpAnn ann -> EpAnnComments
epAnnComments XParTy GhcPs
an) LHsType GhcPs
ty
    chkParens [AddEpAnn]
ops [AddEpAnn]
cps EpAnnComments
cs LHsType GhcPs
ty = [AddEpAnn]
-> [AddEpAnn]
-> EpAnnComments
-> LHsType GhcPs
-> P (LHsTyVarBndr () GhcPs)
chk [AddEpAnn]
ops [AddEpAnn]
cps EpAnnComments
cs LHsType GhcPs
ty

        -- Check that the name space is correct!
    chk :: [AddEpAnn] -> [AddEpAnn] -> EpAnnComments -> LHsType GhcPs -> P (LHsTyVarBndr () GhcPs)
    chk :: [AddEpAnn]
-> [AddEpAnn]
-> EpAnnComments
-> LHsType GhcPs
-> P (LHsTyVarBndr () GhcPs)
chk [AddEpAnn]
ops [AddEpAnn]
cps EpAnnComments
cs (L SrcSpanAnnA
l (HsKindSig XKindSig GhcPs
annk (L SrcSpanAnnA
annt (HsTyVar XTyVar GhcPs
ann PromotionFlag
_ (L SrcSpanAnnN
lv RdrName
tv))) LHsType GhcPs
k))
        | RdrName -> Bool
isRdrTyVar RdrName
tv
            = let
                an :: [AddEpAnn]
an = (forall a. [a] -> [a]
reverse [AddEpAnn]
ops) forall a. [a] -> [a] -> [a]
++ [AddEpAnn]
cps
              in
                forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall an. SrcSpanAnn' an -> [AddEpAnn] -> SrcSpanAnn' an
widenLocatedAn (SrcSpanAnnA
l forall a. Semigroup a => a -> a -> a
Semi.<> SrcSpanAnnA
annt) [AddEpAnn]
an)
                       (forall flag pass.
XKindedTyVar pass
-> flag -> LIdP pass -> LHsKind pass -> HsTyVarBndr flag pass
KindedTyVar (EpAnn [AddEpAnn] -> [AddEpAnn] -> EpAnnComments -> EpAnn [AddEpAnn]
addAnns (XKindSig GhcPs
annk forall a. Semigroup a => a -> a -> a
Semi.<> XTyVar GhcPs
ann) [AddEpAnn]
an EpAnnComments
cs) () (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
lv RdrName
tv) LHsType GhcPs
k))
    chk [AddEpAnn]
ops [AddEpAnn]
cps EpAnnComments
cs (L SrcSpanAnnA
l (HsTyVar XTyVar GhcPs
ann PromotionFlag
_ (L SrcSpanAnnN
ltv RdrName
tv)))
        | RdrName -> Bool
isRdrTyVar RdrName
tv
            = let
                an :: [AddEpAnn]
an = (forall a. [a] -> [a]
reverse [AddEpAnn]
ops) forall a. [a] -> [a] -> [a]
++ [AddEpAnn]
cps
              in
                forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall an. SrcSpanAnn' an -> [AddEpAnn] -> SrcSpanAnn' an
widenLocatedAn SrcSpanAnnA
l [AddEpAnn]
an)
                                     (forall flag pass.
XUserTyVar pass -> flag -> LIdP pass -> HsTyVarBndr flag pass
UserTyVar (EpAnn [AddEpAnn] -> [AddEpAnn] -> EpAnnComments -> EpAnn [AddEpAnn]
addAnns XTyVar GhcPs
ann [AddEpAnn]
an EpAnnComments
cs) () (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
ltv RdrName
tv)))
    chk [AddEpAnn]
_ [AddEpAnn]
_ EpAnnComments
_ t :: LHsType GhcPs
t@(L SrcSpanAnnA
loc HsType GhcPs
_)
        = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) forall a b. (a -> b) -> a -> b
$
            (LHsType GhcPs
-> SDoc -> RdrName -> [LHsTypeArg GhcPs] -> SDoc -> PsMessage
PsErrUnexpectedTypeInDecl LHsType GhcPs
t SDoc
pp_what (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
tc) [LHsTypeArg GhcPs]
tparms SDoc
equals_or_where)


whereDots, equalsDots :: SDoc
-- Second argument to checkTyVars
whereDots :: SDoc
whereDots  = forall doc. IsLine doc => String -> doc
text String
"where ..."
equalsDots :: SDoc
equalsDots = forall doc. IsLine doc => String -> doc
text String
"= ..."

checkDatatypeContext :: Maybe (LHsContext GhcPs) -> P ()
checkDatatypeContext :: Maybe (LHsContext GhcPs) -> P ()
checkDatatypeContext Maybe (LHsContext GhcPs)
Nothing = forall (m :: * -> *) a. Monad m => a -> m a
return ()
checkDatatypeContext (Just LHsContext GhcPs
c)
    = do Bool
allowed <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
DatatypeContextsBit
         forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
allowed forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA LHsContext GhcPs
c) forall a b. (a -> b) -> a -> b
$
                                       (LHsContext GhcPs -> PsMessage
PsErrIllegalDataTypeContext LHsContext GhcPs
c)

type LRuleTyTmVar = LocatedAn NoEpAnns RuleTyTmVar
data RuleTyTmVar = RuleTyTmVar (EpAnn [AddEpAnn]) (LocatedN RdrName) (Maybe (LHsType GhcPs))
-- ^ Essentially a wrapper for a @RuleBndr GhcPs@

-- turns RuleTyTmVars into RuleBnrs - this is straightforward
mkRuleBndrs :: [LRuleTyTmVar] -> [LRuleBndr GhcPs]
mkRuleBndrs :: [LRuleTyTmVar] -> [LRuleBndr GhcPs]
mkRuleBndrs = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap RuleTyTmVar -> RuleBndr GhcPs
cvt_one)
  where cvt_one :: RuleTyTmVar -> RuleBndr GhcPs
cvt_one (RuleTyTmVar EpAnn [AddEpAnn]
ann GenLocated SrcSpanAnnN RdrName
v Maybe (LHsType GhcPs)
Nothing) = forall pass. XCRuleBndr pass -> LIdP pass -> RuleBndr pass
RuleBndr EpAnn [AddEpAnn]
ann GenLocated SrcSpanAnnN RdrName
v
        cvt_one (RuleTyTmVar EpAnn [AddEpAnn]
ann GenLocated SrcSpanAnnN RdrName
v (Just LHsType GhcPs
sig)) =
          forall pass.
XRuleBndrSig pass
-> LIdP pass -> HsPatSigType pass -> RuleBndr pass
RuleBndrSig EpAnn [AddEpAnn]
ann GenLocated SrcSpanAnnN RdrName
v (EpAnnCO -> LHsType GhcPs -> HsPatSigType GhcPs
mkHsPatSigType forall a. EpAnn a
noAnn LHsType GhcPs
sig)

-- turns RuleTyTmVars into HsTyVarBndrs - this is more interesting
mkRuleTyVarBndrs :: [LRuleTyTmVar] -> [LHsTyVarBndr () GhcPs]
mkRuleTyVarBndrs :: [LRuleTyTmVar] -> [LHsTyVarBndr () GhcPs]
mkRuleTyVarBndrs = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {a} {ann}.
GenLocated (SrcSpanAnn' a) RuleTyTmVar
-> GenLocated (SrcAnn ann) (HsTyVarBndr () GhcPs)
cvt_one
  where cvt_one :: GenLocated (SrcSpanAnn' a) RuleTyTmVar
-> GenLocated (SrcAnn ann) (HsTyVarBndr () GhcPs)
cvt_one (L SrcSpanAnn' a
l (RuleTyTmVar EpAnn [AddEpAnn]
ann GenLocated SrcSpanAnnN RdrName
v Maybe (LHsType GhcPs)
Nothing))
          = forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
l2l SrcSpanAnn' a
l) (forall flag pass.
XUserTyVar pass -> flag -> LIdP pass -> HsTyVarBndr flag pass
UserTyVar EpAnn [AddEpAnn]
ann () (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap RdrName -> RdrName
tm_to_ty GenLocated SrcSpanAnnN RdrName
v))
        cvt_one (L SrcSpanAnn' a
l (RuleTyTmVar EpAnn [AddEpAnn]
ann GenLocated SrcSpanAnnN RdrName
v (Just LHsType GhcPs
sig)))
          = forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
l2l SrcSpanAnn' a
l) (forall flag pass.
XKindedTyVar pass
-> flag -> LIdP pass -> LHsKind pass -> HsTyVarBndr flag pass
KindedTyVar EpAnn [AddEpAnn]
ann () (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap RdrName -> RdrName
tm_to_ty GenLocated SrcSpanAnnN RdrName
v) LHsType GhcPs
sig)
    -- takes something in namespace 'varName' to something in namespace 'tvName'
        tm_to_ty :: RdrName -> RdrName
tm_to_ty (Unqual OccName
occ) = OccName -> RdrName
Unqual (NameSpace -> OccName -> OccName
setOccNameSpace NameSpace
tvName OccName
occ)
        tm_to_ty RdrName
_ = forall a. HasCallStack => String -> a
panic String
"mkRuleTyVarBndrs"

-- See Note [Parsing explicit foralls in Rules] in Parser.y
checkRuleTyVarBndrNames :: [LHsTyVarBndr flag GhcPs] -> P ()
checkRuleTyVarBndrNames :: forall flag. [LHsTyVarBndr flag GhcPs] -> P ()
checkRuleTyVarBndrNames = forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (forall {f :: * -> *} {a}.
MonadP f =>
GenLocated (SrcSpanAnn' a) RdrName -> f ()
check forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall flag (p :: Pass).
HsTyVarBndr flag (GhcPass p) -> IdP (GhcPass p)
hsTyVarName)
  where check :: GenLocated (SrcSpanAnn' a) RdrName -> f ()
check (L SrcSpanAnn' a
loc (Unqual OccName
occ)) =
          forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (OccName -> FastString
occNameFS OccName
occ forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [String -> FastString
fsLit String
"forall",String -> FastString
fsLit String
"family",String -> FastString
fsLit String
"role"])
            (forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnn' a
loc) forall a b. (a -> b) -> a -> b
$
               (OccName -> PsMessage
PsErrParseErrorOnInput OccName
occ))
        check GenLocated (SrcSpanAnn' a) RdrName
_ = forall a. HasCallStack => String -> a
panic String
"checkRuleTyVarBndrNames"

checkRecordSyntax :: (MonadP m, Outputable a) => LocatedA a -> m (LocatedA a)
checkRecordSyntax :: forall (m :: * -> *) a.
(MonadP m, Outputable a) =>
LocatedA a -> m (LocatedA a)
checkRecordSyntax lr :: LocatedA a
lr@(L SrcSpanAnnA
loc a
r)
    = do Bool
allowed <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
TraditionalRecordSyntaxBit
         forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
allowed forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) forall a b. (a -> b) -> a -> b
$
                                       (SDoc -> PsMessage
PsErrIllegalTraditionalRecordSyntax (forall a. Outputable a => a -> SDoc
ppr a
r))
         forall (m :: * -> *) a. Monad m => a -> m a
return LocatedA a
lr

-- | Check if the gadt_constrlist is empty. Only raise parse error for
-- `data T where` to avoid affecting existing error message, see #8258.
checkEmptyGADTs :: Located ([AddEpAnn], [LConDecl GhcPs])
                -> P (Located ([AddEpAnn], [LConDecl GhcPs]))
checkEmptyGADTs :: Located ([AddEpAnn], [LConDecl GhcPs])
-> P (Located ([AddEpAnn], [LConDecl GhcPs]))
checkEmptyGADTs gadts :: Located ([AddEpAnn], [LConDecl GhcPs])
gadts@(L SrcSpan
span ([AddEpAnn]
_, []))           -- Empty GADT declaration.
    = do Bool
gadtSyntax <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
GadtSyntaxBit   -- GADTs implies GADTSyntax
         forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
gadtSyntax forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
span forall a b. (a -> b) -> a -> b
$
                                          PsMessage
PsErrIllegalWhereInDataDecl
         forall (m :: * -> *) a. Monad m => a -> m a
return Located ([AddEpAnn], [LConDecl GhcPs])
gadts
checkEmptyGADTs Located ([AddEpAnn], [LConDecl GhcPs])
gadts = forall (m :: * -> *) a. Monad m => a -> m a
return Located ([AddEpAnn], [LConDecl GhcPs])
gadts              -- Ordinary GADT declaration.

checkTyClHdr :: Bool               -- True  <=> class header
                                   -- False <=> type header
             -> LHsType GhcPs
             -> P (LocatedN RdrName,     -- the head symbol (type or class name)
                   [LHsTypeArg GhcPs],   -- parameters of head symbol
                   LexicalFixity,        -- the declaration is in infix format
                   [AddEpAnn])           -- API Annotation for HsParTy
                                         -- when stripping parens
-- Well-formedness check and decomposition of type and class heads.
-- Decomposes   T ty1 .. tyn   into    (T, [ty1, ..., tyn])
--              Int :*: Bool   into    (:*:, [Int, Bool])
-- returning the pieces
checkTyClHdr :: Bool
-> LHsType GhcPs
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
checkTyClHdr Bool
is_cls LHsType GhcPs
ty
  = GenLocated SrcSpanAnnA (HsType GhcPs)
-> [LHsTypeArg GhcPs]
-> [AddEpAnn]
-> [AddEpAnn]
-> LexicalFixity
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
goL LHsType GhcPs
ty [] [] [] LexicalFixity
Prefix
  where
    goL :: GenLocated SrcSpanAnnA (HsType GhcPs)
-> [LHsTypeArg GhcPs]
-> [AddEpAnn]
-> [AddEpAnn]
-> LexicalFixity
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
goL (L SrcSpanAnnA
l HsType GhcPs
ty) [LHsTypeArg GhcPs]
acc [AddEpAnn]
ops [AddEpAnn]
cps LexicalFixity
fix = SrcSpan
-> HsType GhcPs
-> [LHsTypeArg GhcPs]
-> [AddEpAnn]
-> [AddEpAnn]
-> LexicalFixity
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
go (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) HsType GhcPs
ty [LHsTypeArg GhcPs]
acc [AddEpAnn]
ops [AddEpAnn]
cps LexicalFixity
fix

    -- workaround to define '*' despite StarIsType
    go :: SrcSpan
-> HsType GhcPs
-> [LHsTypeArg GhcPs]
-> [AddEpAnn]
-> [AddEpAnn]
-> LexicalFixity
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
go SrcSpan
_ (HsParTy XParTy GhcPs
an (L SrcSpanAnnA
l (HsStarTy XStarTy GhcPs
_ Bool
isUni))) [LHsTypeArg GhcPs]
acc [AddEpAnn]
ops' [AddEpAnn]
cps' LexicalFixity
fix
      = do { SrcSpan -> PsMessage -> P ()
addPsMessage (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) PsMessage
PsWarnStarBinder
           ; let name :: OccName
name = NameSpace -> FastString -> OccName
mkOccNameFS NameSpace
tcClsName (Bool -> FastString
starSym Bool
isUni)
           ; let a' :: SrcSpanAnnN
a' = SrcSpanAnnA -> EpAnn AnnParen -> SrcSpanAnnN
newAnns SrcSpanAnnA
l XParTy GhcPs
an
           ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
a' (OccName -> RdrName
Unqual OccName
name), [LHsTypeArg GhcPs]
acc, LexicalFixity
fix
                    , (forall a. [a] -> [a]
reverse [AddEpAnn]
ops') forall a. [a] -> [a] -> [a]
++ [AddEpAnn]
cps') }

    go SrcSpan
_ (HsTyVar XTyVar GhcPs
_ PromotionFlag
_ ltc :: XRec GhcPs (IdP GhcPs)
ltc@(L SrcSpanAnnN
_ RdrName
tc)) [LHsTypeArg GhcPs]
acc [AddEpAnn]
ops [AddEpAnn]
cps LexicalFixity
fix
      | RdrName -> Bool
isRdrTc RdrName
tc               = forall (m :: * -> *) a. Monad m => a -> m a
return (XRec GhcPs (IdP GhcPs)
ltc, [LHsTypeArg GhcPs]
acc, LexicalFixity
fix, (forall a. [a] -> [a]
reverse [AddEpAnn]
ops) forall a. [a] -> [a] -> [a]
++ [AddEpAnn]
cps)
    go SrcSpan
_ (HsOpTy XOpTy GhcPs
_ PromotionFlag
_ LHsType GhcPs
t1 ltc :: XRec GhcPs (IdP GhcPs)
ltc@(L SrcSpanAnnN
_ RdrName
tc) LHsType GhcPs
t2) [LHsTypeArg GhcPs]
acc [AddEpAnn]
ops [AddEpAnn]
cps LexicalFixity
_fix
      | RdrName -> Bool
isRdrTc RdrName
tc               = forall (m :: * -> *) a. Monad m => a -> m a
return (XRec GhcPs (IdP GhcPs)
ltc, forall tm ty. tm -> HsArg tm ty
HsValArg LHsType GhcPs
t1forall a. a -> [a] -> [a]
:forall tm ty. tm -> HsArg tm ty
HsValArg LHsType GhcPs
t2forall a. a -> [a] -> [a]
:[LHsTypeArg GhcPs]
acc, LexicalFixity
Infix, (forall a. [a] -> [a]
reverse [AddEpAnn]
ops) forall a. [a] -> [a] -> [a]
++ [AddEpAnn]
cps)
    go SrcSpan
l (HsParTy XParTy GhcPs
_ LHsType GhcPs
ty)    [LHsTypeArg GhcPs]
acc [AddEpAnn]
ops [AddEpAnn]
cps LexicalFixity
fix = GenLocated SrcSpanAnnA (HsType GhcPs)
-> [LHsTypeArg GhcPs]
-> [AddEpAnn]
-> [AddEpAnn]
-> LexicalFixity
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
goL LHsType GhcPs
ty [LHsTypeArg GhcPs]
acc (AddEpAnn
oforall a. a -> [a] -> [a]
:[AddEpAnn]
ops) (AddEpAnn
cforall a. a -> [a] -> [a]
:[AddEpAnn]
cps) LexicalFixity
fix
      where
        (AddEpAnn
o,AddEpAnn
c) = RealSrcSpan -> (AddEpAnn, AddEpAnn)
mkParensEpAnn (SrcSpan -> RealSrcSpan
realSrcSpan SrcSpan
l)
    go SrcSpan
_ (HsAppTy XAppTy GhcPs
_ LHsType GhcPs
t1 LHsType GhcPs
t2) [LHsTypeArg GhcPs]
acc [AddEpAnn]
ops [AddEpAnn]
cps LexicalFixity
fix = GenLocated SrcSpanAnnA (HsType GhcPs)
-> [LHsTypeArg GhcPs]
-> [AddEpAnn]
-> [AddEpAnn]
-> LexicalFixity
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
goL LHsType GhcPs
t1 (forall tm ty. tm -> HsArg tm ty
HsValArg LHsType GhcPs
t2forall a. a -> [a] -> [a]
:[LHsTypeArg GhcPs]
acc) [AddEpAnn]
ops [AddEpAnn]
cps LexicalFixity
fix
    go SrcSpan
_ (HsAppKindTy XAppKindTy GhcPs
l LHsType GhcPs
ty LHsType GhcPs
ki) [LHsTypeArg GhcPs]
acc [AddEpAnn]
ops [AddEpAnn]
cps LexicalFixity
fix = GenLocated SrcSpanAnnA (HsType GhcPs)
-> [LHsTypeArg GhcPs]
-> [AddEpAnn]
-> [AddEpAnn]
-> LexicalFixity
-> P (GenLocated SrcSpanAnnN RdrName, [LHsTypeArg GhcPs],
      LexicalFixity, [AddEpAnn])
goL LHsType GhcPs
ty (forall tm ty. SrcSpan -> ty -> HsArg tm ty
HsTypeArg XAppKindTy GhcPs
l LHsType GhcPs
kiforall a. a -> [a] -> [a]
:[LHsTypeArg GhcPs]
acc) [AddEpAnn]
ops [AddEpAnn]
cps LexicalFixity
fix
    go SrcSpan
l (HsTupleTy XTupleTy GhcPs
_ HsTupleSort
HsBoxedOrConstraintTuple [LHsType GhcPs]
ts) [] [AddEpAnn]
ops [AddEpAnn]
cps LexicalFixity
fix
      = forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (Name -> RdrName
nameRdrName Name
tup_name)
               , forall a b. (a -> b) -> [a] -> [b]
map forall tm ty. tm -> HsArg tm ty
HsValArg [LHsType GhcPs]
ts, LexicalFixity
fix, (forall a. [a] -> [a]
reverse [AddEpAnn]
ops)forall a. [a] -> [a] -> [a]
++[AddEpAnn]
cps)
      where
        arity :: Int
arity = forall (t :: * -> *) a. Foldable t => t a -> Int
length [LHsType GhcPs]
ts
        tup_name :: Name
tup_name | Bool
is_cls    = Int -> Name
cTupleTyConName Int
arity
                 | Bool
otherwise = forall a. NamedThing a => a -> Name
getName (Boxity -> Int -> TyCon
tupleTyCon Boxity
Boxed Int
arity)
          -- See Note [Unit tuples] in GHC.Hs.Type  (TODO: is this still relevant?)
    go SrcSpan
l HsType GhcPs
_ [LHsTypeArg GhcPs]
_ [AddEpAnn]
_ [AddEpAnn]
_ LexicalFixity
_
      = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l forall a b. (a -> b) -> a -> b
$
          (LHsType GhcPs -> PsMessage
PsErrMalformedTyOrClDecl LHsType GhcPs
ty)

    -- Combine the annotations from the HsParTy and HsStarTy into a
    -- new one for the LocatedN RdrName
    newAnns :: SrcSpanAnnA -> EpAnn AnnParen -> SrcSpanAnnN
    newAnns :: SrcSpanAnnA -> EpAnn AnnParen -> SrcSpanAnnN
newAnns (SrcSpanAnn EpAnn AnnListItem
EpAnnNotUsed SrcSpan
l) (EpAnn Anchor
as (AnnParen ParenType
_ EpaLocation
o EpaLocation
c) EpAnnComments
cs) =
      let
        lr :: RealSrcSpan
lr = RealSrcSpan -> RealSrcSpan -> RealSrcSpan
combineRealSrcSpans (SrcSpan -> RealSrcSpan
realSrcSpan SrcSpan
l) (Anchor -> RealSrcSpan
anchor Anchor
as)
        an :: EpAnn NameAnn
an = (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (RealSrcSpan -> AnchorOperation -> Anchor
Anchor RealSrcSpan
lr AnchorOperation
UnchangedAnchor) (NameAdornment
-> EpaLocation
-> EpaLocation
-> EpaLocation
-> [TrailingAnn]
-> NameAnn
NameAnn NameAdornment
NameParens EpaLocation
o (SrcSpan -> EpaLocation
srcSpan2e SrcSpan
l) EpaLocation
c []) EpAnnComments
cs)
      in forall a. a -> SrcSpan -> SrcSpanAnn' a
SrcSpanAnn EpAnn NameAnn
an (RealSrcSpan -> Maybe BufSpan -> SrcSpan
RealSrcSpan RealSrcSpan
lr forall a. Maybe a
Strict.Nothing)
    newAnns SrcSpanAnnA
_ EpAnn AnnParen
EpAnnNotUsed = forall a. HasCallStack => String -> a
panic String
"missing AnnParen"
    newAnns (SrcSpanAnn (EpAnn Anchor
ap (AnnListItem [TrailingAnn]
ta) EpAnnComments
csp) SrcSpan
l) (EpAnn Anchor
as (AnnParen ParenType
_ EpaLocation
o EpaLocation
c) EpAnnComments
cs) =
      let
        lr :: RealSrcSpan
lr = RealSrcSpan -> RealSrcSpan -> RealSrcSpan
combineRealSrcSpans (Anchor -> RealSrcSpan
anchor Anchor
ap) (Anchor -> RealSrcSpan
anchor Anchor
as)
        an :: EpAnn NameAnn
an = (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (RealSrcSpan -> AnchorOperation -> Anchor
Anchor RealSrcSpan
lr AnchorOperation
UnchangedAnchor) (NameAdornment
-> EpaLocation
-> EpaLocation
-> EpaLocation
-> [TrailingAnn]
-> NameAnn
NameAnn NameAdornment
NameParens EpaLocation
o (SrcSpan -> EpaLocation
srcSpan2e SrcSpan
l) EpaLocation
c [TrailingAnn]
ta) (EpAnnComments
csp forall a. Semigroup a => a -> a -> a
Semi.<> EpAnnComments
cs))
      in forall a. a -> SrcSpan -> SrcSpanAnn' a
SrcSpanAnn EpAnn NameAnn
an (RealSrcSpan -> Maybe BufSpan -> SrcSpan
RealSrcSpan RealSrcSpan
lr forall a. Maybe a
Strict.Nothing)

-- | Yield a parse error if we have a function applied directly to a do block
-- etc. and BlockArguments is not enabled.
checkExpBlockArguments :: LHsExpr GhcPs -> PV ()
checkCmdBlockArguments :: LHsCmd GhcPs -> PV ()
(LHsExpr GhcPs -> PV ()
GenLocated SrcSpanAnnA (HsExpr GhcPs) -> PV ()
checkExpBlockArguments, LHsCmd GhcPs -> PV ()
GenLocated SrcSpanAnnA (HsCmd GhcPs) -> PV ()
checkCmdBlockArguments) = (LHsExpr GhcPs -> PV ()
checkExpr, LHsCmd GhcPs -> PV ()
checkCmd)
  where
    checkExpr :: LHsExpr GhcPs -> PV ()
    checkExpr :: LHsExpr GhcPs -> PV ()
checkExpr LHsExpr GhcPs
expr = case forall l e. GenLocated l e -> e
unLoc LHsExpr GhcPs
expr of
      HsDo XDo GhcPs
_ (DoExpr Maybe ModuleName
m) XRec GhcPs [ExprLStmt GhcPs]
_      -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check (Maybe ModuleName -> LHsExpr GhcPs -> PsMessage
PsErrDoInFunAppExpr Maybe ModuleName
m)                  LHsExpr GhcPs
expr
      HsDo XDo GhcPs
_ (MDoExpr Maybe ModuleName
m) XRec GhcPs [ExprLStmt GhcPs]
_     -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check (Maybe ModuleName -> LHsExpr GhcPs -> PsMessage
PsErrMDoInFunAppExpr Maybe ModuleName
m)                 LHsExpr GhcPs
expr
      HsLam {}                 -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check LHsExpr GhcPs -> PsMessage
PsErrLambdaInFunAppExpr                  LHsExpr GhcPs
expr
      HsCase {}                -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check LHsExpr GhcPs -> PsMessage
PsErrCaseInFunAppExpr                    LHsExpr GhcPs
expr
      HsLamCase XLamCase GhcPs
_ LamCaseVariant
lc_variant MatchGroup GhcPs (LHsExpr GhcPs)
_ -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check (LamCaseVariant -> LHsExpr GhcPs -> PsMessage
PsErrLambdaCaseInFunAppExpr LamCaseVariant
lc_variant) LHsExpr GhcPs
expr
      HsLet {}                 -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check LHsExpr GhcPs -> PsMessage
PsErrLetInFunAppExpr                     LHsExpr GhcPs
expr
      HsIf {}                  -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check LHsExpr GhcPs -> PsMessage
PsErrIfInFunAppExpr                      LHsExpr GhcPs
expr
      HsProc {}                -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check LHsExpr GhcPs -> PsMessage
PsErrProcInFunAppExpr                    LHsExpr GhcPs
expr
      HsExpr GhcPs
_                        -> forall (m :: * -> *) a. Monad m => a -> m a
return ()

    checkCmd :: LHsCmd GhcPs -> PV ()
    checkCmd :: LHsCmd GhcPs -> PV ()
checkCmd LHsCmd GhcPs
cmd = case forall l e. GenLocated l e -> e
unLoc LHsCmd GhcPs
cmd of
      HsCmdLam {}                 -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check LHsCmd GhcPs -> PsMessage
PsErrLambdaCmdInFunAppCmd                  LHsCmd GhcPs
cmd
      HsCmdCase {}                -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check LHsCmd GhcPs -> PsMessage
PsErrCaseCmdInFunAppCmd                    LHsCmd GhcPs
cmd
      HsCmdLamCase XCmdLamCase GhcPs
_ LamCaseVariant
lc_variant MatchGroup GhcPs (LHsCmd GhcPs)
_ -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check (LamCaseVariant -> LHsCmd GhcPs -> PsMessage
PsErrLambdaCaseCmdInFunAppCmd LamCaseVariant
lc_variant) LHsCmd GhcPs
cmd
      HsCmdIf {}                  -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check LHsCmd GhcPs -> PsMessage
PsErrIfCmdInFunAppCmd                      LHsCmd GhcPs
cmd
      HsCmdLet {}                 -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check LHsCmd GhcPs -> PsMessage
PsErrLetCmdInFunAppCmd                     LHsCmd GhcPs
cmd
      HsCmdDo {}                  -> forall {m :: * -> *} {a} {e}.
MonadP m =>
(GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check LHsCmd GhcPs -> PsMessage
PsErrDoCmdInFunAppCmd                      LHsCmd GhcPs
cmd
      HsCmd GhcPs
_                           -> forall (m :: * -> *) a. Monad m => a -> m a
return ()

    check :: (GenLocated (SrcSpanAnn' a) e -> PsMessage)
-> GenLocated (SrcSpanAnn' a) e -> m ()
check GenLocated (SrcSpanAnn' a) e -> PsMessage
err GenLocated (SrcSpanAnn' a) e
a = do
      Bool
blockArguments <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
BlockArgumentsBit
      forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
blockArguments forall a b. (a -> b) -> a -> b
$
        forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA GenLocated (SrcSpanAnn' a) e
a) forall a b. (a -> b) -> a -> b
$ (GenLocated (SrcSpanAnn' a) e -> PsMessage
err GenLocated (SrcSpanAnn' a) e
a)

-- | Validate the context constraints and break up a context into a list
-- of predicates.
--
-- @
--     (Eq a, Ord b)        -->  [Eq a, Ord b]
--     Eq a                 -->  [Eq a]
--     (Eq a)               -->  [Eq a]
--     (((Eq a)))           -->  [Eq a]
-- @
checkContext :: LHsType GhcPs -> P (LHsContext GhcPs)
checkContext :: LHsType GhcPs -> P (LHsContext GhcPs)
checkContext orig_t :: LHsType GhcPs
orig_t@(L (SrcSpanAnn EpAnn AnnListItem
_ SrcSpan
l) HsType GhcPs
_orig_t) =
  ([EpaLocation], [EpaLocation], EpAnnComments)
-> LHsType GhcPs -> P (LHsContext GhcPs)
check ([],[],EpAnnComments
emptyComments) LHsType GhcPs
orig_t
 where
  check :: ([EpaLocation],[EpaLocation],EpAnnComments)
        -> LHsType GhcPs -> P (LHsContext GhcPs)
  check :: ([EpaLocation], [EpaLocation], EpAnnComments)
-> LHsType GhcPs -> P (LHsContext GhcPs)
check ([EpaLocation]
oparens,[EpaLocation]
cparens,EpAnnComments
cs) (L SrcSpanAnnA
_l (HsTupleTy XTupleTy GhcPs
ann' HsTupleSort
HsBoxedOrConstraintTuple [LHsType GhcPs]
ts))
    -- (Eq a, Ord b) shows up as a tuple type. Only boxed tuples can
    -- be used as context constraints.
    -- Ditto ()
    = do
        let ([EpaLocation]
op,[EpaLocation]
cp,EpAnnComments
cs') = case XTupleTy GhcPs
ann' of
              XTupleTy GhcPs
EpAnn AnnParen
EpAnnNotUsed -> ([],[],EpAnnComments
emptyComments)
              EpAnn Anchor
_ (AnnParen ParenType
_ EpaLocation
o EpaLocation
c) EpAnnComments
cs -> ([EpaLocation
o],[EpaLocation
c],EpAnnComments
cs)
        forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall a. a -> SrcSpan -> SrcSpanAnn' a
SrcSpanAnn (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l)
                              -- Append parens so that the original order in the source is maintained
                               (Maybe (IsUnicodeSyntax, EpaLocation)
-> [EpaLocation] -> [EpaLocation] -> AnnContext
AnnContext forall a. Maybe a
Nothing ([EpaLocation]
oparens forall a. [a] -> [a] -> [a]
++ [EpaLocation]
op) ([EpaLocation]
cp forall a. [a] -> [a] -> [a]
++ [EpaLocation]
cparens)) (EpAnnComments
cs forall a. Semigroup a => a -> a -> a
Semi.<> EpAnnComments
cs')) SrcSpan
l) [LHsType GhcPs]
ts)

  check ([EpaLocation]
opi,[EpaLocation]
cpi,EpAnnComments
csi) (L SrcSpanAnnA
_lp1 (HsParTy XParTy GhcPs
ann' LHsType GhcPs
ty))
                                  -- to be sure HsParTy doesn't get into the way
    = do
        let ([EpaLocation]
op,[EpaLocation]
cp,EpAnnComments
cs') = case XParTy GhcPs
ann' of
                    XParTy GhcPs
EpAnn AnnParen
EpAnnNotUsed -> ([],[],EpAnnComments
emptyComments)
                    EpAnn Anchor
_ (AnnParen ParenType
_ EpaLocation
open EpaLocation
close ) EpAnnComments
cs -> ([EpaLocation
open],[EpaLocation
close],EpAnnComments
cs)
        ([EpaLocation], [EpaLocation], EpAnnComments)
-> LHsType GhcPs -> P (LHsContext GhcPs)
check ([EpaLocation]
opforall a. [a] -> [a] -> [a]
++[EpaLocation]
opi,[EpaLocation]
cpforall a. [a] -> [a] -> [a]
++[EpaLocation]
cpi,EpAnnComments
cs' forall a. Semigroup a => a -> a -> a
Semi.<> EpAnnComments
csi) LHsType GhcPs
ty

  -- No need for anns, returning original
  check ([EpaLocation]
_opi,[EpaLocation]
_cpi,EpAnnComments
_csi) LHsType GhcPs
_t =
                 forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall a. a -> SrcSpan -> SrcSpanAnn' a
SrcSpanAnn (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) (Maybe (IsUnicodeSyntax, EpaLocation)
-> [EpaLocation] -> [EpaLocation] -> AnnContext
AnnContext forall a. Maybe a
Nothing [] []) EpAnnComments
emptyComments) SrcSpan
l) [LHsType GhcPs
orig_t])

checkImportDecl :: Maybe EpaLocation
                -> Maybe EpaLocation
                -> P ()
checkImportDecl :: Maybe EpaLocation -> Maybe EpaLocation -> P ()
checkImportDecl Maybe EpaLocation
mPre Maybe EpaLocation
mPost = do
  let whenJust :: Maybe a -> (a -> f ()) -> f ()
whenJust Maybe a
mg a -> f ()
f = forall b a. b -> (a -> b) -> Maybe a -> b
maybe (forall (f :: * -> *) a. Applicative f => a -> f a
pure ()) a -> f ()
f Maybe a
mg

  Bool
importQualifiedPostEnabled <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
ImportQualifiedPostBit

  -- Error if 'qualified' found in postpositive position and
  -- 'ImportQualifiedPost' is not in effect.
  forall {f :: * -> *} {a}.
Applicative f =>
Maybe a -> (a -> f ()) -> f ()
whenJust Maybe EpaLocation
mPost forall a b. (a -> b) -> a -> b
$ \EpaLocation
post ->
    forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Bool -> Bool
not Bool
importQualifiedPostEnabled) forall a b. (a -> b) -> a -> b
$
      SrcSpan -> P ()
failNotEnabledImportQualifiedPost (RealSrcSpan -> Maybe BufSpan -> SrcSpan
RealSrcSpan (EpaLocation -> RealSrcSpan
epaLocationRealSrcSpan EpaLocation
post) forall a. Maybe a
Strict.Nothing)

  -- Error if 'qualified' occurs in both pre and postpositive
  -- positions.
  forall {f :: * -> *} {a}.
Applicative f =>
Maybe a -> (a -> f ()) -> f ()
whenJust Maybe EpaLocation
mPost forall a b. (a -> b) -> a -> b
$ \EpaLocation
post ->
    forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (forall a. Maybe a -> Bool
isJust Maybe EpaLocation
mPre) forall a b. (a -> b) -> a -> b
$
      SrcSpan -> P ()
failImportQualifiedTwice (RealSrcSpan -> Maybe BufSpan -> SrcSpan
RealSrcSpan (EpaLocation -> RealSrcSpan
epaLocationRealSrcSpan EpaLocation
post) forall a. Maybe a
Strict.Nothing)

  -- Warn if 'qualified' found in prepositive position and
  -- 'Opt_WarnPrepositiveQualifiedModule' is enabled.
  forall {f :: * -> *} {a}.
Applicative f =>
Maybe a -> (a -> f ()) -> f ()
whenJust Maybe EpaLocation
mPre forall a b. (a -> b) -> a -> b
$ \EpaLocation
pre ->
    SrcSpan -> P ()
warnPrepositiveQualifiedModule (RealSrcSpan -> Maybe BufSpan -> SrcSpan
RealSrcSpan (EpaLocation -> RealSrcSpan
epaLocationRealSrcSpan EpaLocation
pre) forall a. Maybe a
Strict.Nothing)

-- -------------------------------------------------------------------------
-- Checking Patterns.

-- We parse patterns as expressions and check for valid patterns below,
-- converting the expression into a pattern at the same time.

checkPattern :: LocatedA (PatBuilder GhcPs) -> P (LPat GhcPs)
checkPattern :: LocatedA (PatBuilder GhcPs) -> P (LPat GhcPs)
checkPattern = forall a. PV a -> P a
runPV forall b c a. (b -> c) -> (a -> b) -> a -> c
. LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat

checkPattern_details :: ParseContext -> PV (LocatedA (PatBuilder GhcPs)) -> P (LPat GhcPs)
checkPattern_details :: ParseContext -> PV (LocatedA (PatBuilder GhcPs)) -> P (LPat GhcPs)
checkPattern_details ParseContext
extraDetails PV (LocatedA (PatBuilder GhcPs))
pp = forall a. ParseContext -> PV a -> P a
runPV_details ParseContext
extraDetails (PV (LocatedA (PatBuilder GhcPs))
pp forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat)

checkLPat :: LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat :: LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat e :: LocatedA (PatBuilder GhcPs)
e@(L SrcSpanAnnA
l PatBuilder GhcPs
_) = SrcSpanAnnA
-> LocatedA (PatBuilder GhcPs)
-> [HsConPatTyArg GhcPs]
-> [LPat GhcPs]
-> PV (LPat GhcPs)
checkPat SrcSpanAnnA
l LocatedA (PatBuilder GhcPs)
e [] []

checkPat :: SrcSpanAnnA -> LocatedA (PatBuilder GhcPs) -> [HsConPatTyArg GhcPs] -> [LPat GhcPs]
         -> PV (LPat GhcPs)
checkPat :: SrcSpanAnnA
-> LocatedA (PatBuilder GhcPs)
-> [HsConPatTyArg GhcPs]
-> [LPat GhcPs]
-> PV (LPat GhcPs)
checkPat SrcSpanAnnA
loc (L SrcSpanAnnA
l e :: PatBuilder GhcPs
e@(PatBuilderVar (L SrcSpanAnnN
ln RdrName
c))) [HsConPatTyArg GhcPs]
tyargs [LPat GhcPs]
args
  | RdrName -> Bool
isRdrDataCon RdrName
c = forall (m :: * -> *) a. Monad m => a -> m a
return forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc forall a b. (a -> b) -> a -> b
$ ConPat
      { pat_con_ext :: XConPat GhcPs
pat_con_ext = forall a. EpAnn a
noAnn -- AZ: where should this come from?
      , pat_con :: XRec GhcPs (ConLikeP GhcPs)
pat_con = forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
ln RdrName
c
      , pat_args :: HsConPatDetails GhcPs
pat_args = forall tyarg arg rec.
[tyarg] -> [arg] -> HsConDetails tyarg arg rec
PrefixCon [HsConPatTyArg GhcPs]
tyargs [LPat GhcPs]
args
      }
  | Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [HsConPatTyArg GhcPs]
tyargs) =
      forall a. SrcSpan -> PsMessage -> PV a
patFail (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall b c a. (b -> c) -> (a -> b) -> a -> c
. PatBuilder GhcPs -> PsErrInPatDetails -> PsMessage
PsErrInPat PatBuilder GhcPs
e forall a b. (a -> b) -> a -> b
$ [HsConPatTyArg GhcPs] -> PsErrInPatDetails
PEIP_TypeArgs [HsConPatTyArg GhcPs]
tyargs
  | (Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LPat GhcPs]
args) Bool -> Bool -> Bool
&& RdrName -> Bool
patIsRec RdrName
c) = do
      ParseContext
ctx <- PV ParseContext
askParseContext
      forall a. SrcSpan -> PsMessage -> PV a
patFail (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall b c a. (b -> c) -> (a -> b) -> a -> c
. PatBuilder GhcPs -> PsErrInPatDetails -> PsMessage
PsErrInPat PatBuilder GhcPs
e forall a b. (a -> b) -> a -> b
$ [LPat GhcPs] -> PatIsRecursive -> ParseContext -> PsErrInPatDetails
PEIP_RecPattern [LPat GhcPs]
args PatIsRecursive
YesPatIsRecursive ParseContext
ctx
checkPat SrcSpanAnnA
loc (L SrcSpanAnnA
_ (PatBuilderAppType LocatedA (PatBuilder GhcPs)
f LHsToken "@" GhcPs
at HsPatSigType GhcPs
t)) [HsConPatTyArg GhcPs]
tyargs [LPat GhcPs]
args =
  SrcSpanAnnA
-> LocatedA (PatBuilder GhcPs)
-> [HsConPatTyArg GhcPs]
-> [LPat GhcPs]
-> PV (LPat GhcPs)
checkPat SrcSpanAnnA
loc LocatedA (PatBuilder GhcPs)
f (forall p. LHsToken "@" p -> HsPatSigType p -> HsConPatTyArg p
HsConPatTyArg LHsToken "@" GhcPs
at HsPatSigType GhcPs
t forall a. a -> [a] -> [a]
: [HsConPatTyArg GhcPs]
tyargs) [LPat GhcPs]
args
checkPat SrcSpanAnnA
loc (L SrcSpanAnnA
_ (PatBuilderApp LocatedA (PatBuilder GhcPs)
f LocatedA (PatBuilder GhcPs)
e)) [] [LPat GhcPs]
args = do
  GenLocated SrcSpanAnnA (Pat GhcPs)
p <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
e
  SrcSpanAnnA
-> LocatedA (PatBuilder GhcPs)
-> [HsConPatTyArg GhcPs]
-> [LPat GhcPs]
-> PV (LPat GhcPs)
checkPat SrcSpanAnnA
loc LocatedA (PatBuilder GhcPs)
f [] (GenLocated SrcSpanAnnA (Pat GhcPs)
p forall a. a -> [a] -> [a]
: [LPat GhcPs]
args)
checkPat SrcSpanAnnA
loc (L SrcSpanAnnA
l PatBuilder GhcPs
e) [] [] = do
  Pat GhcPs
p <- SrcSpanAnnA -> PatBuilder GhcPs -> PV (Pat GhcPs)
checkAPat SrcSpanAnnA
loc PatBuilder GhcPs
e
  forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l Pat GhcPs
p)
checkPat SrcSpanAnnA
loc LocatedA (PatBuilder GhcPs)
e [HsConPatTyArg GhcPs]
_ [LPat GhcPs]
_ = do
  PsErrInPatDetails
details <- ParseContext -> PsErrInPatDetails
fromParseContext forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PV ParseContext
askParseContext
  forall a. SrcSpan -> PsMessage -> PV a
patFail (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) (PatBuilder GhcPs -> PsErrInPatDetails -> PsMessage
PsErrInPat (forall l e. GenLocated l e -> e
unLoc LocatedA (PatBuilder GhcPs)
e) PsErrInPatDetails
details)

checkAPat :: SrcSpanAnnA -> PatBuilder GhcPs -> PV (Pat GhcPs)
checkAPat :: SrcSpanAnnA -> PatBuilder GhcPs -> PV (Pat GhcPs)
checkAPat SrcSpanAnnA
loc PatBuilder GhcPs
e0 = do
 Bool
nPlusKPatterns <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
NPlusKPatternsBit
 case PatBuilder GhcPs
e0 of
   PatBuilderPat Pat GhcPs
p -> forall (m :: * -> *) a. Monad m => a -> m a
return Pat GhcPs
p
   PatBuilderVar GenLocated SrcSpanAnnN RdrName
x -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall p. XVarPat p -> LIdP p -> Pat p
VarPat NoExtField
noExtField GenLocated SrcSpanAnnN RdrName
x)

   -- Overloaded numeric patterns (e.g. f 0 x = x)
   -- Negation is recorded separately, so that the literal is zero or +ve
   -- NB. Negative *primitive* literals are already handled by the lexer
   PatBuilderOverLit HsOverLit GhcPs
pos_lit -> forall (m :: * -> *) a. Monad m => a -> m a
return (LocatedAn NoEpAnns (HsOverLit GhcPs)
-> Maybe (SyntaxExpr GhcPs) -> EpAnn [AddEpAnn] -> Pat GhcPs
mkNPat (forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
l2l SrcSpanAnnA
loc) HsOverLit GhcPs
pos_lit) forall a. Maybe a
Nothing forall a. EpAnn a
noAnn)

   -- n+k patterns
   PatBuilderOpApp
           (L SrcSpanAnnA
_ (PatBuilderVar (L SrcSpanAnnN
nloc RdrName
n)))
           (L SrcSpanAnnN
l RdrName
plus)
           (L SrcSpanAnnA
lloc (PatBuilderOverLit lit :: HsOverLit GhcPs
lit@(OverLit {ol_val :: forall p. HsOverLit p -> OverLitVal
ol_val = HsIntegral {}})))
           (EpAnn Anchor
anc [AddEpAnn]
_ EpAnnComments
cs)
                     | Bool
nPlusKPatterns Bool -> Bool -> Bool
&& (RdrName
plus forall a. Eq a => a -> a -> Bool
== RdrName
plus_RDR)
                     -> forall (m :: * -> *) a. Monad m => a -> m a
return (GenLocated SrcSpanAnnN RdrName
-> LocatedAn NoEpAnns (HsOverLit GhcPs)
-> EpAnn EpaLocation
-> Pat GhcPs
mkNPlusKPat (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
nloc RdrName
n) (forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
l2l SrcSpanAnnA
lloc) HsOverLit GhcPs
lit)
                                (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn Anchor
anc (forall ann. SrcAnn ann -> EpaLocation
epaLocationFromSrcAnn SrcSpanAnnN
l) EpAnnComments
cs))

   -- Improve error messages for the @-operator when the user meant an @-pattern
   PatBuilderOpApp LocatedA (PatBuilder GhcPs)
_ GenLocated SrcSpanAnnN RdrName
op LocatedA (PatBuilder GhcPs)
_ EpAnn [AddEpAnn]
_ | RdrName -> Bool
opIsAt (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
op) -> do
     forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA GenLocated SrcSpanAnnN RdrName
op) PsMessage
PsErrAtInPatPos
     forall (m :: * -> *) a. Monad m => a -> m a
return (forall p. XWildPat p -> Pat p
WildPat NoExtField
noExtField)

   PatBuilderOpApp LocatedA (PatBuilder GhcPs)
l (L SrcSpanAnnN
cl RdrName
c) LocatedA (PatBuilder GhcPs)
r EpAnn [AddEpAnn]
anns
     | RdrName -> Bool
isRdrDataCon RdrName
c -> do
         GenLocated SrcSpanAnnA (Pat GhcPs)
l <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
l
         GenLocated SrcSpanAnnA (Pat GhcPs)
r <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
r
         forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ ConPat
           { pat_con_ext :: XConPat GhcPs
pat_con_ext = EpAnn [AddEpAnn]
anns
           , pat_con :: XRec GhcPs (ConLikeP GhcPs)
pat_con = forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
cl RdrName
c
           , pat_args :: HsConPatDetails GhcPs
pat_args = forall tyarg arg rec. arg -> arg -> HsConDetails tyarg arg rec
InfixCon GenLocated SrcSpanAnnA (Pat GhcPs)
l GenLocated SrcSpanAnnA (Pat GhcPs)
r
           }

   PatBuilderPar LHsToken "(" GhcPs
lpar LocatedA (PatBuilder GhcPs)
e LHsToken ")" GhcPs
rpar -> do
     GenLocated SrcSpanAnnA (Pat GhcPs)
p <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
e
     forall (m :: * -> *) a. Monad m => a -> m a
return (forall p.
XParPat p -> LHsToken "(" p -> LPat p -> LHsToken ")" p -> Pat p
ParPat (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc)) NoEpAnns
NoEpAnns EpAnnComments
emptyComments) LHsToken "(" GhcPs
lpar GenLocated SrcSpanAnnA (Pat GhcPs)
p LHsToken ")" GhcPs
rpar)

   PatBuilder GhcPs
_           -> do
     PsErrInPatDetails
details <- ParseContext -> PsErrInPatDetails
fromParseContext forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PV ParseContext
askParseContext
     forall a. SrcSpan -> PsMessage -> PV a
patFail (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) (PatBuilder GhcPs -> PsErrInPatDetails -> PsMessage
PsErrInPat PatBuilder GhcPs
e0 PsErrInPatDetails
details)

placeHolderPunRhs :: DisambECP b => PV (LocatedA b)
-- The RHS of a punned record field will be filled in by the renamer
-- It's better not to make it an error, in case we want to print it when
-- debugging
placeHolderPunRhs :: forall b. DisambECP b => PV (LocatedA b)
placeHolderPunRhs = forall b.
DisambECP b =>
GenLocated SrcSpanAnnN RdrName -> PV (LocatedA b)
mkHsVarPV (forall a an. a -> LocatedAn an a
noLocA RdrName
pun_RDR)

plus_RDR, pun_RDR :: RdrName
plus_RDR :: RdrName
plus_RDR = NameSpace -> FastString -> RdrName
mkUnqual NameSpace
varName (String -> FastString
fsLit String
"+") -- Hack
pun_RDR :: RdrName
pun_RDR  = NameSpace -> FastString -> RdrName
mkUnqual NameSpace
varName (String -> FastString
fsLit String
"pun-right-hand-side")

checkPatField :: LHsRecField GhcPs (LocatedA (PatBuilder GhcPs))
              -> PV (LHsRecField GhcPs (LPat GhcPs))
checkPatField :: LHsRecField GhcPs (LocatedA (PatBuilder GhcPs))
-> PV (LHsRecField GhcPs (LPat GhcPs))
checkPatField (L SrcSpanAnnA
l HsFieldBind
  (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
  (LocatedA (PatBuilder GhcPs))
fld) = do GenLocated SrcSpanAnnA (Pat GhcPs)
p <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat (forall lhs rhs. HsFieldBind lhs rhs -> rhs
hfbRHS HsFieldBind
  (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
  (LocatedA (PatBuilder GhcPs))
fld)
                             forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (HsFieldBind
  (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
  (LocatedA (PatBuilder GhcPs))
fld { hfbRHS :: GenLocated SrcSpanAnnA (Pat GhcPs)
hfbRHS = GenLocated SrcSpanAnnA (Pat GhcPs)
p }))

patFail :: SrcSpan -> PsMessage -> PV a
patFail :: forall a. SrcSpan -> PsMessage -> PV a
patFail SrcSpan
loc PsMessage
msg = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$ PsMessage
msg

patIsRec :: RdrName -> Bool
patIsRec :: RdrName -> Bool
patIsRec RdrName
e = RdrName
e forall a. Eq a => a -> a -> Bool
== NameSpace -> FastString -> RdrName
mkUnqual NameSpace
varName (String -> FastString
fsLit String
"rec")

---------------------------------------------------------------------------
-- Check Equation Syntax

checkValDef :: SrcSpan
            -> LocatedA (PatBuilder GhcPs)
            -> Maybe (AddEpAnn, LHsType GhcPs)
            -> Located (GRHSs GhcPs (LHsExpr GhcPs))
            -> P (HsBind GhcPs)

checkValDef :: SrcSpan
-> LocatedA (PatBuilder GhcPs)
-> Maybe (AddEpAnn, LHsType GhcPs)
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBindLR GhcPs GhcPs)
checkValDef SrcSpan
loc LocatedA (PatBuilder GhcPs)
lhs (Just (AddEpAnn
sigAnn, LHsType GhcPs
sig)) Located (GRHSs GhcPs (LHsExpr GhcPs))
grhss
        -- x :: ty = rhs  parses as a *pattern* binding
  = do GenLocated SrcSpanAnnA (Pat GhcPs)
lhs' <- forall a. PV a -> P a
runPV forall a b. (a -> b) -> a -> b
$ forall b.
DisambECP b =>
SrcSpanAnnA
-> LocatedA b -> LHsType GhcPs -> [AddEpAnn] -> PV (LocatedA b)
mkHsTySigPV (forall a e1 e2.
Semigroup a =>
GenLocated (SrcAnn a) e1 -> GenLocated (SrcAnn a) e2 -> SrcAnn a
combineLocsA LocatedA (PatBuilder GhcPs)
lhs LHsType GhcPs
sig) LocatedA (PatBuilder GhcPs)
lhs LHsType GhcPs
sig [AddEpAnn
sigAnn]
                        forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat
       SrcSpan
-> [AddEpAnn]
-> LPat GhcPs
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBindLR GhcPs GhcPs)
checkPatBind SrcSpan
loc [] GenLocated SrcSpanAnnA (Pat GhcPs)
lhs' Located (GRHSs GhcPs (LHsExpr GhcPs))
grhss

checkValDef SrcSpan
loc LocatedA (PatBuilder GhcPs)
lhs Maybe (AddEpAnn, LHsType GhcPs)
Nothing Located (GRHSs GhcPs (LHsExpr GhcPs))
g
  = do  { Maybe
  (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
   [LocatedA (PatBuilder GhcPs)], [AddEpAnn])
mb_fun <- LocatedA (PatBuilder GhcPs)
-> P (Maybe
        (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
         [LocatedA (PatBuilder GhcPs)], [AddEpAnn]))
isFunLhs LocatedA (PatBuilder GhcPs)
lhs
        ; case Maybe
  (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
   [LocatedA (PatBuilder GhcPs)], [AddEpAnn])
mb_fun of
            Just (GenLocated SrcSpanAnnN RdrName
fun, LexicalFixity
is_infix, [LocatedA (PatBuilder GhcPs)]
pats, [AddEpAnn]
ann) ->
              SrcStrictness
-> SrcSpan
-> [AddEpAnn]
-> GenLocated SrcSpanAnnN RdrName
-> LexicalFixity
-> [LocatedA (PatBuilder GhcPs)]
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBindLR GhcPs GhcPs)
checkFunBind SrcStrictness
NoSrcStrict SrcSpan
loc [AddEpAnn]
ann
                           GenLocated SrcSpanAnnN RdrName
fun LexicalFixity
is_infix [LocatedA (PatBuilder GhcPs)]
pats Located (GRHSs GhcPs (LHsExpr GhcPs))
g
            Maybe
  (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
   [LocatedA (PatBuilder GhcPs)], [AddEpAnn])
Nothing -> do
              GenLocated SrcSpanAnnA (Pat GhcPs)
lhs' <- LocatedA (PatBuilder GhcPs) -> P (LPat GhcPs)
checkPattern LocatedA (PatBuilder GhcPs)
lhs
              SrcSpan
-> [AddEpAnn]
-> LPat GhcPs
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBindLR GhcPs GhcPs)
checkPatBind SrcSpan
loc [] GenLocated SrcSpanAnnA (Pat GhcPs)
lhs' Located (GRHSs GhcPs (LHsExpr GhcPs))
g }

checkFunBind :: SrcStrictness
             -> SrcSpan
             -> [AddEpAnn]
             -> LocatedN RdrName
             -> LexicalFixity
             -> [LocatedA (PatBuilder GhcPs)]
             -> Located (GRHSs GhcPs (LHsExpr GhcPs))
             -> P (HsBind GhcPs)
checkFunBind :: SrcStrictness
-> SrcSpan
-> [AddEpAnn]
-> GenLocated SrcSpanAnnN RdrName
-> LexicalFixity
-> [LocatedA (PatBuilder GhcPs)]
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBindLR GhcPs GhcPs)
checkFunBind SrcStrictness
strictness SrcSpan
locF [AddEpAnn]
ann GenLocated SrcSpanAnnN RdrName
fun LexicalFixity
is_infix [LocatedA (PatBuilder GhcPs)]
pats (L SrcSpan
_ GRHSs GhcPs (LHsExpr GhcPs)
grhss)
  = do  [GenLocated SrcSpanAnnA (Pat GhcPs)]
ps <- forall a. ParseContext -> PV a -> P a
runPV_details ParseContext
extraDetails (forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat [LocatedA (PatBuilder GhcPs)]
pats)
        let match_span :: SrcSpanAnnA
match_span = forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan forall a b. (a -> b) -> a -> b
$ SrcSpan
locF
        EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
locF
        forall (m :: * -> *) a. Monad m => a -> m a
return (GenLocated SrcSpanAnnN RdrName
-> LocatedL [LMatch GhcPs (LHsExpr GhcPs)] -> HsBindLR GhcPs GhcPs
makeFunBind GenLocated SrcSpanAnnN RdrName
fun (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
match_span)
                 [forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
match_span (Match { m_ext :: XCMatch GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m_ext = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
locF) [AddEpAnn]
ann EpAnnComments
cs
                                      , m_ctxt :: HsMatchContext GhcPs
m_ctxt = FunRhs
                                          { mc_fun :: LIdP (NoGhcTc GhcPs)
mc_fun    = GenLocated SrcSpanAnnN RdrName
fun
                                          , mc_fixity :: LexicalFixity
mc_fixity = LexicalFixity
is_infix
                                          , mc_strictness :: SrcStrictness
mc_strictness = SrcStrictness
strictness }
                                      , m_pats :: [LPat GhcPs]
m_pats = [GenLocated SrcSpanAnnA (Pat GhcPs)]
ps
                                      , m_grhss :: GRHSs GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m_grhss = GRHSs GhcPs (LHsExpr GhcPs)
grhss })]))
        -- The span of the match covers the entire equation.
        -- That isn't quite right, but it'll do for now.
  where
    extraDetails :: ParseContext
extraDetails
      | LexicalFixity
Infix <- LexicalFixity
is_infix = Maybe RdrName -> PatIncompleteDoBlock -> ParseContext
ParseContext (forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
fun) PatIncompleteDoBlock
NoIncompleteDoBlock
      | Bool
otherwise         = ParseContext
noParseContext

makeFunBind :: LocatedN RdrName -> LocatedL [LMatch GhcPs (LHsExpr GhcPs)]
            -> HsBind GhcPs
-- Like GHC.Hs.Utils.mkFunBind, but we need to be able to set the fixity too
makeFunBind :: GenLocated SrcSpanAnnN RdrName
-> LocatedL [LMatch GhcPs (LHsExpr GhcPs)] -> HsBindLR GhcPs GhcPs
makeFunBind GenLocated SrcSpanAnnN RdrName
fn LocatedL [LMatch GhcPs (LHsExpr GhcPs)]
ms
  = FunBind { fun_ext :: XFunBind GhcPs GhcPs
fun_ext = NoExtField
noExtField,
              fun_id :: XRec GhcPs (IdP GhcPs)
fun_id = GenLocated SrcSpanAnnN RdrName
fn,
              fun_matches :: MatchGroup GhcPs (LHsExpr GhcPs)
fun_matches = forall (p :: Pass) (body :: * -> *).
AnnoBody p body =>
Origin
-> LocatedL
     [LocatedA (Match (GhcPass p) (LocatedA (body (GhcPass p))))]
-> MatchGroup (GhcPass p) (LocatedA (body (GhcPass p)))
mkMatchGroup Origin
FromSource LocatedL [LMatch GhcPs (LHsExpr GhcPs)]
ms }

-- See Note [FunBind vs PatBind]
checkPatBind :: SrcSpan
             -> [AddEpAnn]
             -> LPat GhcPs
             -> Located (GRHSs GhcPs (LHsExpr GhcPs))
             -> P (HsBind GhcPs)
checkPatBind :: SrcSpan
-> [AddEpAnn]
-> LPat GhcPs
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBindLR GhcPs GhcPs)
checkPatBind SrcSpan
loc [AddEpAnn]
annsIn (L SrcSpanAnnA
_ (BangPat (EpAnn Anchor
_ [AddEpAnn]
ans EpAnnComments
cs) (L SrcSpanAnnA
_ (VarPat XVarPat GhcPs
_ XRec GhcPs (IdP GhcPs)
v))))
                        (L SrcSpan
_match_span GRHSs GhcPs (LHsExpr GhcPs)
grhss)
      = forall (m :: * -> *) a. Monad m => a -> m a
return (GenLocated SrcSpanAnnN RdrName
-> LocatedL [LMatch GhcPs (LHsExpr GhcPs)] -> HsBindLR GhcPs GhcPs
makeFunBind XRec GhcPs (IdP GhcPs)
v (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc)
                [forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) (EpAnn [AddEpAnn]
-> GenLocated SrcSpanAnnN RdrName
-> Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
loc) ([AddEpAnn]
ansforall a. [a] -> [a] -> [a]
++[AddEpAnn]
annsIn) EpAnnComments
cs) XRec GhcPs (IdP GhcPs)
v)]))
  where
    m :: EpAnn [AddEpAnn]
-> GenLocated SrcSpanAnnN RdrName
-> Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m EpAnn [AddEpAnn]
a GenLocated SrcSpanAnnN RdrName
v = Match { m_ext :: XCMatch GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m_ext = EpAnn [AddEpAnn]
a
                  , m_ctxt :: HsMatchContext GhcPs
m_ctxt = FunRhs { mc_fun :: LIdP (NoGhcTc GhcPs)
mc_fun    = GenLocated SrcSpanAnnN RdrName
v
                                    , mc_fixity :: LexicalFixity
mc_fixity = LexicalFixity
Prefix
                                    , mc_strictness :: SrcStrictness
mc_strictness = SrcStrictness
SrcStrict }
                  , m_pats :: [LPat GhcPs]
m_pats = []
                 , m_grhss :: GRHSs GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m_grhss = GRHSs GhcPs (LHsExpr GhcPs)
grhss }

checkPatBind SrcSpan
loc [AddEpAnn]
annsIn LPat GhcPs
lhs (L SrcSpan
_ GRHSs GhcPs (LHsExpr GhcPs)
grhss) = do
  EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
loc
  forall (m :: * -> *) a. Monad m => a -> m a
return (forall idL idR.
XPatBind idL idR
-> LPat idL -> GRHSs idR (LHsExpr idR) -> HsBindLR idL idR
PatBind (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
loc) [AddEpAnn]
annsIn EpAnnComments
cs) LPat GhcPs
lhs GRHSs GhcPs (LHsExpr GhcPs)
grhss)

checkValSigLhs :: LHsExpr GhcPs -> P (LocatedN RdrName)
checkValSigLhs :: LHsExpr GhcPs -> P (GenLocated SrcSpanAnnN RdrName)
checkValSigLhs (L SrcSpanAnnA
_ (HsVar XVar GhcPs
_ lrdr :: XRec GhcPs (IdP GhcPs)
lrdr@(L SrcSpanAnnN
_ RdrName
v)))
  | RdrName -> Bool
isUnqual RdrName
v
  , Bool -> Bool
not (OccName -> Bool
isDataOcc (RdrName -> OccName
rdrNameOcc RdrName
v))
  = forall (m :: * -> *) a. Monad m => a -> m a
return XRec GhcPs (IdP GhcPs)
lrdr

checkValSigLhs lhs :: LHsExpr GhcPs
lhs@(L SrcSpanAnnA
l HsExpr GhcPs
_)
  = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall a b. (a -> b) -> a -> b
$ LHsExpr GhcPs -> PsMessage
PsErrInvalidTypeSignature LHsExpr GhcPs
lhs

checkDoAndIfThenElse
  :: (Outputable a, Outputable b, Outputable c)
  => (a -> Bool -> b -> Bool -> c -> PsMessage)
  -> LocatedA a -> Bool -> LocatedA b -> Bool -> LocatedA c -> PV ()
checkDoAndIfThenElse :: forall a b c.
(Outputable a, Outputable b, Outputable c) =>
(a -> Bool -> b -> Bool -> c -> PsMessage)
-> LocatedA a -> Bool -> LocatedA b -> Bool -> LocatedA c -> PV ()
checkDoAndIfThenElse a -> Bool -> b -> Bool -> c -> PsMessage
err LocatedA a
guardExpr Bool
semiThen LocatedA b
thenExpr Bool
semiElse LocatedA c
elseExpr
 | Bool
semiThen Bool -> Bool -> Bool
|| Bool
semiElse = do
      Bool
doAndIfThenElse <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
DoAndIfThenElseBit
      let e :: PsMessage
e   = a -> Bool -> b -> Bool -> c -> PsMessage
err (forall l e. GenLocated l e -> e
unLoc LocatedA a
guardExpr)
                    Bool
semiThen (forall l e. GenLocated l e -> e
unLoc LocatedA b
thenExpr)
                    Bool
semiElse (forall l e. GenLocated l e -> e
unLoc LocatedA c
elseExpr)
          loc :: SrcSpan
loc = forall a b. Located a -> Located b -> SrcSpan
combineLocs (forall a e. LocatedAn a e -> Located e
reLoc LocatedA a
guardExpr) (forall a e. LocatedAn a e -> Located e
reLoc LocatedA c
elseExpr)

      forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
doAndIfThenElse forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError (forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc PsMessage
e)
  | Bool
otherwise = forall (m :: * -> *) a. Monad m => a -> m a
return ()

isFunLhs :: LocatedA (PatBuilder GhcPs)
      -> P (Maybe (LocatedN RdrName, LexicalFixity,
                   [LocatedA (PatBuilder GhcPs)],[AddEpAnn]))
-- A variable binding is parsed as a FunBind.
-- Just (fun, is_infix, arg_pats) if e is a function LHS
isFunLhs :: LocatedA (PatBuilder GhcPs)
-> P (Maybe
        (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
         [LocatedA (PatBuilder GhcPs)], [AddEpAnn]))
isFunLhs LocatedA (PatBuilder GhcPs)
e = forall {m :: * -> *} {p}.
Monad m =>
LocatedA (PatBuilder p)
-> [LocatedA (PatBuilder p)]
-> [AddEpAnn]
-> [AddEpAnn]
-> m (Maybe
        (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
         [LocatedA (PatBuilder p)], [AddEpAnn]))
go LocatedA (PatBuilder GhcPs)
e [] [] []
 where
   go :: LocatedA (PatBuilder p)
-> [LocatedA (PatBuilder p)]
-> [AddEpAnn]
-> [AddEpAnn]
-> m (Maybe
        (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
         [LocatedA (PatBuilder p)], [AddEpAnn]))
go (L SrcSpanAnnA
_ (PatBuilderVar (L SrcSpanAnnN
loc RdrName
f))) [LocatedA (PatBuilder p)]
es [AddEpAnn]
ops [AddEpAnn]
cps
       | Bool -> Bool
not (RdrName -> Bool
isRdrDataCon RdrName
f)        = forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
loc RdrName
f, LexicalFixity
Prefix, [LocatedA (PatBuilder p)]
es, (forall a. [a] -> [a]
reverse [AddEpAnn]
ops) forall a. [a] -> [a] -> [a]
++ [AddEpAnn]
cps))
   go (L SrcSpanAnnA
_ (PatBuilderApp LocatedA (PatBuilder p)
f LocatedA (PatBuilder p)
e)) [LocatedA (PatBuilder p)]
es       [AddEpAnn]
ops [AddEpAnn]
cps = LocatedA (PatBuilder p)
-> [LocatedA (PatBuilder p)]
-> [AddEpAnn]
-> [AddEpAnn]
-> m (Maybe
        (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
         [LocatedA (PatBuilder p)], [AddEpAnn]))
go LocatedA (PatBuilder p)
f (LocatedA (PatBuilder p)
eforall a. a -> [a] -> [a]
:[LocatedA (PatBuilder p)]
es) [AddEpAnn]
ops [AddEpAnn]
cps
   go (L SrcSpanAnnA
l (PatBuilderPar LHsToken "(" p
_ LocatedA (PatBuilder p)
e LHsToken ")" p
_)) es :: [LocatedA (PatBuilder p)]
es@(LocatedA (PatBuilder p)
_:[LocatedA (PatBuilder p)]
_) [AddEpAnn]
ops [AddEpAnn]
cps
                                      = let
                                          (AddEpAnn
o,AddEpAnn
c) = RealSrcSpan -> (AddEpAnn, AddEpAnn)
mkParensEpAnn (SrcSpan -> RealSrcSpan
realSrcSpan forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
                                        in
                                          LocatedA (PatBuilder p)
-> [LocatedA (PatBuilder p)]
-> [AddEpAnn]
-> [AddEpAnn]
-> m (Maybe
        (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
         [LocatedA (PatBuilder p)], [AddEpAnn]))
go LocatedA (PatBuilder p)
e [LocatedA (PatBuilder p)]
es (AddEpAnn
oforall a. a -> [a] -> [a]
:[AddEpAnn]
ops) (AddEpAnn
cforall a. a -> [a] -> [a]
:[AddEpAnn]
cps)
   go (L SrcSpanAnnA
loc (PatBuilderOpApp LocatedA (PatBuilder p)
l (L SrcSpanAnnN
loc' RdrName
op) LocatedA (PatBuilder p)
r (EpAnn Anchor
loca [AddEpAnn]
anns EpAnnComments
cs))) [LocatedA (PatBuilder p)]
es [AddEpAnn]
ops [AddEpAnn]
cps
        | Bool -> Bool
not (RdrName -> Bool
isRdrDataCon RdrName
op)         -- We have found the function!
        = forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
loc' RdrName
op, LexicalFixity
Infix, (LocatedA (PatBuilder p)
lforall a. a -> [a] -> [a]
:LocatedA (PatBuilder p)
rforall a. a -> [a] -> [a]
:[LocatedA (PatBuilder p)]
es), ([AddEpAnn]
anns forall a. [a] -> [a] -> [a]
++ forall a. [a] -> [a]
reverse [AddEpAnn]
ops forall a. [a] -> [a] -> [a]
++ [AddEpAnn]
cps)))
        | Bool
otherwise                     -- Infix data con; keep going
        = do { Maybe
  (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
   [LocatedA (PatBuilder p)], [AddEpAnn])
mb_l <- LocatedA (PatBuilder p)
-> [LocatedA (PatBuilder p)]
-> [AddEpAnn]
-> [AddEpAnn]
-> m (Maybe
        (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
         [LocatedA (PatBuilder p)], [AddEpAnn]))
go LocatedA (PatBuilder p)
l [LocatedA (PatBuilder p)]
es [AddEpAnn]
ops [AddEpAnn]
cps
             ; case Maybe
  (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
   [LocatedA (PatBuilder p)], [AddEpAnn])
mb_l of
                 Just (GenLocated SrcSpanAnnN RdrName
op', LexicalFixity
Infix, LocatedA (PatBuilder p)
j : LocatedA (PatBuilder p)
k : [LocatedA (PatBuilder p)]
es', [AddEpAnn]
anns')
                   -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just (GenLocated SrcSpanAnnN RdrName
op', LexicalFixity
Infix, LocatedA (PatBuilder p)
j forall a. a -> [a] -> [a]
: LocatedA (PatBuilder p)
op_app forall a. a -> [a] -> [a]
: [LocatedA (PatBuilder p)]
es', [AddEpAnn]
anns'))
                   where
                     op_app :: LocatedA (PatBuilder p)
op_app = forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc (forall p.
LocatedA (PatBuilder p)
-> GenLocated SrcSpanAnnN RdrName
-> LocatedA (PatBuilder p)
-> EpAnn [AddEpAnn]
-> PatBuilder p
PatBuilderOpApp LocatedA (PatBuilder p)
k
                               (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
loc' RdrName
op) LocatedA (PatBuilder p)
r (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn Anchor
loca (forall a. [a] -> [a]
reverse [AddEpAnn]
opsforall a. [a] -> [a] -> [a]
++[AddEpAnn]
cps) EpAnnComments
cs))
                 Maybe
  (GenLocated SrcSpanAnnN RdrName, LexicalFixity,
   [LocatedA (PatBuilder p)], [AddEpAnn])
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing }
   go LocatedA (PatBuilder p)
_ [LocatedA (PatBuilder p)]
_ [AddEpAnn]
_ [AddEpAnn]
_ = forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing

mkBangTy :: EpAnn [AddEpAnn] -> SrcStrictness -> LHsType GhcPs -> HsType GhcPs
mkBangTy :: EpAnn [AddEpAnn] -> SrcStrictness -> LHsType GhcPs -> HsType GhcPs
mkBangTy EpAnn [AddEpAnn]
anns SrcStrictness
strictness =
  forall pass.
XBangTy pass -> HsSrcBang -> LHsType pass -> HsType pass
HsBangTy EpAnn [AddEpAnn]
anns (SourceText -> SrcUnpackedness -> SrcStrictness -> HsSrcBang
HsSrcBang SourceText
NoSourceText SrcUnpackedness
NoSrcUnpack SrcStrictness
strictness)

-- | Result of parsing @{-\# UNPACK \#-}@ or @{-\# NOUNPACK \#-}@.
data UnpackednessPragma =
  UnpackednessPragma [AddEpAnn] SourceText SrcUnpackedness

-- | Annotate a type with either an @{-\# UNPACK \#-}@ or a @{-\# NOUNPACK \#-}@ pragma.
addUnpackednessP :: MonadP m => Located UnpackednessPragma -> LHsType GhcPs -> m (LHsType GhcPs)
addUnpackednessP :: forall (m :: * -> *).
MonadP m =>
Located UnpackednessPragma -> LHsType GhcPs -> m (LHsType GhcPs)
addUnpackednessP (L SrcSpan
lprag (UnpackednessPragma [AddEpAnn]
anns SourceText
prag SrcUnpackedness
unpk)) LHsType GhcPs
ty = do
    let l' :: SrcSpan
l' = SrcSpan -> SrcSpan -> SrcSpan
combineSrcSpans SrcSpan
lprag (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA LHsType GhcPs
ty)
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l'
    let an :: EpAnn [AddEpAnn]
an = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l') [AddEpAnn]
anns EpAnnComments
cs
        t' :: HsType GhcPs
t' = EpAnn [AddEpAnn]
-> GenLocated SrcSpanAnnA (HsType GhcPs) -> HsType GhcPs
addUnpackedness EpAnn [AddEpAnn]
an LHsType GhcPs
ty
    forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l') HsType GhcPs
t')
  where
    -- If we have a HsBangTy that only has a strictness annotation,
    -- such as ~T or !T, then add the pragma to the existing HsBangTy.
    --
    -- Otherwise, wrap the type in a new HsBangTy constructor.
    addUnpackedness :: EpAnn [AddEpAnn]
-> GenLocated SrcSpanAnnA (HsType GhcPs) -> HsType GhcPs
addUnpackedness EpAnn [AddEpAnn]
an (L SrcSpanAnnA
_ (HsBangTy XBangTy GhcPs
x HsSrcBang
bang LHsType GhcPs
t))
      | HsSrcBang SourceText
NoSourceText SrcUnpackedness
NoSrcUnpack SrcStrictness
strictness <- HsSrcBang
bang
      = forall pass.
XBangTy pass -> HsSrcBang -> LHsType pass -> HsType pass
HsBangTy (EpAnn [AddEpAnn] -> [AddEpAnn] -> EpAnnComments -> EpAnn [AddEpAnn]
addAnns EpAnn [AddEpAnn]
an (EpAnn [AddEpAnn] -> [AddEpAnn]
epAnnAnns XBangTy GhcPs
x) (forall ann. EpAnn ann -> EpAnnComments
epAnnComments XBangTy GhcPs
x)) (SourceText -> SrcUnpackedness -> SrcStrictness -> HsSrcBang
HsSrcBang SourceText
prag SrcUnpackedness
unpk SrcStrictness
strictness) LHsType GhcPs
t
    addUnpackedness EpAnn [AddEpAnn]
an GenLocated SrcSpanAnnA (HsType GhcPs)
t
      = forall pass.
XBangTy pass -> HsSrcBang -> LHsType pass -> HsType pass
HsBangTy EpAnn [AddEpAnn]
an (SourceText -> SrcUnpackedness -> SrcStrictness -> HsSrcBang
HsSrcBang SourceText
prag SrcUnpackedness
unpk SrcStrictness
NoSrcStrict) GenLocated SrcSpanAnnA (HsType GhcPs)
t

---------------------------------------------------------------------------
-- | Check for monad comprehensions
--
-- If the flag MonadComprehensions is set, return a 'MonadComp' context,
-- otherwise use the usual 'ListComp' context

checkMonadComp :: PV HsDoFlavour
checkMonadComp :: PV HsDoFlavour
checkMonadComp = do
    Bool
monadComprehensions <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
MonadComprehensionsBit
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ if Bool
monadComprehensions
                then HsDoFlavour
MonadComp
                else HsDoFlavour
ListComp

-- -------------------------------------------------------------------------
-- Expression/command/pattern ambiguity.
-- See Note [Ambiguous syntactic categories]
--

-- See Note [Ambiguous syntactic categories]
--
-- This newtype is required to avoid impredicative types in monadic
-- productions. That is, in a production that looks like
--
--    | ... {% return (ECP ...) }
--
-- we are dealing with
--    P ECP
-- whereas without a newtype we would be dealing with
--    P (forall b. DisambECP b => PV (Located b))
--
newtype ECP =
  ECP { ECP -> forall b. DisambECP b => PV (LocatedA b)
unECP :: forall b. DisambECP b => PV (LocatedA b) }

ecpFromExp :: LHsExpr GhcPs -> ECP
ecpFromExp :: LHsExpr GhcPs -> ECP
ecpFromExp LHsExpr GhcPs
a = (forall b. DisambECP b => PV (LocatedA b)) -> ECP
ECP (forall b. DisambECP b => LHsExpr GhcPs -> PV (LocatedA b)
ecpFromExp' LHsExpr GhcPs
a)

ecpFromCmd :: LHsCmd GhcPs -> ECP
ecpFromCmd :: LHsCmd GhcPs -> ECP
ecpFromCmd LHsCmd GhcPs
a = (forall b. DisambECP b => PV (LocatedA b)) -> ECP
ECP (forall b. DisambECP b => LHsCmd GhcPs -> PV (LocatedA b)
ecpFromCmd' LHsCmd GhcPs
a)

-- The 'fbinds' parser rule produces values of this type. See Note
-- [RecordDotSyntax field updates].
type Fbind b = Either (LHsRecField GhcPs (LocatedA b)) (LHsRecProj GhcPs (LocatedA b))

-- | Disambiguate infix operators.
-- See Note [Ambiguous syntactic categories]
class DisambInfixOp b where
  mkHsVarOpPV :: LocatedN RdrName -> PV (LocatedN b)
  mkHsConOpPV :: LocatedN RdrName -> PV (LocatedN b)
  mkHsInfixHolePV :: SrcSpan -> (EpAnnComments -> EpAnn EpAnnUnboundVar) -> PV (Located b)

instance DisambInfixOp (HsExpr GhcPs) where
  mkHsVarOpPV :: GenLocated SrcSpanAnnN RdrName -> PV (LocatedN (HsExpr GhcPs))
mkHsVarOpPV GenLocated SrcSpanAnnN RdrName
v = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall l e. GenLocated l e -> l
getLoc GenLocated SrcSpanAnnN RdrName
v) (forall p. XVar p -> LIdP p -> HsExpr p
HsVar NoExtField
noExtField GenLocated SrcSpanAnnN RdrName
v)
  mkHsConOpPV :: GenLocated SrcSpanAnnN RdrName -> PV (LocatedN (HsExpr GhcPs))
mkHsConOpPV GenLocated SrcSpanAnnN RdrName
v = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall l e. GenLocated l e -> l
getLoc GenLocated SrcSpanAnnN RdrName
v) (forall p. XVar p -> LIdP p -> HsExpr p
HsVar NoExtField
noExtField GenLocated SrcSpanAnnN RdrName
v)
  mkHsInfixHolePV :: SrcSpan
-> (EpAnnComments -> EpAnn EpAnnUnboundVar)
-> PV (Located (HsExpr GhcPs))
mkHsInfixHolePV SrcSpan
l EpAnnComments -> EpAnn EpAnnUnboundVar
ann = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpan
l (EpAnn EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr (EpAnnComments -> EpAnn EpAnnUnboundVar
ann EpAnnComments
cs))

instance DisambInfixOp RdrName where
  mkHsConOpPV :: GenLocated SrcSpanAnnN RdrName
-> PV (GenLocated SrcSpanAnnN RdrName)
mkHsConOpPV (L SrcSpanAnnN
l RdrName
v) = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
l RdrName
v
  mkHsVarOpPV :: GenLocated SrcSpanAnnN RdrName
-> PV (GenLocated SrcSpanAnnN RdrName)
mkHsVarOpPV (L SrcSpanAnnN
l RdrName
v) = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
l RdrName
v
  mkHsInfixHolePV :: SrcSpan
-> (EpAnnComments -> EpAnn EpAnnUnboundVar) -> PV (Located RdrName)
mkHsInfixHolePV SrcSpan
l EpAnnComments -> EpAnn EpAnnUnboundVar
_ = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l forall a b. (a -> b) -> a -> b
$ PsMessage
PsErrInvalidInfixHole

type AnnoBody b
  = ( Anno (GRHS GhcPs (LocatedA (Body b GhcPs))) ~ SrcAnn NoEpAnns
    , Anno [LocatedA (Match GhcPs (LocatedA (Body b GhcPs)))] ~ SrcSpanAnnL
    , Anno (Match GhcPs (LocatedA (Body b GhcPs))) ~ SrcSpanAnnA
    , Anno (StmtLR GhcPs GhcPs (LocatedA (Body (Body b GhcPs) GhcPs))) ~ SrcSpanAnnA
    , Anno [LocatedA (StmtLR GhcPs GhcPs
                       (LocatedA (Body (Body (Body b GhcPs) GhcPs) GhcPs)))] ~ SrcSpanAnnL
    )

-- | Disambiguate constructs that may appear when we do not know ahead of time whether we are
-- parsing an expression, a command, or a pattern.
-- See Note [Ambiguous syntactic categories]
class (b ~ (Body b) GhcPs, AnnoBody b) => DisambECP b where
  -- | See Note [Body in DisambECP]
  type Body b :: Type -> Type
  -- | Return a command without ambiguity, or fail in a non-command context.
  ecpFromCmd' :: LHsCmd GhcPs -> PV (LocatedA b)
  -- | Return an expression without ambiguity, or fail in a non-expression context.
  ecpFromExp' :: LHsExpr GhcPs -> PV (LocatedA b)
  mkHsProjUpdatePV :: SrcSpan -> Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
    -> LocatedA b -> Bool -> [AddEpAnn] -> PV (LHsRecProj GhcPs (LocatedA b))
  -- | Disambiguate "\... -> ..." (lambda)
  mkHsLamPV
    :: SrcSpan -> (EpAnnComments -> MatchGroup GhcPs (LocatedA b)) -> PV (LocatedA b)
  -- | Disambiguate "let ... in ..."
  mkHsLetPV
    :: SrcSpan
    -> LHsToken "let" GhcPs
    -> HsLocalBinds GhcPs
    -> LHsToken "in" GhcPs
    -> LocatedA b
    -> PV (LocatedA b)
  -- | Infix operator representation
  type InfixOp b
  -- | Bring superclass constraints on InfixOp into scope.
  -- See Note [UndecidableSuperClasses for associated types]
  superInfixOp
    :: (DisambInfixOp (InfixOp b) => PV (LocatedA b )) -> PV (LocatedA b)
  -- | Disambiguate "f # x" (infix operator)
  mkHsOpAppPV :: SrcSpan -> LocatedA b -> LocatedN (InfixOp b) -> LocatedA b
              -> PV (LocatedA b)
  -- | Disambiguate "case ... of ..."
  mkHsCasePV :: SrcSpan -> LHsExpr GhcPs -> (LocatedL [LMatch GhcPs (LocatedA b)])
             -> EpAnnHsCase -> PV (LocatedA b)
  -- | Disambiguate "\case" and "\cases"
  mkHsLamCasePV :: SrcSpan -> LamCaseVariant
                -> (LocatedL [LMatch GhcPs (LocatedA b)]) -> [AddEpAnn]
                -> PV (LocatedA b)
  -- | Function argument representation
  type FunArg b
  -- | Bring superclass constraints on FunArg into scope.
  -- See Note [UndecidableSuperClasses for associated types]
  superFunArg :: (DisambECP (FunArg b) => PV (LocatedA b)) -> PV (LocatedA b)
  -- | Disambiguate "f x" (function application)
  mkHsAppPV :: SrcSpanAnnA -> LocatedA b -> LocatedA (FunArg b) -> PV (LocatedA b)
  -- | Disambiguate "f @t" (visible type application)
  mkHsAppTypePV :: SrcSpanAnnA -> LocatedA b -> LHsToken "@" GhcPs -> LHsType GhcPs -> PV (LocatedA b)
  -- | Disambiguate "if ... then ... else ..."
  mkHsIfPV :: SrcSpan
         -> LHsExpr GhcPs
         -> Bool  -- semicolon?
         -> LocatedA b
         -> Bool  -- semicolon?
         -> LocatedA b
         -> AnnsIf
         -> PV (LocatedA b)
  -- | Disambiguate "do { ... }" (do notation)
  mkHsDoPV ::
    SrcSpan ->
    Maybe ModuleName ->
    LocatedL [LStmt GhcPs (LocatedA b)] ->
    AnnList ->
    PV (LocatedA b)
  -- | Disambiguate "( ... )" (parentheses)
  mkHsParPV :: SrcSpan -> LHsToken "(" GhcPs -> LocatedA b -> LHsToken ")" GhcPs -> PV (LocatedA b)
  -- | Disambiguate a variable "f" or a data constructor "MkF".
  mkHsVarPV :: LocatedN RdrName -> PV (LocatedA b)
  -- | Disambiguate a monomorphic literal
  mkHsLitPV :: Located (HsLit GhcPs) -> PV (Located b)
  -- | Disambiguate an overloaded literal
  mkHsOverLitPV :: LocatedAn a (HsOverLit GhcPs) -> PV (LocatedAn a b)
  -- | Disambiguate a wildcard
  mkHsWildCardPV :: SrcSpan -> PV (Located b)
  -- | Disambiguate "a :: t" (type annotation)
  mkHsTySigPV
    :: SrcSpanAnnA -> LocatedA b -> LHsType GhcPs -> [AddEpAnn] -> PV (LocatedA b)
  -- | Disambiguate "[a,b,c]" (list syntax)
  mkHsExplicitListPV :: SrcSpan -> [LocatedA b] -> AnnList -> PV (LocatedA b)
  -- | Disambiguate "$(...)" and "[quasi|...|]" (TH splices)
  mkHsSplicePV :: Located (HsUntypedSplice GhcPs) -> PV (Located b)
  -- | Disambiguate "f { a = b, ... }" syntax (record construction and record updates)
  mkHsRecordPV ::
    Bool -> -- Is OverloadedRecordUpdate in effect?
    SrcSpan ->
    SrcSpan ->
    LocatedA b ->
    ([Fbind b], Maybe SrcSpan) ->
    [AddEpAnn] ->
    PV (LocatedA b)
  -- | Disambiguate "-a" (negation)
  mkHsNegAppPV :: SrcSpan -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
  -- | Disambiguate "(# a)" (right operator section)
  mkHsSectionR_PV
    :: SrcSpan -> LocatedA (InfixOp b) -> LocatedA b -> PV (Located b)
  -- | Disambiguate "(a -> b)" (view pattern)
  mkHsViewPatPV
    :: SrcSpan -> LHsExpr GhcPs -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
  -- | Disambiguate "a@b" (as-pattern)
  mkHsAsPatPV
    :: SrcSpan -> LocatedN RdrName -> LHsToken "@" GhcPs -> LocatedA b -> PV (LocatedA b)
  -- | Disambiguate "~a" (lazy pattern)
  mkHsLazyPatPV :: SrcSpan -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
  -- | Disambiguate "!a" (bang pattern)
  mkHsBangPatPV :: SrcSpan -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
  -- | Disambiguate tuple sections and unboxed sums
  mkSumOrTuplePV
    :: SrcSpanAnnA -> Boxity -> SumOrTuple b -> [AddEpAnn] -> PV (LocatedA b)
  -- | Validate infixexp LHS to reject unwanted {-# SCC ... #-} pragmas
  rejectPragmaPV :: LocatedA b -> PV ()

{- Note [UndecidableSuperClasses for associated types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(This Note is about the code in GHC, not about the user code that we are parsing)

Assume we have a class C with an associated type T:

  class C a where
    type T a
    ...

If we want to add 'C (T a)' as a superclass, we need -XUndecidableSuperClasses:

  {-# LANGUAGE UndecidableSuperClasses #-}
  class C (T a) => C a where
    type T a
    ...

Unfortunately, -XUndecidableSuperClasses don't work all that well, sometimes
making GHC loop. The workaround is to bring this constraint into scope
manually with a helper method:

  class C a where
    type T a
    superT :: (C (T a) => r) -> r

In order to avoid ambiguous types, 'r' must mention 'a'.

For consistency, we use this approach for all constraints on associated types,
even when -XUndecidableSuperClasses are not required.
-}

{- Note [Body in DisambECP]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are helper functions (mkBodyStmt, mkBindStmt, unguardedRHS, etc) that
require their argument to take a form of (body GhcPs) for some (body :: Type ->
*). To satisfy this requirement, we say that (b ~ Body b GhcPs) in the
superclass constraints of DisambECP.

The alternative is to change mkBodyStmt, mkBindStmt, unguardedRHS, etc, to drop
this requirement. It is possible and would allow removing the type index of
PatBuilder, but leads to worse type inference, breaking some code in the
typechecker.
-}

instance DisambECP (HsCmd GhcPs) where
  type Body (HsCmd GhcPs) = HsCmd
  ecpFromCmd' :: LHsCmd GhcPs -> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
ecpFromCmd' = forall (m :: * -> *) a. Monad m => a -> m a
return
  ecpFromExp' :: LHsExpr GhcPs -> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
ecpFromExp' (L SrcSpanAnnA
l HsExpr GhcPs
e) = forall a. SrcSpan -> SDoc -> PV a
cmdFail (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) (forall a. Outputable a => a -> SDoc
ppr HsExpr GhcPs
e)
  mkHsProjUpdatePV :: SrcSpan
-> Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> Bool
-> [AddEpAnn]
-> PV (LHsRecProj GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs)))
mkHsProjUpdatePV SrcSpan
l Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
_ GenLocated SrcSpanAnnA (HsCmd GhcPs)
_ Bool
_ [AddEpAnn]
_ = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l forall a b. (a -> b) -> a -> b
$
                                                 PsMessage
PsErrOverloadedRecordDotInvalid
  mkHsLamPV :: SrcSpan
-> (EpAnnComments
    -> MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs)))
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsLamPV SrcSpan
l EpAnnComments
-> MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mg = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall id. XCmdLam id -> MatchGroup id (LHsCmd id) -> HsCmd id
HsCmdLam NoExtField
NoExtField (EpAnnComments
-> MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mg EpAnnComments
cs))
  mkHsLetPV :: SrcSpan
-> LHsToken "let" GhcPs
-> HsLocalBinds GhcPs
-> LHsToken "in" GhcPs
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsLetPV SrcSpan
l LHsToken "let" GhcPs
tkLet HsLocalBinds GhcPs
bs LHsToken "in" GhcPs
tkIn GenLocated SrcSpanAnnA (HsCmd GhcPs)
e = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall id.
XCmdLet id
-> LHsToken "let" id
-> HsLocalBinds id
-> LHsToken "in" id
-> LHsCmd id
-> HsCmd id
HsCmdLet (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) NoEpAnns
NoEpAnns EpAnnComments
cs) LHsToken "let" GhcPs
tkLet HsLocalBinds GhcPs
bs LHsToken "in" GhcPs
tkIn GenLocated SrcSpanAnnA (HsCmd GhcPs)
e)
  type InfixOp (HsCmd GhcPs) = HsExpr GhcPs
  superInfixOp :: (DisambInfixOp (InfixOp (HsCmd GhcPs)) =>
 PV (GenLocated SrcSpanAnnA (HsCmd GhcPs)))
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
superInfixOp DisambInfixOp (InfixOp (HsCmd GhcPs)) =>
PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
m = DisambInfixOp (InfixOp (HsCmd GhcPs)) =>
PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
m
  mkHsOpAppPV :: SrcSpan
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> LocatedN (InfixOp (HsCmd GhcPs))
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsOpAppPV SrcSpan
l GenLocated SrcSpanAnnA (HsCmd GhcPs)
c1 LocatedN (InfixOp (HsCmd GhcPs))
op GenLocated SrcSpanAnnA (HsCmd GhcPs)
c2 = do
    let cmdArg :: GenLocated (SrcSpanAnn' a) (HsCmd p)
-> GenLocated (SrcAnn ann) (HsCmdTop p)
cmdArg GenLocated (SrcSpanAnn' a) (HsCmd p)
c = forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
l2l forall a b. (a -> b) -> a -> b
$ forall l e. GenLocated l e -> l
getLoc GenLocated (SrcSpanAnn' a) (HsCmd p)
c) forall a b. (a -> b) -> a -> b
$ forall p. XCmdTop p -> LHsCmd p -> HsCmdTop p
HsCmdTop NoExtField
noExtField GenLocated (SrcSpanAnn' a) (HsCmd p)
c
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) forall a b. (a -> b) -> a -> b
$ forall id.
XCmdArrForm id
-> LHsExpr id
-> LexicalFixity
-> Maybe Fixity
-> [LHsCmdTop id]
-> HsCmd id
HsCmdArrForm (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) (Maybe Anchor
-> Maybe AddEpAnn
-> Maybe AddEpAnn
-> [AddEpAnn]
-> [TrailingAnn]
-> AnnList
AnnList forall a. Maybe a
Nothing forall a. Maybe a
Nothing forall a. Maybe a
Nothing [] []) EpAnnComments
cs) (forall e. LocatedN e -> LocatedA e
reLocL LocatedN (InfixOp (HsCmd GhcPs))
op) LexicalFixity
Infix forall a. Maybe a
Nothing [forall {p} {a} {ann}.
(XCmdTop p ~ NoExtField,
 XRec p (HsCmd p) ~ GenLocated (SrcSpanAnn' a) (HsCmd p)) =>
GenLocated (SrcSpanAnn' a) (HsCmd p)
-> GenLocated (SrcAnn ann) (HsCmdTop p)
cmdArg GenLocated SrcSpanAnnA (HsCmd GhcPs)
c1, forall {p} {a} {ann}.
(XCmdTop p ~ NoExtField,
 XRec p (HsCmd p) ~ GenLocated (SrcSpanAnn' a) (HsCmd p)) =>
GenLocated (SrcSpanAnn' a) (HsCmd p)
-> GenLocated (SrcAnn ann) (HsCmdTop p)
cmdArg GenLocated SrcSpanAnnA (HsCmd GhcPs)
c2]
  mkHsCasePV :: SrcSpan
-> LHsExpr GhcPs
-> LocatedL [LMatch GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))]
-> EpAnnHsCase
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsCasePV SrcSpan
l LHsExpr GhcPs
c (L SrcSpanAnnL
lm [LMatch GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))]
m) EpAnnHsCase
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    let mg :: MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mg = forall (p :: Pass) (body :: * -> *).
AnnoBody p body =>
Origin
-> LocatedL
     [LocatedA (Match (GhcPass p) (LocatedA (body (GhcPass p))))]
-> MatchGroup (GhcPass p) (LocatedA (body (GhcPass p)))
mkMatchGroup Origin
FromSource (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnL
lm [LMatch GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))]
m)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall id.
XCmdCase id -> LHsExpr id -> MatchGroup id (LHsCmd id) -> HsCmd id
HsCmdCase (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) EpAnnHsCase
anns EpAnnComments
cs) LHsExpr GhcPs
c MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mg)
  mkHsLamCasePV :: SrcSpan
-> LamCaseVariant
-> LocatedL [LMatch GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))]
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsLamCasePV SrcSpan
l LamCaseVariant
lc_variant (L SrcSpanAnnL
lm [LMatch GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))]
m) [AddEpAnn]
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    let mg :: MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mg = forall (p :: Pass) (body :: * -> *).
AnnoBody p body =>
Origin
-> LamCaseVariant
-> LocatedL
     [LocatedA (Match (GhcPass p) (LocatedA (body (GhcPass p))))]
-> MatchGroup (GhcPass p) (LocatedA (body (GhcPass p)))
mkLamCaseMatchGroup Origin
FromSource LamCaseVariant
lc_variant (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnL
lm [LMatch GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))]
m)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall id.
XCmdLamCase id
-> LamCaseVariant -> MatchGroup id (LHsCmd id) -> HsCmd id
HsCmdLamCase (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [AddEpAnn]
anns EpAnnComments
cs) LamCaseVariant
lc_variant MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mg)
  type FunArg (HsCmd GhcPs) = HsExpr GhcPs
  superFunArg :: (DisambECP (FunArg (HsCmd GhcPs)) =>
 PV (GenLocated SrcSpanAnnA (HsCmd GhcPs)))
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
superFunArg DisambECP (FunArg (HsCmd GhcPs)) =>
PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
m = DisambECP (FunArg (HsCmd GhcPs)) =>
PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
m
  mkHsAppPV :: SrcSpanAnnA
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> LocatedA (FunArg (HsCmd GhcPs))
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsAppPV SrcSpanAnnA
l GenLocated SrcSpanAnnA (HsCmd GhcPs)
c LocatedA (FunArg (HsCmd GhcPs))
e = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
    LHsCmd GhcPs -> PV ()
checkCmdBlockArguments GenLocated SrcSpanAnnA (HsCmd GhcPs)
c
    LHsExpr GhcPs -> PV ()
checkExpBlockArguments LocatedA (FunArg (HsCmd GhcPs))
e
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall id. XCmdApp id -> LHsCmd id -> LHsExpr id -> HsCmd id
HsCmdApp (RealSrcSpan -> EpAnnComments -> EpAnnCO
comment (SrcSpan -> RealSrcSpan
realSrcSpan forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) EpAnnComments
cs) GenLocated SrcSpanAnnA (HsCmd GhcPs)
c LocatedA (FunArg (HsCmd GhcPs))
e)
  mkHsAppTypePV :: SrcSpanAnnA
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> LHsToken "@" GhcPs
-> LHsType GhcPs
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsAppTypePV SrcSpanAnnA
l GenLocated SrcSpanAnnA (HsCmd GhcPs)
c LHsToken "@" GhcPs
_ LHsType GhcPs
t = forall a. SrcSpan -> SDoc -> PV a
cmdFail (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) (forall a. Outputable a => a -> SDoc
ppr GenLocated SrcSpanAnnA (HsCmd GhcPs)
c forall doc. IsLine doc => doc -> doc -> doc
<+> forall doc. IsLine doc => String -> doc
text String
"@" forall doc. IsLine doc => doc -> doc -> doc
<> forall a. Outputable a => a -> SDoc
ppr LHsType GhcPs
t)
  mkHsIfPV :: SrcSpan
-> LHsExpr GhcPs
-> Bool
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> Bool
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> AnnsIf
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsIfPV SrcSpan
l LHsExpr GhcPs
c Bool
semi1 GenLocated SrcSpanAnnA (HsCmd GhcPs)
a Bool
semi2 GenLocated SrcSpanAnnA (HsCmd GhcPs)
b AnnsIf
anns = do
    forall a b c.
(Outputable a, Outputable b, Outputable c) =>
(a -> Bool -> b -> Bool -> c -> PsMessage)
-> LocatedA a -> Bool -> LocatedA b -> Bool -> LocatedA c -> PV ()
checkDoAndIfThenElse HsExpr GhcPs
-> Bool -> HsCmd GhcPs -> Bool -> HsCmd GhcPs -> PsMessage
PsErrSemiColonsInCondCmd LHsExpr GhcPs
c Bool
semi1 GenLocated SrcSpanAnnA (HsCmd GhcPs)
a Bool
semi2 GenLocated SrcSpanAnnA (HsCmd GhcPs)
b
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (LHsExpr GhcPs
-> LHsCmd GhcPs -> LHsCmd GhcPs -> EpAnn AnnsIf -> HsCmd GhcPs
mkHsCmdIf LHsExpr GhcPs
c GenLocated SrcSpanAnnA (HsCmd GhcPs)
a GenLocated SrcSpanAnnA (HsCmd GhcPs)
b (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) AnnsIf
anns EpAnnComments
cs))
  mkHsDoPV :: SrcSpan
-> Maybe ModuleName
-> LocatedL [LStmt GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))]
-> AnnList
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsDoPV SrcSpan
l Maybe ModuleName
Nothing LocatedL [LStmt GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))]
stmts AnnList
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall id. XCmdDo id -> XRec id [CmdLStmt id] -> HsCmd id
HsCmdDo (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) AnnList
anns EpAnnComments
cs) LocatedL [LStmt GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))]
stmts)
  mkHsDoPV SrcSpan
l (Just ModuleName
m)    LocatedL [LStmt GhcPs (GenLocated SrcSpanAnnA (HsCmd GhcPs))]
_ AnnList
_ = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l forall a b. (a -> b) -> a -> b
$ ModuleName -> PsMessage
PsErrQualifiedDoInCmd ModuleName
m
  mkHsParPV :: SrcSpan
-> LHsToken "(" GhcPs
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> LHsToken ")" GhcPs
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsParPV SrcSpan
l LHsToken "(" GhcPs
lpar GenLocated SrcSpanAnnA (HsCmd GhcPs)
c LHsToken ")" GhcPs
rpar = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall id.
XCmdPar id
-> LHsToken "(" id -> LHsCmd id -> LHsToken ")" id -> HsCmd id
HsCmdPar (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) NoEpAnns
NoEpAnns EpAnnComments
cs) LHsToken "(" GhcPs
lpar GenLocated SrcSpanAnnA (HsCmd GhcPs)
c LHsToken ")" GhcPs
rpar)
  mkHsVarPV :: GenLocated SrcSpanAnnN RdrName
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsVarPV (L SrcSpanAnnN
l RdrName
v) = forall a. SrcSpan -> SDoc -> PV a
cmdFail (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnN
l) (forall a. Outputable a => a -> SDoc
ppr RdrName
v)
  mkHsLitPV :: Located (HsLit GhcPs) -> PV (Located (HsCmd GhcPs))
mkHsLitPV (L SrcSpan
l HsLit GhcPs
a) = forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l (forall a. Outputable a => a -> SDoc
ppr HsLit GhcPs
a)
  mkHsOverLitPV :: forall a.
LocatedAn a (HsOverLit GhcPs) -> PV (LocatedAn a (HsCmd GhcPs))
mkHsOverLitPV (L SrcAnn a
l HsOverLit GhcPs
a) = forall a. SrcSpan -> SDoc -> PV a
cmdFail (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcAnn a
l) (forall a. Outputable a => a -> SDoc
ppr HsOverLit GhcPs
a)
  mkHsWildCardPV :: SrcSpan -> PV (Located (HsCmd GhcPs))
mkHsWildCardPV SrcSpan
l = forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l (forall doc. IsLine doc => String -> doc
text String
"_")
  mkHsTySigPV :: SrcSpanAnnA
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> LHsType GhcPs
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsTySigPV SrcSpanAnnA
l GenLocated SrcSpanAnnA (HsCmd GhcPs)
a LHsType GhcPs
sig [AddEpAnn]
_ = forall a. SrcSpan -> SDoc -> PV a
cmdFail (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) (forall a. Outputable a => a -> SDoc
ppr GenLocated SrcSpanAnnA (HsCmd GhcPs)
a forall doc. IsLine doc => doc -> doc -> doc
<+> forall doc. IsLine doc => String -> doc
text String
"::" forall doc. IsLine doc => doc -> doc -> doc
<+> forall a. Outputable a => a -> SDoc
ppr LHsType GhcPs
sig)
  mkHsExplicitListPV :: SrcSpan
-> [GenLocated SrcSpanAnnA (HsCmd GhcPs)]
-> AnnList
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsExplicitListPV SrcSpan
l [GenLocated SrcSpanAnnA (HsCmd GhcPs)]
xs AnnList
_ = forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l forall a b. (a -> b) -> a -> b
$
    forall doc. IsLine doc => doc -> doc
brackets (forall a. (a -> SDoc) -> [a] -> SDoc
pprWithCommas forall a. Outputable a => a -> SDoc
ppr [GenLocated SrcSpanAnnA (HsCmd GhcPs)]
xs)
  mkHsSplicePV :: Located (HsUntypedSplice GhcPs) -> PV (Located (HsCmd GhcPs))
mkHsSplicePV (L SrcSpan
l HsUntypedSplice GhcPs
sp) = forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l (forall (p :: Pass).
OutputableBndrId p =>
Bool -> Maybe Name -> HsUntypedSplice (GhcPass p) -> SDoc
pprUntypedSplice Bool
True forall a. Maybe a
Nothing HsUntypedSplice GhcPs
sp)
  mkHsRecordPV :: Bool
-> SrcSpan
-> SrcSpan
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> ([Fbind (HsCmd GhcPs)], Maybe SrcSpan)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsRecordPV Bool
_ SrcSpan
l SrcSpan
_ GenLocated SrcSpanAnnA (HsCmd GhcPs)
a ([Fbind (HsCmd GhcPs)]
fbinds, Maybe SrcSpan
ddLoc) [AddEpAnn]
_ = do
    let ([GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
      (GenLocated SrcSpanAnnA (HsCmd GhcPs)))]
fs, [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
      (GenLocated SrcSpanAnnA (HsCmd GhcPs)))]
ps) = forall a b. [Either a b] -> ([a], [b])
partitionEithers [Fbind (HsCmd GhcPs)]
fbinds
    if Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
      (GenLocated SrcSpanAnnA (HsCmd GhcPs)))]
ps)
      then forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l forall a b. (a -> b) -> a -> b
$ PsMessage
PsErrOverloadedRecordDotInvalid
      else forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l forall a b. (a -> b) -> a -> b
$ forall a. Outputable a => a -> SDoc
ppr GenLocated SrcSpanAnnA (HsCmd GhcPs)
a forall doc. IsLine doc => doc -> doc -> doc
<+> forall a. Outputable a => a -> SDoc
ppr (forall (p :: Pass) arg.
[LocatedA (HsRecField (GhcPass p) arg)]
-> Maybe SrcSpan -> HsRecFields (GhcPass p) arg
mk_rec_fields [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
      (GenLocated SrcSpanAnnA (HsCmd GhcPs)))]
fs Maybe SrcSpan
ddLoc)
  mkHsNegAppPV :: SrcSpan
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsNegAppPV SrcSpan
l GenLocated SrcSpanAnnA (HsCmd GhcPs)
a [AddEpAnn]
_ = forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l (forall doc. IsLine doc => String -> doc
text String
"-" forall doc. IsLine doc => doc -> doc -> doc
<> forall a. Outputable a => a -> SDoc
ppr GenLocated SrcSpanAnnA (HsCmd GhcPs)
a)
  mkHsSectionR_PV :: SrcSpan
-> LocatedA (InfixOp (HsCmd GhcPs))
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> PV (Located (HsCmd GhcPs))
mkHsSectionR_PV SrcSpan
l LocatedA (InfixOp (HsCmd GhcPs))
op GenLocated SrcSpanAnnA (HsCmd GhcPs)
c = forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l forall a b. (a -> b) -> a -> b
$
    let pp_op :: SDoc
pp_op = forall a. a -> Maybe a -> a
fromMaybe (forall a. HasCallStack => String -> a
panic String
"cannot print infix operator")
                          (forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr (forall l e. GenLocated l e -> e
unLoc LocatedA (InfixOp (HsCmd GhcPs))
op))
    in SDoc
pp_op forall doc. IsLine doc => doc -> doc -> doc
<> forall a. Outputable a => a -> SDoc
ppr GenLocated SrcSpanAnnA (HsCmd GhcPs)
c
  mkHsViewPatPV :: SrcSpan
-> LHsExpr GhcPs
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsViewPatPV SrcSpan
l LHsExpr GhcPs
a GenLocated SrcSpanAnnA (HsCmd GhcPs)
b [AddEpAnn]
_ = forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l forall a b. (a -> b) -> a -> b
$
    forall a. Outputable a => a -> SDoc
ppr LHsExpr GhcPs
a forall doc. IsLine doc => doc -> doc -> doc
<+> forall doc. IsLine doc => String -> doc
text String
"->" forall doc. IsLine doc => doc -> doc -> doc
<+> forall a. Outputable a => a -> SDoc
ppr GenLocated SrcSpanAnnA (HsCmd GhcPs)
b
  mkHsAsPatPV :: SrcSpan
-> GenLocated SrcSpanAnnN RdrName
-> LHsToken "@" GhcPs
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsAsPatPV SrcSpan
l GenLocated SrcSpanAnnN RdrName
v LHsToken "@" GhcPs
_ GenLocated SrcSpanAnnA (HsCmd GhcPs)
c = forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l forall a b. (a -> b) -> a -> b
$
    forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
v) forall doc. IsLine doc => doc -> doc -> doc
<> forall doc. IsLine doc => String -> doc
text String
"@" forall doc. IsLine doc => doc -> doc -> doc
<> forall a. Outputable a => a -> SDoc
ppr GenLocated SrcSpanAnnA (HsCmd GhcPs)
c
  mkHsLazyPatPV :: SrcSpan
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsLazyPatPV SrcSpan
l GenLocated SrcSpanAnnA (HsCmd GhcPs)
c [AddEpAnn]
_ = forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l forall a b. (a -> b) -> a -> b
$
    forall doc. IsLine doc => String -> doc
text String
"~" forall doc. IsLine doc => doc -> doc -> doc
<> forall a. Outputable a => a -> SDoc
ppr GenLocated SrcSpanAnnA (HsCmd GhcPs)
c
  mkHsBangPatPV :: SrcSpan
-> GenLocated SrcSpanAnnA (HsCmd GhcPs)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkHsBangPatPV SrcSpan
l GenLocated SrcSpanAnnA (HsCmd GhcPs)
c [AddEpAnn]
_ = forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
l forall a b. (a -> b) -> a -> b
$
    forall doc. IsLine doc => String -> doc
text String
"!" forall doc. IsLine doc => doc -> doc -> doc
<> forall a. Outputable a => a -> SDoc
ppr GenLocated SrcSpanAnnA (HsCmd GhcPs)
c
  mkSumOrTuplePV :: SrcSpanAnnA
-> Boxity
-> SumOrTuple (HsCmd GhcPs)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsCmd GhcPs))
mkSumOrTuplePV SrcSpanAnnA
l Boxity
boxity SumOrTuple (HsCmd GhcPs)
a [AddEpAnn]
_ = forall a. SrcSpan -> SDoc -> PV a
cmdFail (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) (forall b. Outputable b => Boxity -> SumOrTuple b -> SDoc
pprSumOrTuple Boxity
boxity SumOrTuple (HsCmd GhcPs)
a)
  rejectPragmaPV :: GenLocated SrcSpanAnnA (HsCmd GhcPs) -> PV ()
rejectPragmaPV GenLocated SrcSpanAnnA (HsCmd GhcPs)
_ = forall (m :: * -> *) a. Monad m => a -> m a
return ()

cmdFail :: SrcSpan -> SDoc -> PV a
cmdFail :: forall a. SrcSpan -> SDoc -> PV a
cmdFail SrcSpan
loc SDoc
e = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$ SDoc -> PsMessage
PsErrParseErrorInCmd SDoc
e

checkLamMatchGroup :: SrcSpan -> MatchGroup GhcPs (LHsExpr GhcPs) -> PV ()
checkLamMatchGroup :: SrcSpan -> MatchGroup GhcPs (LHsExpr GhcPs) -> PV ()
checkLamMatchGroup SrcSpan
l (MG { mg_alts :: forall p body. MatchGroup p body -> XRec p [LMatch p body]
mg_alts = (L SrcSpanAnnL
_ (GenLocated
  SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
matches:[GenLocated
   SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
_))}) = do
  forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (forall (t :: * -> *) a. Foldable t => t a -> Bool
null (forall (id :: Pass) body.
LMatch (GhcPass id) body -> [LPat (GhcPass id)]
hsLMatchPats GenLocated
  SrcSpanAnnA (Match GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
matches)) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l PsMessage
PsErrEmptyLambda
checkLamMatchGroup SrcSpan
_ MatchGroup GhcPs (LHsExpr GhcPs)
_ = forall (m :: * -> *) a. Monad m => a -> m a
return ()

instance DisambECP (HsExpr GhcPs) where
  type Body (HsExpr GhcPs) = HsExpr
  ecpFromCmd' :: LHsCmd GhcPs -> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
ecpFromCmd' (L SrcSpanAnnA
l HsCmd GhcPs
c) = do
    forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall a b. (a -> b) -> a -> b
$ HsCmd GhcPs -> PsMessage
PsErrArrowCmdInExpr HsCmd GhcPs
c
    forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (EpAnn EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr forall a. EpAnn a
noAnn))
  ecpFromExp' :: LHsExpr GhcPs -> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
ecpFromExp' = forall (m :: * -> *) a. Monad m => a -> m a
return
  mkHsProjUpdatePV :: SrcSpan
-> Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> Bool
-> [AddEpAnn]
-> PV (LHsRecProj GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
mkHsProjUpdatePV SrcSpan
l Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
fields GenLocated SrcSpanAnnA (HsExpr GhcPs)
arg Bool
isPun [AddEpAnn]
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ SrcSpanAnnA
-> Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
-> LHsExpr GhcPs
-> Bool
-> EpAnn [AddEpAnn]
-> LHsRecProj GhcPs (LHsExpr GhcPs)
mkRdrProjUpdate (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
fields GenLocated SrcSpanAnnA (HsExpr GhcPs)
arg Bool
isPun (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [AddEpAnn]
anns EpAnnComments
cs)
  mkHsLamPV :: SrcSpan
-> (EpAnnComments
    -> MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsLamPV SrcSpan
l EpAnnComments
-> MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mg = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    let mg' :: MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mg' = EpAnnComments
-> MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mg EpAnnComments
cs
    SrcSpan -> MatchGroup GhcPs (LHsExpr GhcPs) -> PV ()
checkLamMatchGroup SrcSpan
l MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mg'
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. XLam p -> MatchGroup p (LHsExpr p) -> HsExpr p
HsLam NoExtField
NoExtField MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mg')
  mkHsLetPV :: SrcSpan
-> LHsToken "let" GhcPs
-> HsLocalBinds GhcPs
-> LHsToken "in" GhcPs
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsLetPV SrcSpan
l LHsToken "let" GhcPs
tkLet HsLocalBinds GhcPs
bs LHsToken "in" GhcPs
tkIn GenLocated SrcSpanAnnA (HsExpr GhcPs)
c = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p.
XLet p
-> LHsToken "let" p
-> HsLocalBinds p
-> LHsToken "in" p
-> LHsExpr p
-> HsExpr p
HsLet (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) NoEpAnns
NoEpAnns EpAnnComments
cs) LHsToken "let" GhcPs
tkLet HsLocalBinds GhcPs
bs LHsToken "in" GhcPs
tkIn GenLocated SrcSpanAnnA (HsExpr GhcPs)
c)
  type InfixOp (HsExpr GhcPs) = HsExpr GhcPs
  superInfixOp :: (DisambInfixOp (InfixOp (HsExpr GhcPs)) =>
 PV (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
superInfixOp DisambInfixOp (InfixOp (HsExpr GhcPs)) =>
PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m = DisambInfixOp (InfixOp (HsExpr GhcPs)) =>
PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m
  mkHsOpAppPV :: SrcSpan
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> LocatedN (InfixOp (HsExpr GhcPs))
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsOpAppPV SrcSpan
l GenLocated SrcSpanAnnA (HsExpr GhcPs)
e1 LocatedN (InfixOp (HsExpr GhcPs))
op GenLocated SrcSpanAnnA (HsExpr GhcPs)
e2 = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) forall a b. (a -> b) -> a -> b
$ forall p.
XOpApp p -> LHsExpr p -> LHsExpr p -> LHsExpr p -> HsExpr p
OpApp (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [] EpAnnComments
cs) GenLocated SrcSpanAnnA (HsExpr GhcPs)
e1 (forall e. LocatedN e -> LocatedA e
reLocL LocatedN (InfixOp (HsExpr GhcPs))
op) GenLocated SrcSpanAnnA (HsExpr GhcPs)
e2
  mkHsCasePV :: SrcSpan
-> LHsExpr GhcPs
-> LocatedL [LMatch GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
-> EpAnnHsCase
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsCasePV SrcSpan
l LHsExpr GhcPs
e (L SrcSpanAnnL
lm [LMatch GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
m) EpAnnHsCase
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    let mg :: MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mg = forall (p :: Pass) (body :: * -> *).
AnnoBody p body =>
Origin
-> LocatedL
     [LocatedA (Match (GhcPass p) (LocatedA (body (GhcPass p))))]
-> MatchGroup (GhcPass p) (LocatedA (body (GhcPass p)))
mkMatchGroup Origin
FromSource (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnL
lm [LMatch GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
m)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p.
XCase p -> LHsExpr p -> MatchGroup p (LHsExpr p) -> HsExpr p
HsCase (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) EpAnnHsCase
anns EpAnnComments
cs) LHsExpr GhcPs
e MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mg)
  mkHsLamCasePV :: SrcSpan
-> LamCaseVariant
-> LocatedL [LMatch GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsLamCasePV SrcSpan
l LamCaseVariant
lc_variant (L SrcSpanAnnL
lm [LMatch GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
m) [AddEpAnn]
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    let mg :: MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mg = forall (p :: Pass) (body :: * -> *).
AnnoBody p body =>
Origin
-> LamCaseVariant
-> LocatedL
     [LocatedA (Match (GhcPass p) (LocatedA (body (GhcPass p))))]
-> MatchGroup (GhcPass p) (LocatedA (body (GhcPass p)))
mkLamCaseMatchGroup Origin
FromSource LamCaseVariant
lc_variant (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnL
lm [LMatch GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
m)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p.
XLamCase p
-> LamCaseVariant -> MatchGroup p (LHsExpr p) -> HsExpr p
HsLamCase (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [AddEpAnn]
anns EpAnnComments
cs) LamCaseVariant
lc_variant MatchGroup GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mg)
  type FunArg (HsExpr GhcPs) = HsExpr GhcPs
  superFunArg :: (DisambECP (FunArg (HsExpr GhcPs)) =>
 PV (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
superFunArg DisambECP (FunArg (HsExpr GhcPs)) =>
PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m = DisambECP (FunArg (HsExpr GhcPs)) =>
PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
m
  mkHsAppPV :: SrcSpanAnnA
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> LocatedA (FunArg (HsExpr GhcPs))
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsAppPV SrcSpanAnnA
l GenLocated SrcSpanAnnA (HsExpr GhcPs)
e1 LocatedA (FunArg (HsExpr GhcPs))
e2 = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
    LHsExpr GhcPs -> PV ()
checkExpBlockArguments GenLocated SrcSpanAnnA (HsExpr GhcPs)
e1
    LHsExpr GhcPs -> PV ()
checkExpBlockArguments LocatedA (FunArg (HsExpr GhcPs))
e2
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall p. XApp p -> LHsExpr p -> LHsExpr p -> HsExpr p
HsApp (RealSrcSpan -> EpAnnComments -> EpAnnCO
comment (SrcSpan -> RealSrcSpan
realSrcSpan forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) EpAnnComments
cs) GenLocated SrcSpanAnnA (HsExpr GhcPs)
e1 LocatedA (FunArg (HsExpr GhcPs))
e2)
  mkHsAppTypePV :: SrcSpanAnnA
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> LHsToken "@" GhcPs
-> LHsType GhcPs
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsAppTypePV SrcSpanAnnA
l GenLocated SrcSpanAnnA (HsExpr GhcPs)
e LHsToken "@" GhcPs
at LHsType GhcPs
t = do
    LHsExpr GhcPs -> PV ()
checkExpBlockArguments GenLocated SrcSpanAnnA (HsExpr GhcPs)
e
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall p.
XAppTypeE p
-> LHsExpr p -> LHsToken "@" p -> LHsWcType (NoGhcTc p) -> HsExpr p
HsAppType NoExtField
noExtField GenLocated SrcSpanAnnA (HsExpr GhcPs)
e LHsToken "@" GhcPs
at (forall thing. thing -> HsWildCardBndrs GhcPs thing
mkHsWildCardBndrs LHsType GhcPs
t))
  mkHsIfPV :: SrcSpan
-> LHsExpr GhcPs
-> Bool
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> Bool
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> AnnsIf
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsIfPV SrcSpan
l LHsExpr GhcPs
c Bool
semi1 GenLocated SrcSpanAnnA (HsExpr GhcPs)
a Bool
semi2 GenLocated SrcSpanAnnA (HsExpr GhcPs)
b AnnsIf
anns = do
    forall a b c.
(Outputable a, Outputable b, Outputable c) =>
(a -> Bool -> b -> Bool -> c -> PsMessage)
-> LocatedA a -> Bool -> LocatedA b -> Bool -> LocatedA c -> PV ()
checkDoAndIfThenElse HsExpr GhcPs
-> Bool -> HsExpr GhcPs -> Bool -> HsExpr GhcPs -> PsMessage
PsErrSemiColonsInCondExpr LHsExpr GhcPs
c Bool
semi1 GenLocated SrcSpanAnnA (HsExpr GhcPs)
a Bool
semi2 GenLocated SrcSpanAnnA (HsExpr GhcPs)
b
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (LHsExpr GhcPs
-> LHsExpr GhcPs -> LHsExpr GhcPs -> EpAnn AnnsIf -> HsExpr GhcPs
mkHsIf LHsExpr GhcPs
c GenLocated SrcSpanAnnA (HsExpr GhcPs)
a GenLocated SrcSpanAnnA (HsExpr GhcPs)
b (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) AnnsIf
anns EpAnnComments
cs))
  mkHsDoPV :: SrcSpan
-> Maybe ModuleName
-> LocatedL [LStmt GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
-> AnnList
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsDoPV SrcSpan
l Maybe ModuleName
mod LocatedL [LStmt GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
stmts AnnList
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. XDo p -> HsDoFlavour -> XRec p [ExprLStmt p] -> HsExpr p
HsDo (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) AnnList
anns EpAnnComments
cs) (Maybe ModuleName -> HsDoFlavour
DoExpr Maybe ModuleName
mod) LocatedL [LStmt GhcPs (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
stmts)
  mkHsParPV :: SrcSpan
-> LHsToken "(" GhcPs
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> LHsToken ")" GhcPs
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsParPV SrcSpan
l LHsToken "(" GhcPs
lpar GenLocated SrcSpanAnnA (HsExpr GhcPs)
e LHsToken ")" GhcPs
rpar = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p.
XPar p -> LHsToken "(" p -> LHsExpr p -> LHsToken ")" p -> HsExpr p
HsPar (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) NoEpAnns
NoEpAnns EpAnnComments
cs) LHsToken "(" GhcPs
lpar GenLocated SrcSpanAnnA (HsExpr GhcPs)
e LHsToken ")" GhcPs
rpar)
  mkHsVarPV :: GenLocated SrcSpanAnnN RdrName
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsVarPV v :: GenLocated SrcSpanAnnN RdrName
v@(L SrcSpanAnnN
l RdrName
_) = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
na2la SrcSpanAnnN
l) (forall p. XVar p -> LIdP p -> HsExpr p
HsVar NoExtField
noExtField GenLocated SrcSpanAnnN RdrName
v)
  mkHsLitPV :: Located (HsLit GhcPs) -> PV (Located (HsExpr GhcPs))
mkHsLitPV (L SrcSpan
l HsLit GhcPs
a) = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpan
l (forall p. XLitE p -> HsLit p -> HsExpr p
HsLit (RealSrcSpan -> EpAnnComments -> EpAnnCO
comment (SrcSpan -> RealSrcSpan
realSrcSpan SrcSpan
l) EpAnnComments
cs) HsLit GhcPs
a)
  mkHsOverLitPV :: forall a.
LocatedAn a (HsOverLit GhcPs) -> PV (LocatedAn a (HsExpr GhcPs))
mkHsOverLitPV (L SrcAnn a
l HsOverLit GhcPs
a) = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcAnn a
l)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcAnn a
l (forall p. XOverLitE p -> HsOverLit p -> HsExpr p
HsOverLit (RealSrcSpan -> EpAnnComments -> EpAnnCO
comment (SrcSpan -> RealSrcSpan
realSrcSpan (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcAnn a
l)) EpAnnComments
cs) HsOverLit GhcPs
a)
  mkHsWildCardPV :: SrcSpan -> PV (Located (HsExpr GhcPs))
mkHsWildCardPV SrcSpan
l = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpan
l (EpAnn EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr forall a. EpAnn a
noAnn)
  mkHsTySigPV :: SrcSpanAnnA
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> LHsType GhcPs
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsTySigPV SrcSpanAnnA
l GenLocated SrcSpanAnnA (HsExpr GhcPs)
a LHsType GhcPs
sig [AddEpAnn]
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall p.
XExprWithTySig p
-> LHsExpr p -> LHsSigWcType (NoGhcTc p) -> HsExpr p
ExprWithTySig (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) [AddEpAnn]
anns EpAnnComments
cs) GenLocated SrcSpanAnnA (HsExpr GhcPs)
a (LHsType GhcPs -> LHsSigWcType GhcPs
hsTypeToHsSigWcType LHsType GhcPs
sig))
  mkHsExplicitListPV :: SrcSpan
-> [GenLocated SrcSpanAnnA (HsExpr GhcPs)]
-> AnnList
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsExplicitListPV SrcSpan
l [GenLocated SrcSpanAnnA (HsExpr GhcPs)]
xs AnnList
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. XExplicitList p -> [LHsExpr p] -> HsExpr p
ExplicitList (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) AnnList
anns EpAnnComments
cs) [GenLocated SrcSpanAnnA (HsExpr GhcPs)]
xs)
  mkHsSplicePV :: Located (HsUntypedSplice GhcPs) -> PV (Located (HsExpr GhcPs))
mkHsSplicePV sp :: Located (HsUntypedSplice GhcPs)
sp@(L SrcSpan
l HsUntypedSplice GhcPs
_) = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall p. XUntypedSplice p -> HsUntypedSplice p -> HsExpr p
HsUntypedSplice (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) NoEpAnns
NoEpAnns EpAnnComments
cs)) Located (HsUntypedSplice GhcPs)
sp
  mkHsRecordPV :: Bool
-> SrcSpan
-> SrcSpan
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> ([Fbind (HsExpr GhcPs)], Maybe SrcSpan)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsRecordPV Bool
opts SrcSpan
l SrcSpan
lrec GenLocated SrcSpanAnnA (HsExpr GhcPs)
a ([Fbind (HsExpr GhcPs)]
fbinds, Maybe SrcSpan
ddLoc) [AddEpAnn]
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    HsExpr GhcPs
r <- Bool
-> LHsExpr GhcPs
-> SrcSpan
-> ([Fbind (HsExpr GhcPs)], Maybe SrcSpan)
-> EpAnn [AddEpAnn]
-> PV (HsExpr GhcPs)
mkRecConstrOrUpdate Bool
opts GenLocated SrcSpanAnnA (HsExpr GhcPs)
a SrcSpan
lrec ([Fbind (HsExpr GhcPs)]
fbinds, Maybe SrcSpan
ddLoc) (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [AddEpAnn]
anns EpAnnComments
cs)
    forall (m :: * -> *) a.
(MonadP m, Outputable a) =>
LocatedA a -> m (LocatedA a)
checkRecordSyntax (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) HsExpr GhcPs
r)
  mkHsNegAppPV :: SrcSpan
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsNegAppPV SrcSpan
l GenLocated SrcSpanAnnA (HsExpr GhcPs)
a [AddEpAnn]
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. XNegApp p -> LHsExpr p -> SyntaxExpr p -> HsExpr p
NegApp (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [AddEpAnn]
anns EpAnnComments
cs) GenLocated SrcSpanAnnA (HsExpr GhcPs)
a forall (p :: Pass). IsPass p => SyntaxExpr (GhcPass p)
noSyntaxExpr)
  mkHsSectionR_PV :: SrcSpan
-> LocatedA (InfixOp (HsExpr GhcPs))
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> PV (Located (HsExpr GhcPs))
mkHsSectionR_PV SrcSpan
l LocatedA (InfixOp (HsExpr GhcPs))
op GenLocated SrcSpanAnnA (HsExpr GhcPs)
e = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpan
l (forall p. XSectionR p -> LHsExpr p -> LHsExpr p -> HsExpr p
SectionR (RealSrcSpan -> EpAnnComments -> EpAnnCO
comment (SrcSpan -> RealSrcSpan
realSrcSpan SrcSpan
l) EpAnnComments
cs) LocatedA (InfixOp (HsExpr GhcPs))
op GenLocated SrcSpanAnnA (HsExpr GhcPs)
e)
  mkHsViewPatPV :: SrcSpan
-> LHsExpr GhcPs
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsViewPatPV SrcSpan
l LHsExpr GhcPs
a GenLocated SrcSpanAnnA (HsExpr GhcPs)
b [AddEpAnn]
_ = forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError (forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l forall a b. (a -> b) -> a -> b
$ LHsExpr GhcPs -> LHsExpr GhcPs -> PsMessage
PsErrViewPatInExpr LHsExpr GhcPs
a GenLocated SrcSpanAnnA (HsExpr GhcPs)
b)
                          forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (EpAnn EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr forall a. EpAnn a
noAnn))
  mkHsAsPatPV :: SrcSpan
-> GenLocated SrcSpanAnnN RdrName
-> LHsToken "@" GhcPs
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsAsPatPV SrcSpan
l GenLocated SrcSpanAnnN RdrName
v LHsToken "@" GhcPs
_ GenLocated SrcSpanAnnA (HsExpr GhcPs)
e   = forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError (forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l forall a b. (a -> b) -> a -> b
$ RdrName -> LHsExpr GhcPs -> PsMessage
PsErrTypeAppWithoutSpace (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
v) GenLocated SrcSpanAnnA (HsExpr GhcPs)
e)
                          forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (EpAnn EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr forall a. EpAnn a
noAnn))
  mkHsLazyPatPV :: SrcSpan
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsLazyPatPV SrcSpan
l GenLocated SrcSpanAnnA (HsExpr GhcPs)
e   [AddEpAnn]
_ = forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError (forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l forall a b. (a -> b) -> a -> b
$ LHsExpr GhcPs -> PsMessage
PsErrLazyPatWithoutSpace GenLocated SrcSpanAnnA (HsExpr GhcPs)
e)
                          forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (EpAnn EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr forall a. EpAnn a
noAnn))
  mkHsBangPatPV :: SrcSpan
-> GenLocated SrcSpanAnnA (HsExpr GhcPs)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkHsBangPatPV SrcSpan
l GenLocated SrcSpanAnnA (HsExpr GhcPs)
e   [AddEpAnn]
_ = forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError (forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l forall a b. (a -> b) -> a -> b
$ LHsExpr GhcPs -> PsMessage
PsErrBangPatWithoutSpace GenLocated SrcSpanAnnA (HsExpr GhcPs)
e)
                          forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (EpAnn EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr forall a. EpAnn a
noAnn))
  mkSumOrTuplePV :: SrcSpanAnnA
-> Boxity
-> SumOrTuple (HsExpr GhcPs)
-> [AddEpAnn]
-> PV (GenLocated SrcSpanAnnA (HsExpr GhcPs))
mkSumOrTuplePV = SrcSpanAnnA
-> Boxity
-> SumOrTuple (HsExpr GhcPs)
-> [AddEpAnn]
-> PV (LHsExpr GhcPs)
mkSumOrTupleExpr
  rejectPragmaPV :: GenLocated SrcSpanAnnA (HsExpr GhcPs) -> PV ()
rejectPragmaPV (L SrcSpanAnnA
_ (OpApp XOpApp GhcPs
_ LHsExpr GhcPs
_ LHsExpr GhcPs
_ LHsExpr GhcPs
e)) =
    -- assuming left-associative parsing of operators
    forall b. DisambECP b => LocatedA b -> PV ()
rejectPragmaPV LHsExpr GhcPs
e
  rejectPragmaPV (L SrcSpanAnnA
l (HsPragE XPragE GhcPs
_ HsPragE GhcPs
prag LHsExpr GhcPs
_)) = forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall a b. (a -> b) -> a -> b
$
                                                         (HsPragE GhcPs -> PsMessage
PsErrUnallowedPragma HsPragE GhcPs
prag)
  rejectPragmaPV GenLocated SrcSpanAnnA (HsExpr GhcPs)
_                        = forall (m :: * -> *) a. Monad m => a -> m a
return ()

hsHoleExpr :: EpAnn EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr :: EpAnn EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr EpAnn EpAnnUnboundVar
anns = forall p. XUnboundVar p -> RdrName -> HsExpr p
HsUnboundVar EpAnn EpAnnUnboundVar
anns (OccName -> RdrName
mkRdrUnqual (FastString -> OccName
mkVarOccFS (String -> FastString
fsLit String
"_")))

type instance Anno (GRHS GhcPs (LocatedA (PatBuilder GhcPs))) = SrcAnn NoEpAnns
type instance Anno [LocatedA (Match GhcPs (LocatedA (PatBuilder GhcPs)))] = SrcSpanAnnL
type instance Anno (Match GhcPs (LocatedA (PatBuilder GhcPs))) = SrcSpanAnnA
type instance Anno (StmtLR GhcPs GhcPs (LocatedA (PatBuilder GhcPs))) = SrcSpanAnnA

instance DisambECP (PatBuilder GhcPs) where
  type Body (PatBuilder GhcPs) = PatBuilder
  ecpFromCmd' :: LHsCmd GhcPs -> PV (LocatedA (PatBuilder GhcPs))
ecpFromCmd' (L SrcSpanAnnA
l HsCmd GhcPs
c)    = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall a b. (a -> b) -> a -> b
$ HsCmd GhcPs -> PsMessage
PsErrArrowCmdInPat HsCmd GhcPs
c
  ecpFromExp' :: LHsExpr GhcPs -> PV (LocatedA (PatBuilder GhcPs))
ecpFromExp' (L SrcSpanAnnA
l HsExpr GhcPs
e)    = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall a b. (a -> b) -> a -> b
$ HsExpr GhcPs -> PsMessage
PsErrArrowExprInPat HsExpr GhcPs
e
  mkHsLamPV :: SrcSpan
-> (EpAnnComments
    -> MatchGroup GhcPs (LocatedA (PatBuilder GhcPs)))
-> PV (LocatedA (PatBuilder GhcPs))
mkHsLamPV SrcSpan
l EpAnnComments -> MatchGroup GhcPs (LocatedA (PatBuilder GhcPs))
_          = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l PsMessage
PsErrLambdaInPat
  mkHsLetPV :: SrcSpan
-> LHsToken "let" GhcPs
-> HsLocalBinds GhcPs
-> LHsToken "in" GhcPs
-> LocatedA (PatBuilder GhcPs)
-> PV (LocatedA (PatBuilder GhcPs))
mkHsLetPV SrcSpan
l LHsToken "let" GhcPs
_ HsLocalBinds GhcPs
_ LHsToken "in" GhcPs
_ LocatedA (PatBuilder GhcPs)
_    = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l PsMessage
PsErrLetInPat
  mkHsProjUpdatePV :: SrcSpan
-> Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
-> LocatedA (PatBuilder GhcPs)
-> Bool
-> [AddEpAnn]
-> PV (LHsRecProj GhcPs (LocatedA (PatBuilder GhcPs)))
mkHsProjUpdatePV SrcSpan
l Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
_ LocatedA (PatBuilder GhcPs)
_ Bool
_ [AddEpAnn]
_ = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l PsMessage
PsErrOverloadedRecordDotInvalid
  type InfixOp (PatBuilder GhcPs) = RdrName
  superInfixOp :: (DisambInfixOp (InfixOp (PatBuilder GhcPs)) =>
 PV (LocatedA (PatBuilder GhcPs)))
-> PV (LocatedA (PatBuilder GhcPs))
superInfixOp DisambInfixOp (InfixOp (PatBuilder GhcPs)) =>
PV (LocatedA (PatBuilder GhcPs))
m = DisambInfixOp (InfixOp (PatBuilder GhcPs)) =>
PV (LocatedA (PatBuilder GhcPs))
m
  mkHsOpAppPV :: SrcSpan
-> LocatedA (PatBuilder GhcPs)
-> LocatedN (InfixOp (PatBuilder GhcPs))
-> LocatedA (PatBuilder GhcPs)
-> PV (LocatedA (PatBuilder GhcPs))
mkHsOpAppPV SrcSpan
l LocatedA (PatBuilder GhcPs)
p1 LocatedN (InfixOp (PatBuilder GhcPs))
op LocatedA (PatBuilder GhcPs)
p2 = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    let anns :: EpAnn [AddEpAnn]
anns = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [] EpAnnComments
cs
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) forall a b. (a -> b) -> a -> b
$ forall p.
LocatedA (PatBuilder p)
-> GenLocated SrcSpanAnnN RdrName
-> LocatedA (PatBuilder p)
-> EpAnn [AddEpAnn]
-> PatBuilder p
PatBuilderOpApp LocatedA (PatBuilder GhcPs)
p1 LocatedN (InfixOp (PatBuilder GhcPs))
op LocatedA (PatBuilder GhcPs)
p2 EpAnn [AddEpAnn]
anns
  mkHsCasePV :: SrcSpan
-> LHsExpr GhcPs
-> LocatedL [LMatch GhcPs (LocatedA (PatBuilder GhcPs))]
-> EpAnnHsCase
-> PV (LocatedA (PatBuilder GhcPs))
mkHsCasePV SrcSpan
l LHsExpr GhcPs
_ LocatedL [LMatch GhcPs (LocatedA (PatBuilder GhcPs))]
_ EpAnnHsCase
_          = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l PsMessage
PsErrCaseInPat
  mkHsLamCasePV :: SrcSpan
-> LamCaseVariant
-> LocatedL [LMatch GhcPs (LocatedA (PatBuilder GhcPs))]
-> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
mkHsLamCasePV SrcSpan
l LamCaseVariant
lc_variant LocatedL [LMatch GhcPs (LocatedA (PatBuilder GhcPs))]
_ [AddEpAnn]
_ = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l (LamCaseVariant -> PsMessage
PsErrLambdaCaseInPat LamCaseVariant
lc_variant)
  type FunArg (PatBuilder GhcPs) = PatBuilder GhcPs
  superFunArg :: (DisambECP (FunArg (PatBuilder GhcPs)) =>
 PV (LocatedA (PatBuilder GhcPs)))
-> PV (LocatedA (PatBuilder GhcPs))
superFunArg DisambECP (FunArg (PatBuilder GhcPs)) =>
PV (LocatedA (PatBuilder GhcPs))
m = DisambECP (FunArg (PatBuilder GhcPs)) =>
PV (LocatedA (PatBuilder GhcPs))
m
  mkHsAppPV :: SrcSpanAnnA
-> LocatedA (PatBuilder GhcPs)
-> LocatedA (FunArg (PatBuilder GhcPs))
-> PV (LocatedA (PatBuilder GhcPs))
mkHsAppPV SrcSpanAnnA
l LocatedA (PatBuilder GhcPs)
p1 LocatedA (FunArg (PatBuilder GhcPs))
p2      = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall p.
LocatedA (PatBuilder p) -> LocatedA (PatBuilder p) -> PatBuilder p
PatBuilderApp LocatedA (PatBuilder GhcPs)
p1 LocatedA (FunArg (PatBuilder GhcPs))
p2)
  mkHsAppTypePV :: SrcSpanAnnA
-> LocatedA (PatBuilder GhcPs)
-> LHsToken "@" GhcPs
-> LHsType GhcPs
-> PV (LocatedA (PatBuilder GhcPs))
mkHsAppTypePV SrcSpanAnnA
l LocatedA (PatBuilder GhcPs)
p LHsToken "@" GhcPs
at LHsType GhcPs
t = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
    let anns :: EpAnnCO
anns = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA LHsType GhcPs
t)) NoEpAnns
NoEpAnns EpAnnComments
cs
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall p.
LocatedA (PatBuilder p)
-> LHsToken "@" p -> HsPatSigType GhcPs -> PatBuilder p
PatBuilderAppType LocatedA (PatBuilder GhcPs)
p LHsToken "@" GhcPs
at (EpAnnCO -> LHsType GhcPs -> HsPatSigType GhcPs
mkHsPatSigType EpAnnCO
anns LHsType GhcPs
t))
  mkHsIfPV :: SrcSpan
-> LHsExpr GhcPs
-> Bool
-> LocatedA (PatBuilder GhcPs)
-> Bool
-> LocatedA (PatBuilder GhcPs)
-> AnnsIf
-> PV (LocatedA (PatBuilder GhcPs))
mkHsIfPV SrcSpan
l LHsExpr GhcPs
_ Bool
_ LocatedA (PatBuilder GhcPs)
_ Bool
_ LocatedA (PatBuilder GhcPs)
_ AnnsIf
_ = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l PsMessage
PsErrIfThenElseInPat
  mkHsDoPV :: SrcSpan
-> Maybe ModuleName
-> LocatedL [LStmt GhcPs (LocatedA (PatBuilder GhcPs))]
-> AnnList
-> PV (LocatedA (PatBuilder GhcPs))
mkHsDoPV SrcSpan
l Maybe ModuleName
_ LocatedL [LStmt GhcPs (LocatedA (PatBuilder GhcPs))]
_ AnnList
_       = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l PsMessage
PsErrDoNotationInPat
  mkHsParPV :: SrcSpan
-> LHsToken "(" GhcPs
-> LocatedA (PatBuilder GhcPs)
-> LHsToken ")" GhcPs
-> PV (LocatedA (PatBuilder GhcPs))
mkHsParPV SrcSpan
l LHsToken "(" GhcPs
lpar LocatedA (PatBuilder GhcPs)
p LHsToken ")" GhcPs
rpar   = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p.
LHsToken "(" p
-> LocatedA (PatBuilder p) -> LHsToken ")" p -> PatBuilder p
PatBuilderPar LHsToken "(" GhcPs
lpar LocatedA (PatBuilder GhcPs)
p LHsToken ")" GhcPs
rpar)
  mkHsVarPV :: GenLocated SrcSpanAnnN RdrName -> PV (LocatedA (PatBuilder GhcPs))
mkHsVarPV v :: GenLocated SrcSpanAnnN RdrName
v@(forall l e. GenLocated l e -> l
getLoc -> SrcSpanAnnN
l) = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
na2la SrcSpanAnnN
l) (forall p. GenLocated SrcSpanAnnN RdrName -> PatBuilder p
PatBuilderVar GenLocated SrcSpanAnnN RdrName
v)
  mkHsLitPV :: Located (HsLit GhcPs) -> PV (Located (PatBuilder GhcPs))
mkHsLitPV lit :: Located (HsLit GhcPs)
lit@(L SrcSpan
l HsLit GhcPs
a) = do
    Located (HsLit GhcPs) -> PV ()
checkUnboxedLitPat Located (HsLit GhcPs)
lit
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpan
l (forall p. Pat p -> PatBuilder p
PatBuilderPat (forall p. XLitPat p -> HsLit p -> Pat p
LitPat NoExtField
noExtField HsLit GhcPs
a))
  mkHsOverLitPV :: forall a.
LocatedAn a (HsOverLit GhcPs)
-> PV (LocatedAn a (PatBuilder GhcPs))
mkHsOverLitPV (L SrcAnn a
l HsOverLit GhcPs
a) = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcAnn a
l (forall p. HsOverLit GhcPs -> PatBuilder p
PatBuilderOverLit HsOverLit GhcPs
a)
  mkHsWildCardPV :: SrcSpan -> PV (Located (PatBuilder GhcPs))
mkHsWildCardPV SrcSpan
l = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpan
l (forall p. Pat p -> PatBuilder p
PatBuilderPat (forall p. XWildPat p -> Pat p
WildPat NoExtField
noExtField))
  mkHsTySigPV :: SrcSpanAnnA
-> LocatedA (PatBuilder GhcPs)
-> LHsType GhcPs
-> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
mkHsTySigPV SrcSpanAnnA
l LocatedA (PatBuilder GhcPs)
b LHsType GhcPs
sig [AddEpAnn]
anns = do
    GenLocated SrcSpanAnnA (Pat GhcPs)
p <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
b
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall p. Pat p -> PatBuilder p
PatBuilderPat (forall p. XSigPat p -> LPat p -> HsPatSigType (NoGhcTc p) -> Pat p
SigPat (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) [AddEpAnn]
anns EpAnnComments
cs) GenLocated SrcSpanAnnA (Pat GhcPs)
p (EpAnnCO -> LHsType GhcPs -> HsPatSigType GhcPs
mkHsPatSigType forall a. EpAnn a
noAnn LHsType GhcPs
sig)))
  mkHsExplicitListPV :: SrcSpan
-> [LocatedA (PatBuilder GhcPs)]
-> AnnList
-> PV (LocatedA (PatBuilder GhcPs))
mkHsExplicitListPV SrcSpan
l [LocatedA (PatBuilder GhcPs)]
xs AnnList
anns = do
    [GenLocated SrcSpanAnnA (Pat GhcPs)]
ps <- forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat [LocatedA (PatBuilder GhcPs)]
xs
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. Pat p -> PatBuilder p
PatBuilderPat (forall p. XListPat p -> [LPat p] -> Pat p
ListPat (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) AnnList
anns EpAnnComments
cs) [GenLocated SrcSpanAnnA (Pat GhcPs)]
ps)))
  mkHsSplicePV :: Located (HsUntypedSplice GhcPs) -> PV (Located (PatBuilder GhcPs))
mkHsSplicePV (L SrcSpan
l HsUntypedSplice GhcPs
sp) = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpan
l (forall p. Pat p -> PatBuilder p
PatBuilderPat (forall p. XSplicePat p -> HsUntypedSplice p -> Pat p
SplicePat NoExtField
noExtField HsUntypedSplice GhcPs
sp))
  mkHsRecordPV :: Bool
-> SrcSpan
-> SrcSpan
-> LocatedA (PatBuilder GhcPs)
-> ([Fbind (PatBuilder GhcPs)], Maybe SrcSpan)
-> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
mkHsRecordPV Bool
_ SrcSpan
l SrcSpan
_ LocatedA (PatBuilder GhcPs)
a ([Fbind (PatBuilder GhcPs)]
fbinds, Maybe SrcSpan
ddLoc) [AddEpAnn]
anns = do
    let ([GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
      (LocatedA (PatBuilder GhcPs)))]
fs, [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
      (LocatedA (PatBuilder GhcPs)))]
ps) = forall a b. [Either a b] -> ([a], [b])
partitionEithers [Fbind (PatBuilder GhcPs)]
fbinds
    if Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
      (LocatedA (PatBuilder GhcPs)))]
ps)
     then forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l PsMessage
PsErrOverloadedRecordDotInvalid
     else do
       EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
       PatBuilder GhcPs
r <- LocatedA (PatBuilder GhcPs)
-> HsRecFields GhcPs (LocatedA (PatBuilder GhcPs))
-> EpAnn [AddEpAnn]
-> PV (PatBuilder GhcPs)
mkPatRec LocatedA (PatBuilder GhcPs)
a (forall (p :: Pass) arg.
[LocatedA (HsRecField (GhcPass p) arg)]
-> Maybe SrcSpan -> HsRecFields (GhcPass p) arg
mk_rec_fields [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
      (LocatedA (PatBuilder GhcPs)))]
fs Maybe SrcSpan
ddLoc) (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [AddEpAnn]
anns EpAnnComments
cs)
       forall (m :: * -> *) a.
(MonadP m, Outputable a) =>
LocatedA a -> m (LocatedA a)
checkRecordSyntax (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) PatBuilder GhcPs
r)
  mkHsNegAppPV :: SrcSpan
-> LocatedA (PatBuilder GhcPs)
-> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
mkHsNegAppPV SrcSpan
l (L SrcSpanAnnA
lp PatBuilder GhcPs
p) [AddEpAnn]
anns = do
    LocatedAn NoEpAnns (HsOverLit GhcPs)
lit <- case PatBuilder GhcPs
p of
      PatBuilderOverLit HsOverLit GhcPs
pos_lit -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
l2l SrcSpanAnnA
lp) HsOverLit GhcPs
pos_lit)
      PatBuilder GhcPs
_ -> forall a. SrcSpan -> PsMessage -> PV a
patFail SrcSpan
l forall a b. (a -> b) -> a -> b
$ PatBuilder GhcPs -> PsErrInPatDetails -> PsMessage
PsErrInPat PatBuilder GhcPs
p PsErrInPatDetails
PEIP_NegApp
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    let an :: EpAnn [AddEpAnn]
an = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [AddEpAnn]
anns EpAnnComments
cs
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. Pat p -> PatBuilder p
PatBuilderPat (LocatedAn NoEpAnns (HsOverLit GhcPs)
-> Maybe (SyntaxExpr GhcPs) -> EpAnn [AddEpAnn] -> Pat GhcPs
mkNPat LocatedAn NoEpAnns (HsOverLit GhcPs)
lit (forall a. a -> Maybe a
Just forall (p :: Pass). IsPass p => SyntaxExpr (GhcPass p)
noSyntaxExpr) EpAnn [AddEpAnn]
an))
  mkHsSectionR_PV :: SrcSpan
-> LocatedA (InfixOp (PatBuilder GhcPs))
-> LocatedA (PatBuilder GhcPs)
-> PV (Located (PatBuilder GhcPs))
mkHsSectionR_PV SrcSpan
l LocatedA (InfixOp (PatBuilder GhcPs))
op LocatedA (PatBuilder GhcPs)
p = forall a. SrcSpan -> PsMessage -> PV a
patFail SrcSpan
l (RdrName -> PatBuilder GhcPs -> PsMessage
PsErrParseRightOpSectionInPat (forall l e. GenLocated l e -> e
unLoc LocatedA (InfixOp (PatBuilder GhcPs))
op) (forall l e. GenLocated l e -> e
unLoc LocatedA (PatBuilder GhcPs)
p))
  mkHsViewPatPV :: SrcSpan
-> LHsExpr GhcPs
-> LocatedA (PatBuilder GhcPs)
-> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
mkHsViewPatPV SrcSpan
l LHsExpr GhcPs
a LocatedA (PatBuilder GhcPs)
b [AddEpAnn]
anns = do
    GenLocated SrcSpanAnnA (Pat GhcPs)
p <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
b
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. Pat p -> PatBuilder p
PatBuilderPat (forall p. XViewPat p -> LHsExpr p -> LPat p -> Pat p
ViewPat (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [AddEpAnn]
anns EpAnnComments
cs) LHsExpr GhcPs
a GenLocated SrcSpanAnnA (Pat GhcPs)
p))
  mkHsAsPatPV :: SrcSpan
-> GenLocated SrcSpanAnnN RdrName
-> LHsToken "@" GhcPs
-> LocatedA (PatBuilder GhcPs)
-> PV (LocatedA (PatBuilder GhcPs))
mkHsAsPatPV SrcSpan
l GenLocated SrcSpanAnnN RdrName
v LHsToken "@" GhcPs
at LocatedA (PatBuilder GhcPs)
e = do
    GenLocated SrcSpanAnnA (Pat GhcPs)
p <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
e
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. Pat p -> PatBuilder p
PatBuilderPat (forall p. XAsPat p -> LIdP p -> LHsToken "@" p -> LPat p -> Pat p
AsPat (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) NoEpAnns
NoEpAnns EpAnnComments
cs) GenLocated SrcSpanAnnN RdrName
v LHsToken "@" GhcPs
at GenLocated SrcSpanAnnA (Pat GhcPs)
p))
  mkHsLazyPatPV :: SrcSpan
-> LocatedA (PatBuilder GhcPs)
-> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
mkHsLazyPatPV SrcSpan
l LocatedA (PatBuilder GhcPs)
e [AddEpAnn]
a = do
    GenLocated SrcSpanAnnA (Pat GhcPs)
p <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
e
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. Pat p -> PatBuilder p
PatBuilderPat (forall p. XLazyPat p -> LPat p -> Pat p
LazyPat (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [AddEpAnn]
a EpAnnComments
cs) GenLocated SrcSpanAnnA (Pat GhcPs)
p))
  mkHsBangPatPV :: SrcSpan
-> LocatedA (PatBuilder GhcPs)
-> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
mkHsBangPatPV SrcSpan
l LocatedA (PatBuilder GhcPs)
e [AddEpAnn]
an = do
    GenLocated SrcSpanAnnA (Pat GhcPs)
p <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
e
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor SrcSpan
l
    let pb :: Pat GhcPs
pb = forall p. XBangPat p -> LPat p -> Pat p
BangPat (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor SrcSpan
l) [AddEpAnn]
an EpAnnComments
cs) GenLocated SrcSpanAnnA (Pat GhcPs)
p
    SrcSpan -> Pat GhcPs -> PV ()
hintBangPat SrcSpan
l Pat GhcPs
pb
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. Pat p -> PatBuilder p
PatBuilderPat Pat GhcPs
pb)
  mkSumOrTuplePV :: SrcSpanAnnA
-> Boxity
-> SumOrTuple (PatBuilder GhcPs)
-> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
mkSumOrTuplePV = SrcSpanAnnA
-> Boxity
-> SumOrTuple (PatBuilder GhcPs)
-> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
mkSumOrTuplePat
  rejectPragmaPV :: LocatedA (PatBuilder GhcPs) -> PV ()
rejectPragmaPV LocatedA (PatBuilder GhcPs)
_ = forall (m :: * -> *) a. Monad m => a -> m a
return ()

-- | Ensure that a literal pattern isn't of type Addr#, Float#, Double#.
checkUnboxedLitPat :: Located (HsLit GhcPs) -> PV ()
checkUnboxedLitPat :: Located (HsLit GhcPs) -> PV ()
checkUnboxedLitPat (L SrcSpan
loc HsLit GhcPs
lit) =
  case HsLit GhcPs
lit of
    -- Don't allow primitive string literal patterns.
    -- See #13260.
    HsStringPrim {}
      -> forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$
                           (HsLit GhcPs -> PsMessage
PsErrIllegalUnboxedStringInPat HsLit GhcPs
lit)

   -- Don't allow Float#/Double# literal patterns.
   -- See #9238 and Note [Rules for floating-point comparisons]
   -- in GHC.Core.Opt.ConstantFold.
    HsLit GhcPs
_ | HsLit GhcPs -> Bool
is_floating_lit HsLit GhcPs
lit
      -> forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$
                           (HsLit GhcPs -> PsMessage
PsErrIllegalUnboxedFloatingLitInPat HsLit GhcPs
lit)

      | Bool
otherwise
      -> forall (m :: * -> *) a. Monad m => a -> m a
return ()

  where
    is_floating_lit :: HsLit GhcPs -> Bool
    is_floating_lit :: HsLit GhcPs -> Bool
is_floating_lit (HsFloatPrim  {}) = Bool
True
    is_floating_lit (HsDoublePrim {}) = Bool
True
    is_floating_lit HsLit GhcPs
_                 = Bool
False

mkPatRec ::
  LocatedA (PatBuilder GhcPs) ->
  HsRecFields GhcPs (LocatedA (PatBuilder GhcPs)) ->
  EpAnn [AddEpAnn] ->
  PV (PatBuilder GhcPs)
mkPatRec :: LocatedA (PatBuilder GhcPs)
-> HsRecFields GhcPs (LocatedA (PatBuilder GhcPs))
-> EpAnn [AddEpAnn]
-> PV (PatBuilder GhcPs)
mkPatRec (forall l e. GenLocated l e -> e
unLoc -> PatBuilderVar GenLocated SrcSpanAnnN RdrName
c) (HsRecFields [LHsRecField GhcPs (LocatedA (PatBuilder GhcPs))]
fs Maybe (XRec GhcPs RecFieldsDotDot)
dd) EpAnn [AddEpAnn]
anns
  | RdrName -> Bool
isRdrDataCon (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
c)
  = do [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
      (GenLocated SrcSpanAnnA (Pat GhcPs)))]
fs <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM LHsRecField GhcPs (LocatedA (PatBuilder GhcPs))
-> PV (LHsRecField GhcPs (LPat GhcPs))
checkPatField [LHsRecField GhcPs (LocatedA (PatBuilder GhcPs))]
fs
       forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall p. Pat p -> PatBuilder p
PatBuilderPat forall a b. (a -> b) -> a -> b
$ ConPat
         { pat_con_ext :: XConPat GhcPs
pat_con_ext = EpAnn [AddEpAnn]
anns
         , pat_con :: XRec GhcPs (ConLikeP GhcPs)
pat_con = GenLocated SrcSpanAnnN RdrName
c
         , pat_args :: HsConPatDetails GhcPs
pat_args = forall tyarg arg rec. rec -> HsConDetails tyarg arg rec
RecCon (forall p arg.
[LHsRecField p arg]
-> Maybe (XRec p RecFieldsDotDot) -> HsRecFields p arg
HsRecFields [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
      (GenLocated SrcSpanAnnA (Pat GhcPs)))]
fs Maybe (XRec GhcPs RecFieldsDotDot)
dd)
         }
mkPatRec LocatedA (PatBuilder GhcPs)
p HsRecFields GhcPs (LocatedA (PatBuilder GhcPs))
_ EpAnn [AddEpAnn]
_ =
  forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA LocatedA (PatBuilder GhcPs)
p) forall a b. (a -> b) -> a -> b
$
                    (PatBuilder GhcPs -> PsMessage
PsErrInvalidRecordCon (forall l e. GenLocated l e -> e
unLoc LocatedA (PatBuilder GhcPs)
p))

-- | Disambiguate constructs that may appear when we do not know
-- ahead of time whether we are parsing a type or a newtype/data constructor.
--
-- See Note [Ambiguous syntactic categories] for the general idea.
--
-- See Note [Parsing data constructors is hard] for the specific issue this
-- particular class is solving.
--
class DisambTD b where
  -- | Process the head of a type-level function/constructor application,
  -- i.e. the @H@ in @H a b c@.
  mkHsAppTyHeadPV :: LHsType GhcPs -> PV (LocatedA b)
  -- | Disambiguate @f x@ (function application or prefix data constructor).
  mkHsAppTyPV :: LocatedA b -> LHsType GhcPs -> PV (LocatedA b)
  -- | Disambiguate @f \@t@ (visible kind application)
  mkHsAppKindTyPV :: LocatedA b -> SrcSpan -> LHsType GhcPs -> PV (LocatedA b)
  -- | Disambiguate @f \# x@ (infix operator)
  mkHsOpTyPV :: PromotionFlag -> LHsType GhcPs -> LocatedN RdrName -> LHsType GhcPs -> PV (LocatedA b)
  -- | Disambiguate @{-\# UNPACK \#-} t@ (unpack/nounpack pragma)
  mkUnpackednessPV :: Located UnpackednessPragma -> LocatedA b -> PV (LocatedA b)

instance DisambTD (HsType GhcPs) where
  mkHsAppTyHeadPV :: LHsType GhcPs -> PV (GenLocated SrcSpanAnnA (HsType GhcPs))
mkHsAppTyHeadPV = forall (m :: * -> *) a. Monad m => a -> m a
return
  mkHsAppTyPV :: GenLocated SrcSpanAnnA (HsType GhcPs)
-> LHsType GhcPs -> PV (GenLocated SrcSpanAnnA (HsType GhcPs))
mkHsAppTyPV GenLocated SrcSpanAnnA (HsType GhcPs)
t1 LHsType GhcPs
t2 = forall (m :: * -> *) a. Monad m => a -> m a
return (forall (p :: Pass).
LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
mkHsAppTy GenLocated SrcSpanAnnA (HsType GhcPs)
t1 LHsType GhcPs
t2)
  mkHsAppKindTyPV :: GenLocated SrcSpanAnnA (HsType GhcPs)
-> SrcSpan
-> LHsType GhcPs
-> PV (GenLocated SrcSpanAnnA (HsType GhcPs))
mkHsAppKindTyPV GenLocated SrcSpanAnnA (HsType GhcPs)
t SrcSpan
l_at LHsType GhcPs
ki = forall (m :: * -> *) a. Monad m => a -> m a
return (forall (p :: Pass).
XAppKindTy (GhcPass p)
-> LHsType (GhcPass p)
-> LHsType (GhcPass p)
-> LHsType (GhcPass p)
mkHsAppKindTy SrcSpan
l_at GenLocated SrcSpanAnnA (HsType GhcPs)
t LHsType GhcPs
ki)
  mkHsOpTyPV :: PromotionFlag
-> LHsType GhcPs
-> GenLocated SrcSpanAnnN RdrName
-> LHsType GhcPs
-> PV (GenLocated SrcSpanAnnA (HsType GhcPs))
mkHsOpTyPV PromotionFlag
prom LHsType GhcPs
t1 GenLocated SrcSpanAnnN RdrName
op LHsType GhcPs
t2 = forall (m :: * -> *) a. Monad m => a -> m a
return (PromotionFlag
-> LHsType GhcPs
-> GenLocated SrcSpanAnnN RdrName
-> LHsType GhcPs
-> LHsType GhcPs
mkLHsOpTy PromotionFlag
prom LHsType GhcPs
t1 GenLocated SrcSpanAnnN RdrName
op LHsType GhcPs
t2)
  mkUnpackednessPV :: Located UnpackednessPragma
-> GenLocated SrcSpanAnnA (HsType GhcPs)
-> PV (GenLocated SrcSpanAnnA (HsType GhcPs))
mkUnpackednessPV = forall (m :: * -> *).
MonadP m =>
Located UnpackednessPragma -> LHsType GhcPs -> m (LHsType GhcPs)
addUnpackednessP

dataConBuilderCon :: DataConBuilder -> LocatedN RdrName
dataConBuilderCon :: DataConBuilder -> GenLocated SrcSpanAnnN RdrName
dataConBuilderCon (PrefixDataConBuilder OrdList (LHsType GhcPs)
_ GenLocated SrcSpanAnnN RdrName
dc) = GenLocated SrcSpanAnnN RdrName
dc
dataConBuilderCon (InfixDataConBuilder LHsType GhcPs
_ GenLocated SrcSpanAnnN RdrName
dc LHsType GhcPs
_) = GenLocated SrcSpanAnnN RdrName
dc

dataConBuilderDetails :: DataConBuilder -> HsConDeclH98Details GhcPs

-- Detect when the record syntax is used:
--   data T = MkT { ... }
dataConBuilderDetails :: DataConBuilder -> HsConDeclH98Details GhcPs
dataConBuilderDetails (PrefixDataConBuilder OrdList (LHsType GhcPs)
flds GenLocated SrcSpanAnnN RdrName
_)
  | [L SrcSpanAnnA
l_t (HsRecTy XRecTy GhcPs
an [LConDeclField GhcPs]
fields)] <- forall (t :: * -> *) a. Foldable t => t a -> [a]
toList OrdList (LHsType GhcPs)
flds
  = forall tyarg arg rec. rec -> HsConDetails tyarg arg rec
RecCon (forall l e. l -> e -> GenLocated l e
L (forall a. a -> SrcSpan -> SrcSpanAnn' a
SrcSpanAnn XRecTy GhcPs
an (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l_t)) [LConDeclField GhcPs]
fields)

-- Normal prefix constructor, e.g.  data T = MkT A B C
dataConBuilderDetails (PrefixDataConBuilder OrdList (LHsType GhcPs)
flds GenLocated SrcSpanAnnN RdrName
_)
  = forall tyarg arg rec.
[tyarg] -> [arg] -> HsConDetails tyarg arg rec
PrefixCon [Void]
noTypeArgs (forall a b. (a -> b) -> [a] -> [b]
map forall a (p :: Pass). a -> HsScaled (GhcPass p) a
hsLinear (forall (t :: * -> *) a. Foldable t => t a -> [a]
toList OrdList (LHsType GhcPs)
flds))

-- Infix constructor, e.g. data T = Int :! Bool
dataConBuilderDetails (InfixDataConBuilder LHsType GhcPs
lhs GenLocated SrcSpanAnnN RdrName
_ LHsType GhcPs
rhs)
  = forall tyarg arg rec. arg -> arg -> HsConDetails tyarg arg rec
InfixCon (forall a (p :: Pass). a -> HsScaled (GhcPass p) a
hsLinear LHsType GhcPs
lhs) (forall a (p :: Pass). a -> HsScaled (GhcPass p) a
hsLinear LHsType GhcPs
rhs)

instance DisambTD DataConBuilder where
  mkHsAppTyHeadPV :: LHsType GhcPs -> PV (LocatedA DataConBuilder)
mkHsAppTyHeadPV = LHsType GhcPs -> PV (LocatedA DataConBuilder)
tyToDataConBuilder

  mkHsAppTyPV :: LocatedA DataConBuilder
-> LHsType GhcPs -> PV (LocatedA DataConBuilder)
mkHsAppTyPV (L SrcSpanAnnA
l (PrefixDataConBuilder OrdList (LHsType GhcPs)
flds GenLocated SrcSpanAnnN RdrName
fn)) LHsType GhcPs
t =
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$
      forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan forall a b. (a -> b) -> a -> b
$ SrcSpan -> SrcSpan -> SrcSpan
combineSrcSpans (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA LHsType GhcPs
t))
        (OrdList (LHsType GhcPs)
-> GenLocated SrcSpanAnnN RdrName -> DataConBuilder
PrefixDataConBuilder (OrdList (LHsType GhcPs)
flds forall a. OrdList a -> a -> OrdList a
`snocOL` LHsType GhcPs
t) GenLocated SrcSpanAnnN RdrName
fn)
  mkHsAppTyPV (L SrcSpanAnnA
_ InfixDataConBuilder{}) LHsType GhcPs
_ =
    -- This case is impossible because of the way
    -- the grammar in Parser.y is written (see infixtype/ftype).
    forall a. HasCallStack => String -> a
panic String
"mkHsAppTyPV: InfixDataConBuilder"

  mkHsAppKindTyPV :: LocatedA DataConBuilder
-> SrcSpan -> LHsType GhcPs -> PV (LocatedA DataConBuilder)
mkHsAppKindTyPV LocatedA DataConBuilder
lhs SrcSpan
l_at LHsType GhcPs
ki =
    forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l_at forall a b. (a -> b) -> a -> b
$
                      (DataConBuilder -> HsType GhcPs -> PsMessage
PsErrUnexpectedKindAppInDataCon (forall l e. GenLocated l e -> e
unLoc LocatedA DataConBuilder
lhs) (forall l e. GenLocated l e -> e
unLoc LHsType GhcPs
ki))

  mkHsOpTyPV :: PromotionFlag
-> LHsType GhcPs
-> GenLocated SrcSpanAnnN RdrName
-> LHsType GhcPs
-> PV (LocatedA DataConBuilder)
mkHsOpTyPV PromotionFlag
prom LHsType GhcPs
lhs GenLocated SrcSpanAnnN RdrName
tc LHsType GhcPs
rhs = do
      HsType GhcPs -> PV ()
check_no_ops (forall l e. GenLocated l e -> e
unLoc LHsType GhcPs
rhs)  -- check the RHS because parsing type operators is right-associative
      GenLocated SrcSpanAnnN RdrName
data_con <- forall (m :: * -> *) a.
MonadP m =>
Either (MsgEnvelope PsMessage) a -> m a
eitherToP forall a b. (a -> b) -> a -> b
$ GenLocated SrcSpanAnnN RdrName
-> Either (MsgEnvelope PsMessage) (GenLocated SrcSpanAnnN RdrName)
tyConToDataCon GenLocated SrcSpanAnnN RdrName
tc
      PromotionFlag -> GenLocated SrcSpanAnnN RdrName -> PV ()
checkNotPromotedDataCon PromotionFlag
prom GenLocated SrcSpanAnnN RdrName
data_con
      forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (LHsType GhcPs
-> GenLocated SrcSpanAnnN RdrName
-> LHsType GhcPs
-> DataConBuilder
InfixDataConBuilder LHsType GhcPs
lhs GenLocated SrcSpanAnnN RdrName
data_con LHsType GhcPs
rhs)
    where
      l :: SrcSpanAnnA
l = forall a e1 e2.
Semigroup a =>
GenLocated (SrcAnn a) e1 -> GenLocated (SrcAnn a) e2 -> SrcAnn a
combineLocsA LHsType GhcPs
lhs LHsType GhcPs
rhs
      check_no_ops :: HsType GhcPs -> PV ()
check_no_ops (HsBangTy XBangTy GhcPs
_ HsSrcBang
_ LHsType GhcPs
t) = HsType GhcPs -> PV ()
check_no_ops (forall l e. GenLocated l e -> e
unLoc LHsType GhcPs
t)
      check_no_ops (HsOpTy{}) =
        forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall a b. (a -> b) -> a -> b
$
                     (HsType GhcPs -> RdrName -> HsType GhcPs -> PsMessage
PsErrInvalidInfixDataCon (forall l e. GenLocated l e -> e
unLoc LHsType GhcPs
lhs) (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
tc) (forall l e. GenLocated l e -> e
unLoc LHsType GhcPs
rhs))
      check_no_ops HsType GhcPs
_ = forall (m :: * -> *) a. Monad m => a -> m a
return ()

  mkUnpackednessPV :: Located UnpackednessPragma
-> LocatedA DataConBuilder -> PV (LocatedA DataConBuilder)
mkUnpackednessPV Located UnpackednessPragma
unpk LocatedA DataConBuilder
constr_stuff
    | L SrcSpanAnnA
_ (InfixDataConBuilder LHsType GhcPs
lhs GenLocated SrcSpanAnnN RdrName
data_con LHsType GhcPs
rhs) <- LocatedA DataConBuilder
constr_stuff
    = -- When the user writes  data T = {-# UNPACK #-} Int :+ Bool
      --   we apply {-# UNPACK #-} to the LHS
      do GenLocated SrcSpanAnnA (HsType GhcPs)
lhs' <- forall (m :: * -> *).
MonadP m =>
Located UnpackednessPragma -> LHsType GhcPs -> m (LHsType GhcPs)
addUnpackednessP Located UnpackednessPragma
unpk LHsType GhcPs
lhs
         let l :: SrcSpanAnnA
l = forall a e1 e2.
Semigroup a =>
GenLocated (SrcAnn a) e1 -> GenLocated (SrcAnn a) e2 -> SrcAnn a
combineLocsA (forall e ann. Located e -> LocatedAn ann e
reLocA Located UnpackednessPragma
unpk) LocatedA DataConBuilder
constr_stuff
         forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (LHsType GhcPs
-> GenLocated SrcSpanAnnN RdrName
-> LHsType GhcPs
-> DataConBuilder
InfixDataConBuilder GenLocated SrcSpanAnnA (HsType GhcPs)
lhs' GenLocated SrcSpanAnnN RdrName
data_con LHsType GhcPs
rhs)
    | Bool
otherwise =
      do forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall l e. GenLocated l e -> l
getLoc Located UnpackednessPragma
unpk) PsMessage
PsErrUnpackDataCon
         forall (m :: * -> *) a. Monad m => a -> m a
return LocatedA DataConBuilder
constr_stuff

tyToDataConBuilder :: LHsType GhcPs -> PV (LocatedA DataConBuilder)
tyToDataConBuilder :: LHsType GhcPs -> PV (LocatedA DataConBuilder)
tyToDataConBuilder (L SrcSpanAnnA
l (HsTyVar XTyVar GhcPs
_ PromotionFlag
prom XRec GhcPs (IdP GhcPs)
v)) = do
  GenLocated SrcSpanAnnN RdrName
data_con <- forall (m :: * -> *) a.
MonadP m =>
Either (MsgEnvelope PsMessage) a -> m a
eitherToP forall a b. (a -> b) -> a -> b
$ GenLocated SrcSpanAnnN RdrName
-> Either (MsgEnvelope PsMessage) (GenLocated SrcSpanAnnN RdrName)
tyConToDataCon XRec GhcPs (IdP GhcPs)
v
  PromotionFlag -> GenLocated SrcSpanAnnN RdrName -> PV ()
checkNotPromotedDataCon PromotionFlag
prom GenLocated SrcSpanAnnN RdrName
data_con
  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (OrdList (LHsType GhcPs)
-> GenLocated SrcSpanAnnN RdrName -> DataConBuilder
PrefixDataConBuilder forall a. OrdList a
nilOL GenLocated SrcSpanAnnN RdrName
data_con)
tyToDataConBuilder (L SrcSpanAnnA
l (HsTupleTy XTupleTy GhcPs
_ HsTupleSort
HsBoxedOrConstraintTuple [LHsType GhcPs]
ts)) = do
  let data_con :: GenLocated SrcSpanAnnN RdrName
data_con = forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
l2l SrcSpanAnnA
l) (forall thing. NamedThing thing => thing -> RdrName
getRdrName (Boxity -> Int -> DataCon
tupleDataCon Boxity
Boxed (forall (t :: * -> *) a. Foldable t => t a -> Int
length [LHsType GhcPs]
ts)))
  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (OrdList (LHsType GhcPs)
-> GenLocated SrcSpanAnnN RdrName -> DataConBuilder
PrefixDataConBuilder (forall a. [a] -> OrdList a
toOL [LHsType GhcPs]
ts) GenLocated SrcSpanAnnN RdrName
data_con)
tyToDataConBuilder LHsType GhcPs
t =
  forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA LHsType GhcPs
t) forall a b. (a -> b) -> a -> b
$
                    (HsType GhcPs -> PsMessage
PsErrInvalidDataCon (forall l e. GenLocated l e -> e
unLoc LHsType GhcPs
t))

-- | Rejects declarations such as @data T = 'MkT@ (note the leading tick).
checkNotPromotedDataCon :: PromotionFlag -> LocatedN RdrName -> PV ()
checkNotPromotedDataCon :: PromotionFlag -> GenLocated SrcSpanAnnN RdrName -> PV ()
checkNotPromotedDataCon PromotionFlag
NotPromoted GenLocated SrcSpanAnnN RdrName
_ = forall (m :: * -> *) a. Monad m => a -> m a
return ()
checkNotPromotedDataCon PromotionFlag
IsPromoted (L SrcSpanAnnN
l RdrName
name) =
  forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnN
l) forall a b. (a -> b) -> a -> b
$
    RdrName -> PsMessage
PsErrIllegalPromotionQuoteDataCon RdrName
name

{- Note [Ambiguous syntactic categories]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are places in the grammar where we do not know whether we are parsing an
expression or a pattern without unlimited lookahead (which we do not have in
'happy'):

View patterns:

    f (Con a b     ) = ...  -- 'Con a b' is a pattern
    f (Con a b -> x) = ...  -- 'Con a b' is an expression

do-notation:

    do { Con a b <- x } -- 'Con a b' is a pattern
    do { Con a b }      -- 'Con a b' is an expression

Guards:

    x | True <- p && q = ...  -- 'True' is a pattern
    x | True           = ...  -- 'True' is an expression

Top-level value/function declarations (FunBind/PatBind):

    f ! a         -- TH splice
    f ! a = ...   -- function declaration

    Until we encounter the = sign, we don't know if it's a top-level
    TemplateHaskell splice where ! is used, or if it's a function declaration
    where ! is bound.

There are also places in the grammar where we do not know whether we are
parsing an expression or a command:

    proc x -> do { (stuff) -< x }   -- 'stuff' is an expression
    proc x -> do { (stuff) }        -- 'stuff' is a command

    Until we encounter arrow syntax (-<) we don't know whether to parse 'stuff'
    as an expression or a command.

In fact, do-notation is subject to both ambiguities:

    proc x -> do { (stuff) -< x }        -- 'stuff' is an expression
    proc x -> do { (stuff) <- f -< x }   -- 'stuff' is a pattern
    proc x -> do { (stuff) }             -- 'stuff' is a command

There are many possible solutions to this problem. For an overview of the ones
we decided against, see Note [Resolving parsing ambiguities: non-taken alternatives]

The solution that keeps basic definitions (such as HsExpr) clean, keeps the
concerns local to the parser, and does not require duplication of hsSyn types,
or an extra pass over the entire AST, is to parse into an overloaded
parser-validator (a so-called tagless final encoding):

    class DisambECP b where ...
    instance DisambECP (HsCmd GhcPs) where ...
    instance DisambECP (HsExp GhcPs) where ...
    instance DisambECP (PatBuilder GhcPs) where ...

The 'DisambECP' class contains functions to build and validate 'b'. For example,
to add parentheses we have:

  mkHsParPV :: DisambECP b => SrcSpan -> Located b -> PV (Located b)

'mkHsParPV' will wrap the inner value in HsCmdPar for commands, HsPar for
expressions, and 'PatBuilderPar' for patterns (later transformed into ParPat,
see Note [PatBuilder]).

Consider the 'alts' production used to parse case-of alternatives:

  alts :: { Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
    : alts1     { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
    | ';' alts  { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }

We abstract over LHsExpr GhcPs, and it becomes:

  alts :: { forall b. DisambECP b => PV (Located ([AddEpAnn],[LMatch GhcPs (Located b)])) }
    : alts1     { $1 >>= \ $1 ->
                  return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
    | ';' alts  { $2 >>= \ $2 ->
                  return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }

Compared to the initial definition, the added bits are:

    forall b. DisambECP b => PV ( ... ) -- in the type signature
    $1 >>= \ $1 -> return $             -- in one reduction rule
    $2 >>= \ $2 -> return $             -- in another reduction rule

The overhead is constant relative to the size of the rest of the reduction
rule, so this approach scales well to large parser productions.

Note that we write ($1 >>= \ $1 -> ...), so the second $1 is in a binding
position and shadows the previous $1. We can do this because internally
'happy' desugars $n to happy_var_n, and the rationale behind this idiom
is to be able to write (sLL $1 $>) later on. The alternative would be to
write this as ($1 >>= \ fresh_name -> ...), but then we couldn't refer
to the last fresh name as $>.

Finally, we instantiate the polymorphic type to a concrete one, and run the
parser-validator, for example:

    stmt   :: { forall b. DisambECP b => PV (LStmt GhcPs (Located b)) }
    e_stmt :: { LStmt GhcPs (LHsExpr GhcPs) }
            : stmt {% runPV $1 }

In e_stmt, three things happen:

  1. we instantiate: b ~ HsExpr GhcPs
  2. we embed the PV computation into P by using runPV
  3. we run validation by using a monadic production, {% ... }

At this point the ambiguity is resolved.
-}


{- Note [Resolving parsing ambiguities: non-taken alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Alternative I, extra constructors in GHC.Hs.Expr
------------------------------------------------
We could add extra constructors to HsExpr to represent command-specific and
pattern-specific syntactic constructs. Under this scheme, we parse patterns
and commands as expressions and rejig later.  This is what GHC used to do, and
it polluted 'HsExpr' with irrelevant constructors:

  * for commands: 'HsArrForm', 'HsArrApp'
  * for patterns: 'EWildPat', 'EAsPat', 'EViewPat', 'ELazyPat'

(As of now, we still do that for patterns, but we plan to fix it).

There are several issues with this:

  * The implementation details of parsing are leaking into hsSyn definitions.

  * Code that uses HsExpr has to panic on these impossible-after-parsing cases.

  * HsExpr is arbitrarily selected as the extension basis. Why not extend
    HsCmd or HsPat with extra constructors instead?

Alternative II, extra constructors in GHC.Hs.Expr for GhcPs
-----------------------------------------------------------
We could address some of the problems with Alternative I by using Trees That
Grow and extending HsExpr only in the GhcPs pass. However, GhcPs corresponds to
the output of parsing, not to its intermediate results, so we wouldn't want
them there either.

Alternative III, extra constructors in GHC.Hs.Expr for GhcPrePs
---------------------------------------------------------------
We could introduce a new pass, GhcPrePs, to keep GhcPs pristine.
Unfortunately, creating a new pass would significantly bloat conversion code
and slow down the compiler by adding another linear-time pass over the entire
AST. For example, in order to build HsExpr GhcPrePs, we would need to build
HsLocalBinds GhcPrePs (as part of HsLet), and we never want HsLocalBinds
GhcPrePs.


Alternative IV, sum type and bottom-up data flow
------------------------------------------------
Expressions and commands are disjoint. There are no user inputs that could be
interpreted as either an expression or a command depending on outer context:

  5        -- definitely an expression
  x -< y   -- definitely a command

Even though we have both 'HsLam' and 'HsCmdLam', we can look at
the body to disambiguate:

  \p -> 5        -- definitely an expression
  \p -> x -< y   -- definitely a command

This means we could use a bottom-up flow of information to determine
whether we are parsing an expression or a command, using a sum type
for intermediate results:

  Either (LHsExpr GhcPs) (LHsCmd GhcPs)

There are two problems with this:

  * We cannot handle the ambiguity between expressions and
    patterns, which are not disjoint.

  * Bottom-up flow of information leads to poor error messages. Consider

        if ... then 5 else (x -< y)

    Do we report that '5' is not a valid command or that (x -< y) is not a
    valid expression?  It depends on whether we want the entire node to be
    'HsIf' or 'HsCmdIf', and this information flows top-down, from the
    surrounding parsing context (are we in 'proc'?)

Alternative V, backtracking with parser combinators
---------------------------------------------------
One might think we could sidestep the issue entirely by using a backtracking
parser and doing something along the lines of (try pExpr <|> pPat).

Turns out, this wouldn't work very well, as there can be patterns inside
expressions (e.g. via 'case', 'let', 'do') and expressions inside patterns
(e.g. view patterns). To handle this, we would need to backtrack while
backtracking, and unbound levels of backtracking lead to very fragile
performance.

Alternative VI, an intermediate data type
-----------------------------------------
There are common syntactic elements of expressions, commands, and patterns
(e.g. all of them must have balanced parentheses), and we can capture this
common structure in an intermediate data type, Frame:

data Frame
  = FrameVar RdrName
    -- ^ Identifier: Just, map, BS.length
  | FrameTuple [LTupArgFrame] Boxity
    -- ^ Tuple (section): (a,b) (a,b,c) (a,,) (,a,)
  | FrameTySig LFrame (LHsSigWcType GhcPs)
    -- ^ Type signature: x :: ty
  | FramePar (SrcSpan, SrcSpan) LFrame
    -- ^ Parentheses
  | FrameIf LFrame LFrame LFrame
    -- ^ If-expression: if p then x else y
  | FrameCase LFrame [LFrameMatch]
    -- ^ Case-expression: case x of { p1 -> e1; p2 -> e2 }
  | FrameDo (HsStmtContext GhcRn) [LFrameStmt]
    -- ^ Do-expression: do { s1; a <- s2; s3 }
  ...
  | FrameExpr (HsExpr GhcPs)   -- unambiguously an expression
  | FramePat (HsPat GhcPs)     -- unambiguously a pattern
  | FrameCommand (HsCmd GhcPs) -- unambiguously a command

To determine which constructors 'Frame' needs to have, we take the union of
intersections between HsExpr, HsCmd, and HsPat.

The intersection between HsPat and HsExpr:

  HsPat  =  VarPat   | TuplePat      | SigPat        | ParPat   | ...
  HsExpr =  HsVar    | ExplicitTuple | ExprWithTySig | HsPar    | ...
  -------------------------------------------------------------------
  Frame  =  FrameVar | FrameTuple    | FrameTySig    | FramePar | ...

The intersection between HsCmd and HsExpr:

  HsCmd  = HsCmdIf | HsCmdCase | HsCmdDo | HsCmdPar
  HsExpr = HsIf    | HsCase    | HsDo    | HsPar
  ------------------------------------------------
  Frame = FrameIf  | FrameCase | FrameDo | FramePar

The intersection between HsCmd and HsPat:

  HsPat  = ParPat   | ...
  HsCmd  = HsCmdPar | ...
  -----------------------
  Frame  = FramePar | ...

Take the union of each intersection and this yields the final 'Frame' data
type. The problem with this approach is that we end up duplicating a good
portion of hsSyn:

    Frame         for  HsExpr, HsPat, HsCmd
    TupArgFrame   for  HsTupArg
    FrameMatch    for  Match
    FrameStmt     for  StmtLR
    FrameGRHS     for  GRHS
    FrameGRHSs    for  GRHSs
    ...

Alternative VII, a product type
-------------------------------
We could avoid the intermediate representation of Alternative VI by parsing
into a product of interpretations directly:

    type ExpCmdPat = ( PV (LHsExpr GhcPs)
                     , PV (LHsCmd GhcPs)
                     , PV (LHsPat GhcPs) )

This means that in positions where we do not know whether to produce
expression, a pattern, or a command, we instead produce a parser-validator for
each possible option.

Then, as soon as we have parsed far enough to resolve the ambiguity, we pick
the appropriate component of the product, discarding the rest:

    checkExpOf3 (e, _, _) = e  -- interpret as an expression
    checkCmdOf3 (_, c, _) = c  -- interpret as a command
    checkPatOf3 (_, _, p) = p  -- interpret as a pattern

We can easily define ambiguities between arbitrary subsets of interpretations.
For example, when we know ahead of type that only an expression or a command is
possible, but not a pattern, we can use a smaller type:

    type ExpCmd = (PV (LHsExpr GhcPs), PV (LHsCmd GhcPs))

    checkExpOf2 (e, _) = e  -- interpret as an expression
    checkCmdOf2 (_, c) = c  -- interpret as a command

However, there is a slight problem with this approach, namely code duplication
in parser productions. Consider the 'alts' production used to parse case-of
alternatives:

  alts :: { Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
    : alts1     { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
    | ';' alts  { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }

Under the new scheme, we have to completely duplicate its type signature and
each reduction rule:

  alts :: { ( PV (Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)])) -- as an expression
            , PV (Located ([AddEpAnn],[LMatch GhcPs (LHsCmd GhcPs)]))  -- as a command
            ) }
    : alts1
        { ( checkExpOf2 $1 >>= \ $1 ->
            return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1)
          , checkCmdOf2 $1 >>= \ $1 ->
            return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1)
          ) }
    | ';' alts
        { ( checkExpOf2 $2 >>= \ $2 ->
            return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2)
          , checkCmdOf2 $2 >>= \ $2 ->
            return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2)
          ) }

And the same goes for other productions: 'altslist', 'alts1', 'alt', 'alt_rhs',
'ralt', 'gdpats', 'gdpat', 'exp', ... and so on. That is a lot of code!

Alternative VIII, a function from a GADT
----------------------------------------
We could avoid code duplication of the Alternative VII by representing the product
as a function from a GADT:

    data ExpCmdG b where
      ExpG :: ExpCmdG HsExpr
      CmdG :: ExpCmdG HsCmd

    type ExpCmd = forall b. ExpCmdG b -> PV (Located (b GhcPs))

    checkExp :: ExpCmd -> PV (LHsExpr GhcPs)
    checkCmd :: ExpCmd -> PV (LHsCmd GhcPs)
    checkExp f = f ExpG  -- interpret as an expression
    checkCmd f = f CmdG  -- interpret as a command

Consider the 'alts' production used to parse case-of alternatives:

  alts :: { Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
    : alts1     { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
    | ';' alts  { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }

We abstract over LHsExpr, and it becomes:

  alts :: { forall b. ExpCmdG b -> PV (Located ([AddEpAnn],[LMatch GhcPs (Located (b GhcPs))])) }
    : alts1
        { \tag -> $1 tag >>= \ $1 ->
                  return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
    | ';' alts
        { \tag -> $2 tag >>= \ $2 ->
                  return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }

Note that 'ExpCmdG' is a singleton type, the value is completely
determined by the type:

  when (b~HsExpr),  tag = ExpG
  when (b~HsCmd),   tag = CmdG

This is a clear indication that we can use a class to pass this value behind
the scenes:

  class    ExpCmdI b      where expCmdG :: ExpCmdG b
  instance ExpCmdI HsExpr where expCmdG = ExpG
  instance ExpCmdI HsCmd  where expCmdG = CmdG

And now the 'alts' production is simplified, as we no longer need to
thread 'tag' explicitly:

  alts :: { forall b. ExpCmdI b => PV (Located ([AddEpAnn],[LMatch GhcPs (Located (b GhcPs))])) }
    : alts1     { $1 >>= \ $1 ->
                  return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
    | ';' alts  { $2 >>= \ $2 ->
                  return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }

This encoding works well enough, but introduces an extra GADT unlike the
tagless final encoding, and there's no need for this complexity.

-}

{- Note [PatBuilder]
~~~~~~~~~~~~~~~~~~~~
Unlike HsExpr or HsCmd, the Pat type cannot accommodate all intermediate forms,
so we introduce the notion of a PatBuilder.

Consider a pattern like this:

  Con a b c

We parse arguments to "Con" one at a time in the  fexp aexp  parser production,
building the result with mkHsAppPV, so the intermediate forms are:

  1. Con
  2. Con a
  3. Con a b
  4. Con a b c

In 'HsExpr', we have 'HsApp', so the intermediate forms are represented like
this (pseudocode):

  1. "Con"
  2. HsApp "Con" "a"
  3. HsApp (HsApp "Con" "a") "b"
  3. HsApp (HsApp (HsApp "Con" "a") "b") "c"

Similarly, in 'HsCmd' we have 'HsCmdApp'. In 'Pat', however, what we have
instead is 'ConPatIn', which is very awkward to modify and thus unsuitable for
the intermediate forms.

We also need an intermediate representation to postpone disambiguation between
FunBind and PatBind. Consider:

  a `Con` b = ...
  a `fun` b = ...

How do we know that (a `Con` b) is a PatBind but (a `fun` b) is a FunBind? We
learn this by inspecting an intermediate representation in 'isFunLhs' and
seeing that 'Con' is a data constructor but 'f' is not. We need an intermediate
representation capable of representing both a FunBind and a PatBind, so Pat is
insufficient.

PatBuilder is an extension of Pat that is capable of representing intermediate
parsing results for patterns and function bindings:

  data PatBuilder p
    = PatBuilderPat (Pat p)
    | PatBuilderApp (LocatedA (PatBuilder p)) (LocatedA (PatBuilder p))
    | PatBuilderOpApp (LocatedA (PatBuilder p)) (LocatedA RdrName) (LocatedA (PatBuilder p))
    ...

It can represent any pattern via 'PatBuilderPat', but it also has a variety of
other constructors which were added by following a simple principle: we never
pattern match on the pattern stored inside 'PatBuilderPat'.
-}

---------------------------------------------------------------------------
-- Miscellaneous utilities

-- | Check if a fixity is valid. We support bypassing the usual bound checks
-- for some special operators.
checkPrecP
        :: Located (SourceText,Int)              -- ^ precedence
        -> Located (OrdList (LocatedN RdrName))  -- ^ operators
        -> P ()
checkPrecP :: Located (SourceText, Int)
-> Located (OrdList (GenLocated SrcSpanAnnN RdrName)) -> P ()
checkPrecP (L SrcSpan
l (SourceText
_,Int
i)) (L SrcSpan
_ OrdList (GenLocated SrcSpanAnnN RdrName)
ol)
 | Int
0 forall a. Ord a => a -> a -> Bool
<= Int
i, Int
i forall a. Ord a => a -> a -> Bool
<= Int
maxPrecedence = forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
 | forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all forall {l}. GenLocated l RdrName -> Bool
specialOp OrdList (GenLocated SrcSpanAnnN RdrName)
ol = forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
 | Bool
otherwise = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l (Int -> PsMessage
PsErrPrecedenceOutOfRange Int
i)
  where
    -- If you change this, consider updating Note [Fixity of (->)] in GHC/Types.hs
    specialOp :: GenLocated l RdrName -> Bool
specialOp GenLocated l RdrName
op = forall l e. GenLocated l e -> e
unLoc GenLocated l RdrName
op forall a. Eq a => a -> a -> Bool
== forall thing. NamedThing thing => thing -> RdrName
getRdrName TyCon
unrestrictedFunTyCon

mkRecConstrOrUpdate
        :: Bool
        -> LHsExpr GhcPs
        -> SrcSpan
        -> ([Fbind (HsExpr GhcPs)], Maybe SrcSpan)
        -> EpAnn [AddEpAnn]
        -> PV (HsExpr GhcPs)
mkRecConstrOrUpdate :: Bool
-> LHsExpr GhcPs
-> SrcSpan
-> ([Fbind (HsExpr GhcPs)], Maybe SrcSpan)
-> EpAnn [AddEpAnn]
-> PV (HsExpr GhcPs)
mkRecConstrOrUpdate Bool
_ (L SrcSpanAnnA
_ (HsVar XVar GhcPs
_ (L SrcSpanAnnN
l RdrName
c))) SrcSpan
_lrec ([Fbind (HsExpr GhcPs)]
fbinds,Maybe SrcSpan
dd) EpAnn [AddEpAnn]
anns
  | RdrName -> Bool
isRdrDataCon RdrName
c
  = do
      let ([GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
      (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
fs, [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
      (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
ps) = forall a b. [Either a b] -> ([a], [b])
partitionEithers [Fbind (HsExpr GhcPs)]
fbinds
      case [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
      (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
ps of
          GenLocated
  SrcSpanAnnA
  (HsFieldBind
     (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
     (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
p:[GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
      (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
_ -> forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA GenLocated
  SrcSpanAnnA
  (HsFieldBind
     (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
     (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
p) forall a b. (a -> b) -> a -> b
$
              PsMessage
PsErrOverloadedRecordDotInvalid
          [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
      (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return (GenLocated SrcSpanAnnN RdrName
-> HsRecordBinds GhcPs -> EpAnn [AddEpAnn] -> HsExpr GhcPs
mkRdrRecordCon (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
l RdrName
c) (forall (p :: Pass) arg.
[LocatedA (HsRecField (GhcPass p) arg)]
-> Maybe SrcSpan -> HsRecFields (GhcPass p) arg
mk_rec_fields [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
      (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
fs Maybe SrcSpan
dd) EpAnn [AddEpAnn]
anns)
mkRecConstrOrUpdate Bool
overloaded_update LHsExpr GhcPs
exp SrcSpan
_ ([Fbind (HsExpr GhcPs)]
fs,Maybe SrcSpan
dd) EpAnn [AddEpAnn]
anns
  | Just SrcSpan
dd_loc <- Maybe SrcSpan
dd = forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
dd_loc forall a b. (a -> b) -> a -> b
$
                                          PsMessage
PsErrDotsInRecordUpdate
  | Bool
otherwise = Bool
-> LHsExpr GhcPs
-> [Fbind (HsExpr GhcPs)]
-> EpAnn [AddEpAnn]
-> PV (HsExpr GhcPs)
mkRdrRecordUpd Bool
overloaded_update LHsExpr GhcPs
exp [Fbind (HsExpr GhcPs)]
fs EpAnn [AddEpAnn]
anns

mkRdrRecordUpd :: Bool -> LHsExpr GhcPs -> [Fbind (HsExpr GhcPs)] -> EpAnn [AddEpAnn] -> PV (HsExpr GhcPs)
mkRdrRecordUpd :: Bool
-> LHsExpr GhcPs
-> [Fbind (HsExpr GhcPs)]
-> EpAnn [AddEpAnn]
-> PV (HsExpr GhcPs)
mkRdrRecordUpd Bool
overloaded_on exp :: LHsExpr GhcPs
exp@(L SrcSpanAnnA
loc HsExpr GhcPs
_) [Fbind (HsExpr GhcPs)]
fbinds EpAnn [AddEpAnn]
anns = do
  -- We do not need to know if OverloadedRecordDot is in effect. We do
  -- however need to know if OverloadedRecordUpdate (passed in
  -- overloaded_on) is in effect because it affects the Left/Right nature
  -- of the RecordUpd value we calculate.
  let ([GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
      (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
fs, [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
      (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
ps) = forall a b. [Either a b] -> ([a], [b])
partitionEithers [Fbind (HsExpr GhcPs)]
fbinds
      fs' :: [LHsRecUpdField GhcPs]
      fs' :: [LHsRecUpdField GhcPs]
fs' = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap HsRecField GhcPs (LHsExpr GhcPs) -> HsRecUpdField GhcPs
mk_rec_upd_field) [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
      (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
fs
  case Bool
overloaded_on of
    Bool
False | Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
      (GenLocated SrcSpanAnnA (HsExpr GhcPs)))]
ps ->
      -- A '.' was found in an update and OverloadedRecordUpdate isn't on.
      forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) PsMessage
PsErrOverloadedRecordUpdateNotEnabled
    Bool
False ->
      -- This is just a regular record update.
      forall (m :: * -> *) a. Monad m => a -> m a
return RecordUpd {
        rupd_ext :: XRecordUpd GhcPs
rupd_ext = EpAnn [AddEpAnn]
anns
      , rupd_expr :: LHsExpr GhcPs
rupd_expr = LHsExpr GhcPs
exp
      , rupd_flds :: Either [LHsRecUpdField GhcPs] [LHsRecProj GhcPs (LHsExpr GhcPs)]
rupd_flds = forall a b. a -> Either a b
Left [LHsRecUpdField GhcPs]
fs' }
    Bool
True -> do
      let qualifiedFields :: [GenLocated (SrcAnn NoEpAnns) (AmbiguousFieldOcc GhcPs)]
qualifiedFields =
            [ forall l e. l -> e -> GenLocated l e
L SrcAnn NoEpAnns
l AmbiguousFieldOcc GhcPs
lbl | L SrcSpanAnnA
_ (HsFieldBind XHsFieldBind
  (GenLocated (SrcAnn NoEpAnns) (AmbiguousFieldOcc GhcPs))
_ (L SrcAnn NoEpAnns
l AmbiguousFieldOcc GhcPs
lbl) GenLocated SrcSpanAnnA (HsExpr GhcPs)
_ Bool
_) <- [LHsRecUpdField GhcPs]
fs'
                      , RdrName -> Bool
isQual forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (p :: Pass). AmbiguousFieldOcc (GhcPass p) -> RdrName
rdrNameAmbiguousFieldOcc forall a b. (a -> b) -> a -> b
$ AmbiguousFieldOcc GhcPs
lbl
            ]
      case [GenLocated (SrcAnn NoEpAnns) (AmbiguousFieldOcc GhcPs)]
qualifiedFields of
          GenLocated (SrcAnn NoEpAnns) (AmbiguousFieldOcc GhcPs)
qf:[GenLocated (SrcAnn NoEpAnns) (AmbiguousFieldOcc GhcPs)]
_ -> forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA GenLocated (SrcAnn NoEpAnns) (AmbiguousFieldOcc GhcPs)
qf) forall a b. (a -> b) -> a -> b
$
            PsMessage
PsErrOverloadedRecordUpdateNoQualifiedFields
          [GenLocated (SrcAnn NoEpAnns) (AmbiguousFieldOcc GhcPs)]
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return RecordUpd -- This is a RecordDotSyntax update.
             { rupd_ext :: XRecordUpd GhcPs
rupd_ext = EpAnn [AddEpAnn]
anns
             , rupd_expr :: LHsExpr GhcPs
rupd_expr = LHsExpr GhcPs
exp
             , rupd_flds :: Either [LHsRecUpdField GhcPs] [LHsRecProj GhcPs (LHsExpr GhcPs)]
rupd_flds = forall a b. b -> Either a b
Right ([Fbind (HsExpr GhcPs)] -> [LHsRecProj GhcPs (LHsExpr GhcPs)]
toProjUpdates [Fbind (HsExpr GhcPs)]
fbinds) }
  where
    toProjUpdates :: [Fbind (HsExpr GhcPs)] -> [LHsRecUpdProj GhcPs]
    toProjUpdates :: [Fbind (HsExpr GhcPs)] -> [LHsRecProj GhcPs (LHsExpr GhcPs)]
toProjUpdates = forall a b. (a -> b) -> [a] -> [b]
map (\case { Right GenLocated
  SrcSpanAnnA
  (HsFieldBind
     (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
     (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
p -> GenLocated
  SrcSpanAnnA
  (HsFieldBind
     (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
     (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
p; Left GenLocated
  SrcSpanAnnA
  (HsFieldBind
     (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
     (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
f -> LHsRecField GhcPs (LHsExpr GhcPs)
-> LHsRecProj GhcPs (LHsExpr GhcPs)
recFieldToProjUpdate GenLocated
  SrcSpanAnnA
  (HsFieldBind
     (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
     (GenLocated SrcSpanAnnA (HsExpr GhcPs)))
f })

    -- Convert a top-level field update like {foo=2} or {bar} (punned)
    -- to a projection update.
    recFieldToProjUpdate :: LHsRecField GhcPs  (LHsExpr GhcPs) -> LHsRecUpdProj GhcPs
    recFieldToProjUpdate :: LHsRecField GhcPs (LHsExpr GhcPs)
-> LHsRecProj GhcPs (LHsExpr GhcPs)
recFieldToProjUpdate (L SrcSpanAnnA
l (HsFieldBind XHsFieldBind (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
anns (L SrcAnn NoEpAnns
_ (FieldOcc XCFieldOcc GhcPs
_ (L SrcSpanAnnN
loc RdrName
rdr))) GenLocated SrcSpanAnnA (HsExpr GhcPs)
arg Bool
pun)) =
        -- The idea here is to convert the label to a singleton [FastString].
        let f :: FastString
f = OccName -> FastString
occNameFS forall b c a. (b -> c) -> (a -> b) -> a -> c
. RdrName -> OccName
rdrNameOcc forall a b. (a -> b) -> a -> b
$ RdrName
rdr
            fl :: DotFieldOcc GhcPs
fl = forall p.
XCDotFieldOcc p -> XRec p FieldLabelString -> DotFieldOcc p
DotFieldOcc forall a. EpAnn a
noAnn (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
loc (FastString -> FieldLabelString
FieldLabelString FastString
f))
            lf :: SrcSpan
lf = forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnN
loc
        in SrcSpanAnnA
-> Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
-> LHsExpr GhcPs
-> Bool
-> EpAnn [AddEpAnn]
-> LHsRecProj GhcPs (LHsExpr GhcPs)
mkRdrProjUpdate SrcSpanAnnA
l (forall l e. l -> e -> GenLocated l e
L SrcSpan
lf [forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
l2l SrcSpanAnnN
loc) DotFieldOcc GhcPs
fl]) (FastString -> LHsExpr GhcPs
punnedVar FastString
f) Bool
pun XHsFieldBind (GenLocated (SrcAnn NoEpAnns) (FieldOcc GhcPs))
anns
        where
          -- If punning, compute HsVar "f" otherwise just arg. This
          -- has the effect that sentinel HsVar "pun-rhs" is replaced
          -- by HsVar "f" here, before the update is written to a
          -- setField expressions.
          punnedVar :: FastString -> LHsExpr GhcPs
          punnedVar :: FastString -> LHsExpr GhcPs
punnedVar FastString
f  = if Bool -> Bool
not Bool
pun then GenLocated SrcSpanAnnA (HsExpr GhcPs)
arg else forall a an. a -> LocatedAn an a
noLocA forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall p. XVar p -> LIdP p -> HsExpr p
HsVar NoExtField
noExtField forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a an. a -> LocatedAn an a
noLocA forall b c a. (b -> c) -> (a -> b) -> a -> c
. OccName -> RdrName
mkRdrUnqual forall b c a. (b -> c) -> (a -> b) -> a -> c
. FastString -> OccName
mkVarOccFS forall a b. (a -> b) -> a -> b
$ FastString
f

mkRdrRecordCon
  :: LocatedN RdrName -> HsRecordBinds GhcPs -> EpAnn [AddEpAnn] -> HsExpr GhcPs
mkRdrRecordCon :: GenLocated SrcSpanAnnN RdrName
-> HsRecordBinds GhcPs -> EpAnn [AddEpAnn] -> HsExpr GhcPs
mkRdrRecordCon GenLocated SrcSpanAnnN RdrName
con HsRecordBinds GhcPs
flds EpAnn [AddEpAnn]
anns
  = RecordCon { rcon_ext :: XRecordCon GhcPs
rcon_ext = EpAnn [AddEpAnn]
anns, rcon_con :: XRec GhcPs (ConLikeP GhcPs)
rcon_con = GenLocated SrcSpanAnnN RdrName
con, rcon_flds :: HsRecordBinds GhcPs
rcon_flds = HsRecordBinds GhcPs
flds }

mk_rec_fields :: [LocatedA (HsRecField (GhcPass p) arg)] -> Maybe SrcSpan -> HsRecFields (GhcPass p) arg
mk_rec_fields :: forall (p :: Pass) arg.
[LocatedA (HsRecField (GhcPass p) arg)]
-> Maybe SrcSpan -> HsRecFields (GhcPass p) arg
mk_rec_fields [LocatedA (HsRecField (GhcPass p) arg)]
fs Maybe SrcSpan
Nothing = HsRecFields { rec_flds :: [LHsRecField (GhcPass p) arg]
rec_flds = [LocatedA (HsRecField (GhcPass p) arg)]
fs, rec_dotdot :: Maybe (XRec (GhcPass p) RecFieldsDotDot)
rec_dotdot = forall a. Maybe a
Nothing }
mk_rec_fields [LocatedA (HsRecField (GhcPass p) arg)]
fs (Just SrcSpan
s)  = HsRecFields { rec_flds :: [LHsRecField (GhcPass p) arg]
rec_flds = [LocatedA (HsRecField (GhcPass p) arg)]
fs
                                     , rec_dotdot :: Maybe (XRec (GhcPass p) RecFieldsDotDot)
rec_dotdot = forall a. a -> Maybe a
Just (forall l e. l -> e -> GenLocated l e
L SrcSpan
s (Int -> RecFieldsDotDot
RecFieldsDotDot forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. Foldable t => t a -> Int
length [LocatedA (HsRecField (GhcPass p) arg)]
fs)) }

mk_rec_upd_field :: HsRecField GhcPs (LHsExpr GhcPs) -> HsRecUpdField GhcPs
mk_rec_upd_field :: HsRecField GhcPs (LHsExpr GhcPs) -> HsRecUpdField GhcPs
mk_rec_upd_field (HsFieldBind XHsFieldBind (LFieldOcc GhcPs)
noAnn (L SrcAnn NoEpAnns
loc (FieldOcc XCFieldOcc GhcPs
_ XRec GhcPs RdrName
rdr)) LHsExpr GhcPs
arg Bool
pun)
  = forall lhs rhs.
XHsFieldBind lhs -> lhs -> rhs -> Bool -> HsFieldBind lhs rhs
HsFieldBind XHsFieldBind (LFieldOcc GhcPs)
noAnn (forall l e. l -> e -> GenLocated l e
L SrcAnn NoEpAnns
loc (forall pass.
XUnambiguous pass -> XRec pass RdrName -> AmbiguousFieldOcc pass
Unambiguous NoExtField
noExtField XRec GhcPs RdrName
rdr)) LHsExpr GhcPs
arg Bool
pun

mkInlinePragma :: SourceText -> (InlineSpec, RuleMatchInfo) -> Maybe Activation
               -> InlinePragma
-- The (Maybe Activation) is because the user can omit
-- the activation spec (and usually does)
mkInlinePragma :: SourceText
-> (InlineSpec, RuleMatchInfo) -> Maybe Activation -> InlinePragma
mkInlinePragma SourceText
src (InlineSpec
inl, RuleMatchInfo
match_info) Maybe Activation
mb_act
  = InlinePragma { inl_src :: SourceText
inl_src = SourceText
src -- Note [Pragma source text] in GHC.Types.SourceText
                 , inl_inline :: InlineSpec
inl_inline = InlineSpec
inl
                 , inl_sat :: Maybe Int
inl_sat    = forall a. Maybe a
Nothing
                 , inl_act :: Activation
inl_act    = Activation
act
                 , inl_rule :: RuleMatchInfo
inl_rule   = RuleMatchInfo
match_info }
  where
    act :: Activation
act = case Maybe Activation
mb_act of
            Just Activation
act -> Activation
act
            Maybe Activation
Nothing  -> -- No phase specified
                        case InlineSpec
inl of
                          NoInline SourceText
_  -> Activation
NeverActive
                          Opaque SourceText
_    -> Activation
NeverActive
                          InlineSpec
_other      -> Activation
AlwaysActive

mkOpaquePragma :: SourceText -> InlinePragma
mkOpaquePragma :: SourceText -> InlinePragma
mkOpaquePragma SourceText
src
  = InlinePragma { inl_src :: SourceText
inl_src    = SourceText
src
                 , inl_inline :: InlineSpec
inl_inline = SourceText -> InlineSpec
Opaque SourceText
src
                 , inl_sat :: Maybe Int
inl_sat    = forall a. Maybe a
Nothing
                 -- By marking the OPAQUE pragma NeverActive we stop
                 -- (constructor) specialisation on OPAQUE things.
                 --
                 -- See Note [OPAQUE pragma]
                 , inl_act :: Activation
inl_act    = Activation
NeverActive
                 , inl_rule :: RuleMatchInfo
inl_rule   = RuleMatchInfo
FunLike
                 }

checkNewOrData :: SrcSpan -> RdrName -> Bool -> NewOrData -> [LConDecl GhcPs]
               -> P (DataDefnCons (LConDecl GhcPs))
checkNewOrData :: SrcSpan
-> RdrName
-> Bool
-> NewOrData
-> [LConDecl GhcPs]
-> P (DataDefnCons (LConDecl GhcPs))
checkNewOrData SrcSpan
span RdrName
name Bool
is_type_data = forall a b c. ((a, b) -> c) -> a -> b -> c
curry forall a b. (a -> b) -> a -> b
$ \ case
    (NewOrData
NewType, [LConDecl GhcPs
a]) -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a. a -> DataDefnCons a
NewTypeCon LConDecl GhcPs
a
    (NewOrData
DataType, [LConDecl GhcPs]
as) -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a. Bool -> [a] -> DataDefnCons a
DataTypeCons Bool
is_type_data ([GenLocated SrcSpanAnnA (ConDecl GhcPs)]
-> [GenLocated SrcSpanAnnA (ConDecl GhcPs)]
handle_type_data [LConDecl GhcPs]
as)
    (NewOrData
NewType, [LConDecl GhcPs]
as) -> forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
span forall a b. (a -> b) -> a -> b
$ RdrName -> Int -> PsMessage
PsErrMultipleConForNewtype RdrName
name (forall (t :: * -> *) a. Foldable t => t a -> Int
length [LConDecl GhcPs]
as)
  where
    -- In a "type data" declaration, the constructors are in the type/class
    -- namespace rather than the data constructor namespace.
    -- See Note [Type data declarations] in GHC.Rename.Module.
    handle_type_data :: [GenLocated SrcSpanAnnA (ConDecl GhcPs)]
-> [GenLocated SrcSpanAnnA (ConDecl GhcPs)]
handle_type_data
      | Bool
is_type_data = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {pass} {f :: * -> *}.
(XRec pass (IdP pass) ~ f RdrName, Functor f) =>
ConDecl pass -> ConDecl pass
promote_constructor)
      | Bool
otherwise = forall a. a -> a
id

    promote_constructor :: ConDecl pass -> ConDecl pass
promote_constructor (dc :: ConDecl pass
dc@ConDeclGADT { con_names :: forall pass. ConDecl pass -> NonEmpty (LIdP pass)
con_names = NonEmpty (XRec pass (IdP pass))
cons })
      = ConDecl pass
dc { con_names :: NonEmpty (XRec pass (IdP pass))
con_names = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap RdrName -> RdrName
promote_name) NonEmpty (XRec pass (IdP pass))
cons }
    promote_constructor (dc :: ConDecl pass
dc@ConDeclH98 { con_name :: forall pass. ConDecl pass -> LIdP pass
con_name = XRec pass (IdP pass)
con })
      = ConDecl pass
dc { con_name :: XRec pass (IdP pass)
con_name = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap RdrName -> RdrName
promote_name XRec pass (IdP pass)
con }
    promote_constructor ConDecl pass
dc = ConDecl pass
dc

    promote_name :: RdrName -> RdrName
promote_name RdrName
name = forall a. a -> Maybe a -> a
fromMaybe RdrName
name (RdrName -> Maybe RdrName
promoteRdrName RdrName
name)

-----------------------------------------------------------------------------
-- utilities for foreign declarations

-- construct a foreign import declaration
--
mkImport :: Located CCallConv
         -> Located Safety
         -> (Located StringLiteral, LocatedN RdrName, LHsSigType GhcPs)
         -> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
mkImport :: Located CCallConv
-> Located Safety
-> (Located StringLiteral, GenLocated SrcSpanAnnN RdrName,
    LHsSigType GhcPs)
-> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
mkImport Located CCallConv
cconv Located Safety
safety (L SrcSpan
loc (StringLiteral SourceText
esrc FastString
entity Maybe RealSrcSpan
_), GenLocated SrcSpanAnnN RdrName
v, LHsSigType GhcPs
ty) =
    case forall l e. GenLocated l e -> e
unLoc Located CCallConv
cconv of
      CCallConv
CCallConv          -> ForeignImport GhcPs -> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
returnSpec forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< P (ForeignImport GhcPs)
mkCImport
      CCallConv
CApiConv           -> do
        ForeignImport GhcPs
imp <- P (ForeignImport GhcPs)
mkCImport
        if forall {pass}. ForeignImport pass -> Bool
isCWrapperImport ForeignImport GhcPs
imp
          then forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc PsMessage
PsErrInvalidCApiImport
          else ForeignImport GhcPs -> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
returnSpec ForeignImport GhcPs
imp
      CCallConv
StdCallConv        -> ForeignImport GhcPs -> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
returnSpec forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< P (ForeignImport GhcPs)
mkCImport
      CCallConv
PrimCallConv       -> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
mkOtherImport
      CCallConv
JavaScriptCallConv -> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
mkOtherImport
  where
    -- Parse a C-like entity string of the following form:
    --   "[static] [chname] [&] [cid]" | "dynamic" | "wrapper"
    -- If 'cid' is missing, the function name 'v' is used instead as symbol
    -- name (cf section 8.5.1 in Haskell 2010 report).
    mkCImport :: P (ForeignImport GhcPs)
mkCImport = do
      let e :: String
e = FastString -> String
unpackFS FastString
entity
      case forall (p :: Pass).
Located CCallConv
-> Located Safety
-> FastString
-> String
-> Located SourceText
-> Maybe (ForeignImport (GhcPass p))
parseCImport Located CCallConv
cconv Located Safety
safety (RdrName -> FastString
mkExtName (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
v)) String
e (forall l e. l -> e -> GenLocated l e
L SrcSpan
loc SourceText
esrc) of
        Maybe (ForeignImport GhcPs)
Nothing         -> forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$
                             PsMessage
PsErrMalformedEntityString
        Just ForeignImport GhcPs
importSpec -> forall (m :: * -> *) a. Monad m => a -> m a
return ForeignImport GhcPs
importSpec

    isCWrapperImport :: ForeignImport pass -> Bool
isCWrapperImport (CImport XCImport pass
_ XRec pass CCallConv
_ XRec pass Safety
_ Maybe Header
_ CImportSpec
CWrapper) = Bool
True
    isCWrapperImport ForeignImport pass
_ = Bool
False

    -- currently, all the other import conventions only support a symbol name in
    -- the entity string. If it is missing, we use the function name instead.
    mkOtherImport :: P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
mkOtherImport = ForeignImport GhcPs -> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
returnSpec ForeignImport GhcPs
importSpec
      where
        entity' :: FastString
entity'    = if FastString -> Bool
nullFS FastString
entity
                        then RdrName -> FastString
mkExtName (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
v)
                        else FastString
entity
        funcTarget :: CImportSpec
funcTarget = CCallTarget -> CImportSpec
CFunction (SourceText -> FastString -> Maybe Unit -> Bool -> CCallTarget
StaticTarget SourceText
esrc FastString
entity' forall a. Maybe a
Nothing Bool
True)
        importSpec :: ForeignImport GhcPs
importSpec = forall pass.
XCImport pass
-> XRec pass CCallConv
-> XRec pass Safety
-> Maybe Header
-> CImportSpec
-> ForeignImport pass
CImport (forall l e. l -> e -> GenLocated l e
L SrcSpan
loc SourceText
esrc) Located CCallConv
cconv Located Safety
safety forall a. Maybe a
Nothing CImportSpec
funcTarget

    returnSpec :: ForeignImport GhcPs -> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
returnSpec ForeignImport GhcPs
spec = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ \EpAnn [AddEpAnn]
ann -> forall p. XForD p -> ForeignDecl p -> HsDecl p
ForD NoExtField
noExtField forall a b. (a -> b) -> a -> b
$ ForeignImport
          { fd_i_ext :: XForeignImport GhcPs
fd_i_ext  = EpAnn [AddEpAnn]
ann
          , fd_name :: XRec GhcPs (IdP GhcPs)
fd_name   = GenLocated SrcSpanAnnN RdrName
v
          , fd_sig_ty :: LHsSigType GhcPs
fd_sig_ty = LHsSigType GhcPs
ty
          , fd_fi :: ForeignImport GhcPs
fd_fi     = ForeignImport GhcPs
spec
          }



-- the string "foo" is ambiguous: either a header or a C identifier.  The
-- C identifier case comes first in the alternatives below, so we pick
-- that one.
parseCImport :: Located CCallConv -> Located Safety -> FastString -> String
             -> Located SourceText
             -> Maybe (ForeignImport (GhcPass p))
parseCImport :: forall (p :: Pass).
Located CCallConv
-> Located Safety
-> FastString
-> String
-> Located SourceText
-> Maybe (ForeignImport (GhcPass p))
parseCImport Located CCallConv
cconv Located Safety
safety FastString
nm String
str Located SourceText
sourceText =
 forall a. [a] -> Maybe a
listToMaybe forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> [a] -> [a]
filter (forall (t :: * -> *) a. Foldable t => t a -> Bool
nullforall b c a. (b -> c) -> (a -> b) -> a -> c
.forall a b. (a, b) -> b
snd) forall a b. (a -> b) -> a -> b
$
     forall a. ReadP a -> ReadS a
readP_to_S ReadP (ForeignImport (GhcPass p))
parse String
str
 where
   parse :: ReadP (ForeignImport (GhcPass p))
parse = do
       ReadP ()
skipSpaces
       ForeignImport (GhcPass p)
r <- forall a. [ReadP a] -> ReadP a
choice [
          String -> ReadP String
string String
"dynamic" forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe Header -> CImportSpec -> ForeignImport (GhcPass p)
mk forall a. Maybe a
Nothing (CCallTarget -> CImportSpec
CFunction CCallTarget
DynamicTarget)),
          String -> ReadP String
string String
"wrapper" forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe Header -> CImportSpec -> ForeignImport (GhcPass p)
mk forall a. Maybe a
Nothing CImportSpec
CWrapper),
          do forall a. ReadP a -> ReadP ()
optional (String -> ReadP ()
token String
"static" forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ReadP ()
skipSpaces)
             ((Maybe Header -> CImportSpec -> ForeignImport (GhcPass p)
mk forall a. Maybe a
Nothing forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> FastString -> ReadP CImportSpec
cimp FastString
nm) forall a. ReadP a -> ReadP a -> ReadP a
+++
              (do String
h <- (Char -> Bool) -> ReadP String
munch1 Char -> Bool
hdr_char
                  ReadP ()
skipSpaces
                  Maybe Header -> CImportSpec -> ForeignImport (GhcPass p)
mk (forall a. a -> Maybe a
Just (SourceText -> FastString -> Header
Header (String -> SourceText
SourceText String
h) (String -> FastString
mkFastString String
h)))
                      forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> FastString -> ReadP CImportSpec
cimp FastString
nm))
         ]
       ReadP ()
skipSpaces
       forall (m :: * -> *) a. Monad m => a -> m a
return ForeignImport (GhcPass p)
r

   token :: String -> ReadP ()
token String
str = do String
_ <- String -> ReadP String
string String
str
                  String
toks <- ReadP String
look
                  case String
toks of
                      Char
c : String
_
                       | Char -> Bool
id_char Char
c -> forall a. ReadP a
pfail
                      String
_            -> forall (m :: * -> *) a. Monad m => a -> m a
return ()

   mk :: Maybe Header -> CImportSpec -> ForeignImport (GhcPass p)
mk Maybe Header
h CImportSpec
n = forall pass.
XCImport pass
-> XRec pass CCallConv
-> XRec pass Safety
-> Maybe Header
-> CImportSpec
-> ForeignImport pass
CImport Located SourceText
sourceText Located CCallConv
cconv Located Safety
safety Maybe Header
h CImportSpec
n

   hdr_char :: Char -> Bool
hdr_char Char
c = Bool -> Bool
not (Char -> Bool
isSpace Char
c)
   -- header files are filenames, which can contain
   -- pretty much any char (depending on the platform),
   -- so just accept any non-space character
   id_first_char :: Char -> Bool
id_first_char Char
c = Char -> Bool
isAlpha    Char
c Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'_'
   id_char :: Char -> Bool
id_char       Char
c = Char -> Bool
isAlphaNum Char
c Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'_'

   cimp :: FastString -> ReadP CImportSpec
cimp FastString
nm = (Char -> ReadP Char
ReadP.char Char
'&' forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ReadP ()
skipSpaces forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> FastString -> CImportSpec
CLabel forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReadP FastString
cid)
             forall a. ReadP a -> ReadP a -> ReadP a
+++ (do Bool
isFun <- case forall l e. GenLocated l e -> e
unLoc Located CCallConv
cconv of
                               CCallConv
CApiConv ->
                                  forall a. a -> ReadP a -> ReadP a
option Bool
True
                                         (do String -> ReadP ()
token String
"value"
                                             ReadP ()
skipSpaces
                                             forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False)
                               CCallConv
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
                     FastString
cid' <- ReadP FastString
cid
                     forall (m :: * -> *) a. Monad m => a -> m a
return (CCallTarget -> CImportSpec
CFunction (SourceText -> FastString -> Maybe Unit -> Bool -> CCallTarget
StaticTarget SourceText
NoSourceText FastString
cid'
                                        forall a. Maybe a
Nothing Bool
isFun)))
          where
            cid :: ReadP FastString
cid = forall (m :: * -> *) a. Monad m => a -> m a
return FastString
nm forall a. ReadP a -> ReadP a -> ReadP a
+++
                  (do Char
c  <- (Char -> Bool) -> ReadP Char
satisfy Char -> Bool
id_first_char
                      String
cs <-  forall a. ReadP a -> ReadP [a]
many ((Char -> Bool) -> ReadP Char
satisfy Char -> Bool
id_char)
                      forall (m :: * -> *) a. Monad m => a -> m a
return (String -> FastString
mkFastString (Char
cforall a. a -> [a] -> [a]
:String
cs)))


-- construct a foreign export declaration
--
mkExport :: Located CCallConv
         -> (Located StringLiteral, LocatedN RdrName, LHsSigType GhcPs)
         -> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
mkExport :: Located CCallConv
-> (Located StringLiteral, GenLocated SrcSpanAnnN RdrName,
    LHsSigType GhcPs)
-> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
mkExport (L SrcSpan
lc CCallConv
cconv) (L SrcSpan
le (StringLiteral SourceText
esrc FastString
entity Maybe RealSrcSpan
_), GenLocated SrcSpanAnnN RdrName
v, LHsSigType GhcPs
ty)
 = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ \EpAnn [AddEpAnn]
ann -> forall p. XForD p -> ForeignDecl p -> HsDecl p
ForD NoExtField
noExtField forall a b. (a -> b) -> a -> b
$
   ForeignExport { fd_e_ext :: XForeignExport GhcPs
fd_e_ext = EpAnn [AddEpAnn]
ann, fd_name :: XRec GhcPs (IdP GhcPs)
fd_name = GenLocated SrcSpanAnnN RdrName
v, fd_sig_ty :: LHsSigType GhcPs
fd_sig_ty = LHsSigType GhcPs
ty
                 , fd_fe :: ForeignExport GhcPs
fd_fe = forall pass.
XCExport pass -> XRec pass CExportSpec -> ForeignExport pass
CExport (forall l e. l -> e -> GenLocated l e
L SrcSpan
le SourceText
esrc) (forall l e. l -> e -> GenLocated l e
L SrcSpan
lc (SourceText -> FastString -> CCallConv -> CExportSpec
CExportStatic SourceText
esrc FastString
entity' CCallConv
cconv)) }
  where
    entity' :: FastString
entity' | FastString -> Bool
nullFS FastString
entity = RdrName -> FastString
mkExtName (forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
v)
            | Bool
otherwise     = FastString
entity

-- Supplying the ext_name in a foreign decl is optional; if it
-- isn't there, the Haskell name is assumed. Note that no transformation
-- of the Haskell name is then performed, so if you foreign export (++),
-- it's external name will be "++". Too bad; it's important because we don't
-- want z-encoding (e.g. names with z's in them shouldn't be doubled)
--
mkExtName :: RdrName -> CLabelString
mkExtName :: RdrName -> FastString
mkExtName RdrName
rdrNm = OccName -> FastString
occNameFS (RdrName -> OccName
rdrNameOcc RdrName
rdrNm)

--------------------------------------------------------------------------------
-- Help with module system imports/exports

data ImpExpSubSpec = ImpExpAbs
                   | ImpExpAll
                   | ImpExpList [LocatedA ImpExpQcSpec]
                   | ImpExpAllWith [LocatedA ImpExpQcSpec]

data ImpExpQcSpec = ImpExpQcName (LocatedN RdrName)
                  | ImpExpQcType EpaLocation (LocatedN RdrName)
                  | ImpExpQcWildcard

mkModuleImpExp :: [AddEpAnn] -> LocatedA ImpExpQcSpec -> ImpExpSubSpec -> P (IE GhcPs)
mkModuleImpExp :: [AddEpAnn]
-> LocatedA ImpExpQcSpec -> ImpExpSubSpec -> P (IE GhcPs)
mkModuleImpExp [AddEpAnn]
anns (L SrcSpanAnnA
l ImpExpQcSpec
specname) ImpExpSubSpec
subs = do
  EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) -- AZ: IEVar can discard comments
  let ann :: EpAnn [AddEpAnn]
ann = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) [AddEpAnn]
anns EpAnnComments
cs
  case ImpExpSubSpec
subs of
    ImpExpSubSpec
ImpExpAbs
      | NameSpace -> Bool
isVarNameSpace (RdrName -> NameSpace
rdrNameSpace RdrName
name)
                       -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall pass. XIEVar pass -> LIEWrappedName pass -> IE pass
IEVar NoExtField
noExtField (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (ImpExpQcSpec -> IEWrappedName GhcPs
ieNameFromSpec ImpExpQcSpec
specname))
      | Bool
otherwise      -> forall pass. XIEThingAbs pass -> LIEWrappedName pass -> IE pass
IEThingAbs EpAnn [AddEpAnn]
ann forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> P (IEWrappedName GhcPs)
nameT
    ImpExpSubSpec
ImpExpAll          -> forall pass. XIEThingAll pass -> LIEWrappedName pass -> IE pass
IEThingAll EpAnn [AddEpAnn]
ann forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> P (IEWrappedName GhcPs)
nameT
    ImpExpList [LocatedA ImpExpQcSpec]
xs      ->
      (\IEWrappedName GhcPs
newName -> forall pass.
XIEThingWith pass
-> LIEWrappedName pass
-> IEWildcard
-> [LIEWrappedName pass]
-> IE pass
IEThingWith EpAnn [AddEpAnn]
ann (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l IEWrappedName GhcPs
newName)
        IEWildcard
NoIEWildcard ([LocatedA ImpExpQcSpec]
-> [GenLocated SrcSpanAnnA (IEWrappedName GhcPs)]
wrapped [LocatedA ImpExpQcSpec]
xs)) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> P (IEWrappedName GhcPs)
nameT
    ImpExpAllWith [LocatedA ImpExpQcSpec]
xs                       ->
      do Bool
allowed <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
PatternSynonymsBit
         if Bool
allowed
          then
            let withs :: [ImpExpQcSpec]
withs = forall a b. (a -> b) -> [a] -> [b]
map forall l e. GenLocated l e -> e
unLoc [LocatedA ImpExpQcSpec]
xs
                pos :: IEWildcard
pos   = forall b a. b -> (a -> b) -> Maybe a -> b
maybe IEWildcard
NoIEWildcard Int -> IEWildcard
IEWildcard
                          (forall a. (a -> Bool) -> [a] -> Maybe Int
findIndex ImpExpQcSpec -> Bool
isImpExpQcWildcard [ImpExpQcSpec]
withs)
                ies :: [LocatedA (IEWrappedName GhcPs)]
                ies :: [GenLocated SrcSpanAnnA (IEWrappedName GhcPs)]
ies   = [LocatedA ImpExpQcSpec]
-> [GenLocated SrcSpanAnnA (IEWrappedName GhcPs)]
wrapped forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. ImpExpQcSpec -> Bool
isImpExpQcWildcard forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall l e. GenLocated l e -> e
unLoc) [LocatedA ImpExpQcSpec]
xs
            in (\IEWrappedName GhcPs
newName
                        -> forall pass.
XIEThingWith pass
-> LIEWrappedName pass
-> IEWildcard
-> [LIEWrappedName pass]
-> IE pass
IEThingWith EpAnn [AddEpAnn]
ann (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l IEWrappedName GhcPs
newName) IEWildcard
pos [GenLocated SrcSpanAnnA (IEWrappedName GhcPs)]
ies)
               forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> P (IEWrappedName GhcPs)
nameT
          else forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall a b. (a -> b) -> a -> b
$
                 PsMessage
PsErrIllegalPatSynExport
  where
    name :: RdrName
name = ImpExpQcSpec -> RdrName
ieNameVal ImpExpQcSpec
specname
    nameT :: P (IEWrappedName GhcPs)
nameT =
      if NameSpace -> Bool
isVarNameSpace (RdrName -> NameSpace
rdrNameSpace RdrName
name)
        then forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall a b. (a -> b) -> a -> b
$
               (RdrName -> PsMessage
PsErrVarForTyCon RdrName
name)
        else forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ ImpExpQcSpec -> IEWrappedName GhcPs
ieNameFromSpec ImpExpQcSpec
specname

    ieNameVal :: ImpExpQcSpec -> RdrName
ieNameVal (ImpExpQcName GenLocated SrcSpanAnnN RdrName
ln)   = forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
ln
    ieNameVal (ImpExpQcType EpaLocation
_ GenLocated SrcSpanAnnN RdrName
ln) = forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpanAnnN RdrName
ln
    ieNameVal (ImpExpQcSpec
ImpExpQcWildcard)  = forall a. HasCallStack => String -> a
panic String
"ieNameVal got wildcard"

    ieNameFromSpec :: ImpExpQcSpec -> IEWrappedName GhcPs
    ieNameFromSpec :: ImpExpQcSpec -> IEWrappedName GhcPs
ieNameFromSpec (ImpExpQcName   (L SrcSpanAnnN
l RdrName
n)) = forall p. XIEName p -> LIdP p -> IEWrappedName p
IEName NoExtField
noExtField (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
l RdrName
n)
    ieNameFromSpec (ImpExpQcType EpaLocation
r (L SrcSpanAnnN
l RdrName
n)) = forall p. XIEType p -> LIdP p -> IEWrappedName p
IEType EpaLocation
r (forall l e. l -> e -> GenLocated l e
L SrcSpanAnnN
l RdrName
n)
    ieNameFromSpec (ImpExpQcSpec
ImpExpQcWildcard)  = forall a. HasCallStack => String -> a
panic String
"ieName got wildcard"

    wrapped :: [LocatedA ImpExpQcSpec]
-> [GenLocated SrcSpanAnnA (IEWrappedName GhcPs)]
wrapped = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ImpExpQcSpec -> IEWrappedName GhcPs
ieNameFromSpec)

mkTypeImpExp :: LocatedN RdrName   -- TcCls or Var name space
             -> P (LocatedN RdrName)
mkTypeImpExp :: GenLocated SrcSpanAnnN RdrName
-> P (GenLocated SrcSpanAnnN RdrName)
mkTypeImpExp GenLocated SrcSpanAnnN RdrName
name =
  do Bool
allowed <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
ExplicitNamespacesBit
     forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
allowed forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA GenLocated SrcSpanAnnN RdrName
name) forall a b. (a -> b) -> a -> b
$
                                   PsMessage
PsErrIllegalExplicitNamespace
     forall (m :: * -> *) a. Monad m => a -> m a
return (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (RdrName -> NameSpace -> RdrName
`setRdrNameSpace` NameSpace
tcClsName) GenLocated SrcSpanAnnN RdrName
name)

checkImportSpec :: LocatedL [LIE GhcPs] -> P (LocatedL [LIE GhcPs])
checkImportSpec :: LocatedL [LIE GhcPs] -> P (LocatedL [LIE GhcPs])
checkImportSpec ie :: LocatedL [LIE GhcPs]
ie@(L SrcSpanAnnL
_ [LIE GhcPs]
specs) =
    case [SrcSpanAnnA
l | (L SrcSpanAnnA
l (IEThingWith XIEThingWith GhcPs
_ LIEWrappedName GhcPs
_ (IEWildcard Int
_) [LIEWrappedName GhcPs]
_)) <- [LIE GhcPs]
specs] of
      [] -> forall (m :: * -> *) a. Monad m => a -> m a
return LocatedL [LIE GhcPs]
ie
      (SrcSpanAnnA
l:[SrcSpanAnnA]
_) -> forall {m :: * -> *} {a}. MonadP m => SrcSpan -> m a
importSpecError (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
  where
    importSpecError :: SrcSpan -> m a
importSpecError SrcSpan
l =
      forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
l PsMessage
PsErrIllegalImportBundleForm

-- In the correct order
mkImpExpSubSpec :: [LocatedA ImpExpQcSpec] -> P ([AddEpAnn], ImpExpSubSpec)
mkImpExpSubSpec :: [LocatedA ImpExpQcSpec] -> P ([AddEpAnn], ImpExpSubSpec)
mkImpExpSubSpec [] = forall (m :: * -> *) a. Monad m => a -> m a
return ([], [LocatedA ImpExpQcSpec] -> ImpExpSubSpec
ImpExpList [])
mkImpExpSubSpec [L SrcSpanAnnA
la ImpExpQcSpec
ImpExpQcWildcard] =
  forall (m :: * -> *) a. Monad m => a -> m a
return ([AnnKeywordId -> EpaLocation -> AddEpAnn
AddEpAnn AnnKeywordId
AnnDotdot (forall a. SrcSpanAnn' a -> EpaLocation
la2e SrcSpanAnnA
la)], ImpExpSubSpec
ImpExpAll)
mkImpExpSubSpec [LocatedA ImpExpQcSpec]
xs =
  if (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (ImpExpQcSpec -> Bool
isImpExpQcWildcard forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall l e. GenLocated l e -> e
unLoc) [LocatedA ImpExpQcSpec]
xs)
    then forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ ([], [LocatedA ImpExpQcSpec] -> ImpExpSubSpec
ImpExpAllWith [LocatedA ImpExpQcSpec]
xs)
    else forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ ([], [LocatedA ImpExpQcSpec] -> ImpExpSubSpec
ImpExpList [LocatedA ImpExpQcSpec]
xs)

isImpExpQcWildcard :: ImpExpQcSpec -> Bool
isImpExpQcWildcard :: ImpExpQcSpec -> Bool
isImpExpQcWildcard ImpExpQcSpec
ImpExpQcWildcard = Bool
True
isImpExpQcWildcard ImpExpQcSpec
_                = Bool
False

-----------------------------------------------------------------------------
-- Warnings and failures

warnPrepositiveQualifiedModule :: SrcSpan -> P ()
warnPrepositiveQualifiedModule :: SrcSpan -> P ()
warnPrepositiveQualifiedModule SrcSpan
span =
  SrcSpan -> PsMessage -> P ()
addPsMessage SrcSpan
span PsMessage
PsWarnImportPreQualified

failNotEnabledImportQualifiedPost :: SrcSpan -> P ()
failNotEnabledImportQualifiedPost :: SrcSpan -> P ()
failNotEnabledImportQualifiedPost SrcSpan
loc =
  forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$ PsMessage
PsErrImportPostQualified

failImportQualifiedTwice :: SrcSpan -> P ()
failImportQualifiedTwice :: SrcSpan -> P ()
failImportQualifiedTwice SrcSpan
loc =
  forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
loc forall a b. (a -> b) -> a -> b
$ PsMessage
PsErrImportQualifiedTwice

warnStarIsType :: SrcSpan -> P ()
warnStarIsType :: SrcSpan -> P ()
warnStarIsType SrcSpan
span = SrcSpan -> PsMessage -> P ()
addPsMessage SrcSpan
span PsMessage
PsWarnStarIsType

failOpFewArgs :: MonadP m => LocatedN RdrName -> m a
failOpFewArgs :: forall (m :: * -> *) a.
MonadP m =>
GenLocated SrcSpanAnnN RdrName -> m a
failOpFewArgs (L SrcSpanAnnN
loc RdrName
op) =
  do { Bool
star_is_type <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
StarIsTypeBit
     ; let is_star_type :: StarIsType
is_star_type = if Bool
star_is_type then StarIsType
StarIsType else StarIsType
StarIsNotType
     ; forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnN
loc) forall a b. (a -> b) -> a -> b
$
         (StarIsType -> RdrName -> PsMessage
PsErrOpFewArgs StarIsType
is_star_type RdrName
op) }

-----------------------------------------------------------------------------
-- Misc utils

data PV_Context =
  PV_Context
    { PV_Context -> ParserOpts
pv_options :: ParserOpts
    , PV_Context -> ParseContext
pv_details :: ParseContext -- See Note [Parser-Validator Details]
    }

data PV_Accum =
  PV_Accum
    { PV_Accum -> Messages PsMessage
pv_warnings        :: Messages PsMessage
    , PV_Accum -> Messages PsMessage
pv_errors          :: Messages PsMessage
    , PV_Accum -> Maybe [LEpaComment]
pv_header_comments :: Strict.Maybe [LEpaComment]
    , PV_Accum -> [LEpaComment]
pv_comment_q       :: [LEpaComment]
    }

data PV_Result a = PV_Ok PV_Accum a | PV_Failed PV_Accum
  deriving (forall a. Eq a => a -> PV_Result a -> Bool
forall a. Num a => PV_Result a -> a
forall a. Ord a => PV_Result a -> a
forall m. Monoid m => PV_Result m -> m
forall a. PV_Result a -> Bool
forall a. PV_Result a -> Int
forall a. PV_Result a -> [a]
forall a. (a -> a -> a) -> PV_Result a -> a
forall m a. Monoid m => (a -> m) -> PV_Result a -> m
forall b a. (b -> a -> b) -> b -> PV_Result a -> b
forall a b. (a -> b -> b) -> b -> PV_Result a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => PV_Result a -> a
$cproduct :: forall a. Num a => PV_Result a -> a
sum :: forall a. Num a => PV_Result a -> a
$csum :: forall a. Num a => PV_Result a -> a
minimum :: forall a. Ord a => PV_Result a -> a
$cminimum :: forall a. Ord a => PV_Result a -> a
maximum :: forall a. Ord a => PV_Result a -> a
$cmaximum :: forall a. Ord a => PV_Result a -> a
elem :: forall a. Eq a => a -> PV_Result a -> Bool
$celem :: forall a. Eq a => a -> PV_Result a -> Bool
length :: forall a. PV_Result a -> Int
$clength :: forall a. PV_Result a -> Int
null :: forall a. PV_Result a -> Bool
$cnull :: forall a. PV_Result a -> Bool
toList :: forall a. PV_Result a -> [a]
$ctoList :: forall a. PV_Result a -> [a]
foldl1 :: forall a. (a -> a -> a) -> PV_Result a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> PV_Result a -> a
foldr1 :: forall a. (a -> a -> a) -> PV_Result a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> PV_Result a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> PV_Result a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> PV_Result a -> b
foldl :: forall b a. (b -> a -> b) -> b -> PV_Result a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> PV_Result a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> PV_Result a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> PV_Result a -> b
foldr :: forall a b. (a -> b -> b) -> b -> PV_Result a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> PV_Result a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> PV_Result a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> PV_Result a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> PV_Result a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> PV_Result a -> m
fold :: forall m. Monoid m => PV_Result m -> m
$cfold :: forall m. Monoid m => PV_Result m -> m
Foldable, forall a b. a -> PV_Result b -> PV_Result a
forall a b. (a -> b) -> PV_Result a -> PV_Result b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> PV_Result b -> PV_Result a
$c<$ :: forall a b. a -> PV_Result b -> PV_Result a
fmap :: forall a b. (a -> b) -> PV_Result a -> PV_Result b
$cfmap :: forall a b. (a -> b) -> PV_Result a -> PV_Result b
Functor, Functor PV_Result
Foldable PV_Result
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a.
Monad m =>
PV_Result (m a) -> m (PV_Result a)
forall (f :: * -> *) a.
Applicative f =>
PV_Result (f a) -> f (PV_Result a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> PV_Result a -> m (PV_Result b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> PV_Result a -> f (PV_Result b)
sequence :: forall (m :: * -> *) a.
Monad m =>
PV_Result (m a) -> m (PV_Result a)
$csequence :: forall (m :: * -> *) a.
Monad m =>
PV_Result (m a) -> m (PV_Result a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> PV_Result a -> m (PV_Result b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> PV_Result a -> m (PV_Result b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
PV_Result (f a) -> f (PV_Result a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
PV_Result (f a) -> f (PV_Result a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> PV_Result a -> f (PV_Result b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> PV_Result a -> f (PV_Result b)
Traversable)

-- During parsing, we make use of several monadic effects: reporting parse errors,
-- accumulating warnings, adding API annotations, and checking for extensions. These
-- effects are captured by the 'MonadP' type class.
--
-- Sometimes we need to postpone some of these effects to a later stage due to
-- ambiguities described in Note [Ambiguous syntactic categories].
-- We could use two layers of the P monad, one for each stage:
--
--   abParser :: forall x. DisambAB x => P (P x)
--
-- The outer layer of P consumes the input and builds the inner layer, which
-- validates the input. But this type is not particularly helpful, as it obscures
-- the fact that the inner layer of P never consumes any input.
--
-- For clarity, we introduce the notion of a parser-validator: a parser that does
-- not consume any input, but may fail or use other effects. Thus we have:
--
--   abParser :: forall x. DisambAB x => P (PV x)
--
newtype PV a = PV { forall a. PV a -> PV_Context -> PV_Accum -> PV_Result a
unPV :: PV_Context -> PV_Accum -> PV_Result a }
  deriving (forall a b. a -> PV b -> PV a
forall a b. (a -> b) -> PV a -> PV b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> PV b -> PV a
$c<$ :: forall a b. a -> PV b -> PV a
fmap :: forall a b. (a -> b) -> PV a -> PV b
$cfmap :: forall a b. (a -> b) -> PV a -> PV b
Functor)

instance Applicative PV where
  pure :: forall a. a -> PV a
pure a
a = a
a seq :: forall a b. a -> b -> b
`seq` forall a. (PV_Context -> PV_Accum -> PV_Result a) -> PV a
PV (\PV_Context
_ PV_Accum
acc -> forall a. PV_Accum -> a -> PV_Result a
PV_Ok PV_Accum
acc a
a)
  <*> :: forall a b. PV (a -> b) -> PV a -> PV b
(<*>) = forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap

instance Monad PV where
  PV a
m >>= :: forall a b. PV a -> (a -> PV b) -> PV b
>>= a -> PV b
f = forall a. (PV_Context -> PV_Accum -> PV_Result a) -> PV a
PV forall a b. (a -> b) -> a -> b
$ \PV_Context
ctx PV_Accum
acc ->
    case forall a. PV a -> PV_Context -> PV_Accum -> PV_Result a
unPV PV a
m PV_Context
ctx PV_Accum
acc of
      PV_Ok PV_Accum
acc' a
a -> forall a. PV a -> PV_Context -> PV_Accum -> PV_Result a
unPV (a -> PV b
f a
a) PV_Context
ctx PV_Accum
acc'
      PV_Failed PV_Accum
acc' -> forall a. PV_Accum -> PV_Result a
PV_Failed PV_Accum
acc'

runPV :: PV a -> P a
runPV :: forall a. PV a -> P a
runPV = forall a. ParseContext -> PV a -> P a
runPV_details ParseContext
noParseContext

askParseContext :: PV ParseContext
askParseContext :: PV ParseContext
askParseContext = forall a. (PV_Context -> PV_Accum -> PV_Result a) -> PV a
PV forall a b. (a -> b) -> a -> b
$ \(PV_Context ParserOpts
_ ParseContext
details) PV_Accum
acc -> forall a. PV_Accum -> a -> PV_Result a
PV_Ok PV_Accum
acc ParseContext
details

runPV_details :: ParseContext -> PV a -> P a
runPV_details :: forall a. ParseContext -> PV a -> P a
runPV_details ParseContext
details PV a
m =
  forall a. (PState -> ParseResult a) -> P a
P forall a b. (a -> b) -> a -> b
$ \PState
s ->
    let
      pv_ctx :: PV_Context
pv_ctx = PV_Context
        { pv_options :: ParserOpts
pv_options = PState -> ParserOpts
options PState
s
        , pv_details :: ParseContext
pv_details = ParseContext
details }
      pv_acc :: PV_Accum
pv_acc = PV_Accum
        { pv_warnings :: Messages PsMessage
pv_warnings = PState -> Messages PsMessage
warnings PState
s
        , pv_errors :: Messages PsMessage
pv_errors   = PState -> Messages PsMessage
errors PState
s
        , pv_header_comments :: Maybe [LEpaComment]
pv_header_comments = PState -> Maybe [LEpaComment]
header_comments PState
s
        , pv_comment_q :: [LEpaComment]
pv_comment_q = PState -> [LEpaComment]
comment_q PState
s }
      mkPState :: PV_Accum -> PState
mkPState PV_Accum
acc' =
        PState
s { warnings :: Messages PsMessage
warnings = PV_Accum -> Messages PsMessage
pv_warnings PV_Accum
acc'
          , errors :: Messages PsMessage
errors   = PV_Accum -> Messages PsMessage
pv_errors PV_Accum
acc'
          , comment_q :: [LEpaComment]
comment_q = PV_Accum -> [LEpaComment]
pv_comment_q PV_Accum
acc' }
    in
      case forall a. PV a -> PV_Context -> PV_Accum -> PV_Result a
unPV PV a
m PV_Context
pv_ctx PV_Accum
pv_acc of
        PV_Ok PV_Accum
acc' a
a -> forall a. PState -> a -> ParseResult a
POk (PV_Accum -> PState
mkPState PV_Accum
acc') a
a
        PV_Failed PV_Accum
acc' -> forall a. PState -> ParseResult a
PFailed (PV_Accum -> PState
mkPState PV_Accum
acc')

instance MonadP PV where
  addError :: MsgEnvelope PsMessage -> PV ()
addError MsgEnvelope PsMessage
err =
    forall a. (PV_Context -> PV_Accum -> PV_Result a) -> PV a
PV forall a b. (a -> b) -> a -> b
$ \PV_Context
_ctx PV_Accum
acc -> forall a. PV_Accum -> a -> PV_Result a
PV_Ok PV_Accum
acc{pv_errors :: Messages PsMessage
pv_errors = MsgEnvelope PsMessage
err forall e. MsgEnvelope e -> Messages e -> Messages e
`addMessage` PV_Accum -> Messages PsMessage
pv_errors PV_Accum
acc} ()
  addWarning :: MsgEnvelope PsMessage -> PV ()
addWarning MsgEnvelope PsMessage
w =
    forall a. (PV_Context -> PV_Accum -> PV_Result a) -> PV a
PV forall a b. (a -> b) -> a -> b
$ \PV_Context
_ctx PV_Accum
acc ->
      -- No need to check for the warning flag to be set, GHC will correctly discard suppressed
      -- diagnostics.
      forall a. PV_Accum -> a -> PV_Result a
PV_Ok PV_Accum
acc{pv_warnings :: Messages PsMessage
pv_warnings= MsgEnvelope PsMessage
w forall e. MsgEnvelope e -> Messages e -> Messages e
`addMessage` PV_Accum -> Messages PsMessage
pv_warnings PV_Accum
acc} ()
  addFatalError :: forall a. MsgEnvelope PsMessage -> PV a
addFatalError MsgEnvelope PsMessage
err =
    forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError MsgEnvelope PsMessage
err forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall a. (PV_Context -> PV_Accum -> PV_Result a) -> PV a
PV (forall a b. a -> b -> a
const forall a. PV_Accum -> PV_Result a
PV_Failed)
  getBit :: ExtBits -> PV Bool
getBit ExtBits
ext =
    forall a. (PV_Context -> PV_Accum -> PV_Result a) -> PV a
PV forall a b. (a -> b) -> a -> b
$ \PV_Context
ctx PV_Accum
acc ->
      let b :: Bool
b = ExtBits
ext ExtBits -> ExtsBitmap -> Bool
`xtest` ParserOpts -> ExtsBitmap
pExtsBitmap (PV_Context -> ParserOpts
pv_options PV_Context
ctx) in
      forall a. PV_Accum -> a -> PV_Result a
PV_Ok PV_Accum
acc forall a b. (a -> b) -> a -> b
$! Bool
b
  allocateCommentsP :: RealSrcSpan -> PV EpAnnComments
allocateCommentsP RealSrcSpan
ss = forall a. (PV_Context -> PV_Accum -> PV_Result a) -> PV a
PV forall a b. (a -> b) -> a -> b
$ \PV_Context
_ PV_Accum
s ->
    let ([LEpaComment]
comment_q', [LEpaComment]
newAnns) = RealSrcSpan -> [LEpaComment] -> ([LEpaComment], [LEpaComment])
allocateComments RealSrcSpan
ss (PV_Accum -> [LEpaComment]
pv_comment_q PV_Accum
s) in
      forall a. PV_Accum -> a -> PV_Result a
PV_Ok PV_Accum
s {
         pv_comment_q :: [LEpaComment]
pv_comment_q = [LEpaComment]
comment_q'
       } ([LEpaComment] -> EpAnnComments
EpaComments [LEpaComment]
newAnns)
  allocatePriorCommentsP :: RealSrcSpan -> PV EpAnnComments
allocatePriorCommentsP RealSrcSpan
ss = forall a. (PV_Context -> PV_Accum -> PV_Result a) -> PV a
PV forall a b. (a -> b) -> a -> b
$ \PV_Context
_ PV_Accum
s ->
    let (Maybe [LEpaComment]
header_comments', [LEpaComment]
comment_q', [LEpaComment]
newAnns)
          = RealSrcSpan
-> [LEpaComment]
-> Maybe [LEpaComment]
-> (Maybe [LEpaComment], [LEpaComment], [LEpaComment])
allocatePriorComments RealSrcSpan
ss (PV_Accum -> [LEpaComment]
pv_comment_q PV_Accum
s) (PV_Accum -> Maybe [LEpaComment]
pv_header_comments PV_Accum
s) in
      forall a. PV_Accum -> a -> PV_Result a
PV_Ok PV_Accum
s {
         pv_header_comments :: Maybe [LEpaComment]
pv_header_comments = Maybe [LEpaComment]
header_comments',
         pv_comment_q :: [LEpaComment]
pv_comment_q = [LEpaComment]
comment_q'
       } ([LEpaComment] -> EpAnnComments
EpaComments [LEpaComment]
newAnns)
  allocateFinalCommentsP :: RealSrcSpan -> PV EpAnnComments
allocateFinalCommentsP RealSrcSpan
ss = forall a. (PV_Context -> PV_Accum -> PV_Result a) -> PV a
PV forall a b. (a -> b) -> a -> b
$ \PV_Context
_ PV_Accum
s ->
    let (Maybe [LEpaComment]
header_comments', [LEpaComment]
comment_q', [LEpaComment]
newAnns)
          = RealSrcSpan
-> [LEpaComment]
-> Maybe [LEpaComment]
-> (Maybe [LEpaComment], [LEpaComment], [LEpaComment])
allocateFinalComments RealSrcSpan
ss (PV_Accum -> [LEpaComment]
pv_comment_q PV_Accum
s) (PV_Accum -> Maybe [LEpaComment]
pv_header_comments PV_Accum
s) in
      forall a. PV_Accum -> a -> PV_Result a
PV_Ok PV_Accum
s {
         pv_header_comments :: Maybe [LEpaComment]
pv_header_comments = Maybe [LEpaComment]
header_comments',
         pv_comment_q :: [LEpaComment]
pv_comment_q = [LEpaComment]
comment_q'
       } ([LEpaComment] -> [LEpaComment] -> EpAnnComments
EpaCommentsBalanced (forall a. a -> Maybe a -> a
Strict.fromMaybe [] Maybe [LEpaComment]
header_comments') [LEpaComment]
newAnns)

{- Note [Parser-Validator Details]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A PV computation is parameterized by some 'ParseContext' for diagnostic messages, which can be set
depending on validation context. We use this in checkPattern to fix #984.

Consider this example, where the user has forgotten a 'do':

  f _ = do
    x <- computation
    case () of
      _ ->
        result <- computation
        case () of () -> undefined

GHC parses it as follows:

  f _ = do
    x <- computation
    (case () of
      _ ->
        result) <- computation
        case () of () -> undefined

Note that this fragment is parsed as a pattern:

  case () of
    _ ->
      result

We attempt to detect such cases and add a hint to the diagnostic messages:

  T984.hs:6:9:
    Parse error in pattern: case () of { _ -> result }
    Possibly caused by a missing 'do'?

The "Possibly caused by a missing 'do'?" suggestion is the hint that is computed
out of the 'ParseContext', which are read by functions like 'patFail' when
constructing the 'PsParseErrorInPatDetails' data structure. When validating in a
context other than 'bindpat' (a pattern to the left of <-), we set the
details to 'noParseContext' and it has no effect on the diagnostic messages.

-}

-- | Hint about bang patterns, assuming @BangPatterns@ is off.
hintBangPat :: SrcSpan -> Pat GhcPs -> PV ()
hintBangPat :: SrcSpan -> Pat GhcPs -> PV ()
hintBangPat SrcSpan
span Pat GhcPs
e = do
    Bool
bang_on <- forall (m :: * -> *). MonadP m => ExtBits -> m Bool
getBit ExtBits
BangPatBit
    forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
bang_on forall a b. (a -> b) -> a -> b
$
      forall (m :: * -> *). MonadP m => MsgEnvelope PsMessage -> m ()
addError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope SrcSpan
span forall a b. (a -> b) -> a -> b
$ Pat GhcPs -> PsMessage
PsErrIllegalBangPattern Pat GhcPs
e

mkSumOrTupleExpr :: SrcSpanAnnA -> Boxity -> SumOrTuple (HsExpr GhcPs)
                 -> [AddEpAnn]
                 -> PV (LHsExpr GhcPs)

-- Tuple
mkSumOrTupleExpr :: SrcSpanAnnA
-> Boxity
-> SumOrTuple (HsExpr GhcPs)
-> [AddEpAnn]
-> PV (LHsExpr GhcPs)
mkSumOrTupleExpr SrcSpanAnnA
l Boxity
boxity (Tuple [Either
   (EpAnn EpaLocation) (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
es) [AddEpAnn]
anns = do
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall p. XExplicitTuple p -> [HsTupArg p] -> Boxity -> HsExpr p
ExplicitTuple (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) [AddEpAnn]
anns EpAnnComments
cs) (forall a b. (a -> b) -> [a] -> [b]
map Either (EpAnn EpaLocation) (LHsExpr GhcPs) -> HsTupArg GhcPs
toTupArg [Either
   (EpAnn EpaLocation) (GenLocated SrcSpanAnnA (HsExpr GhcPs))]
es) Boxity
boxity)
  where
    toTupArg :: Either (EpAnn EpaLocation) (LHsExpr GhcPs) -> HsTupArg GhcPs
    toTupArg :: Either (EpAnn EpaLocation) (LHsExpr GhcPs) -> HsTupArg GhcPs
toTupArg (Left EpAnn EpaLocation
ann) = EpAnn EpaLocation -> HsTupArg GhcPs
missingTupArg EpAnn EpaLocation
ann
    toTupArg (Right LHsExpr GhcPs
a)  = forall id. XPresent id -> LHsExpr id -> HsTupArg id
Present forall a. EpAnn a
noAnn LHsExpr GhcPs
a

-- Sum
-- mkSumOrTupleExpr l Unboxed (Sum alt arity e) =
--     return $ L l (ExplicitSum noExtField alt arity e)
mkSumOrTupleExpr SrcSpanAnnA
l Boxity
Unboxed (Sum Int
alt Int
arity GenLocated SrcSpanAnnA (HsExpr GhcPs)
e [EpaLocation]
barsp [EpaLocation]
barsa) [AddEpAnn]
anns = do
    let an :: AnnExplicitSum
an = case [AddEpAnn]
anns of
               [AddEpAnn AnnKeywordId
AnnOpenPH EpaLocation
o, AddEpAnn AnnKeywordId
AnnClosePH EpaLocation
c] ->
                 EpaLocation
-> [EpaLocation] -> [EpaLocation] -> EpaLocation -> AnnExplicitSum
AnnExplicitSum EpaLocation
o [EpaLocation]
barsp [EpaLocation]
barsa EpaLocation
c
               [AddEpAnn]
_ -> forall a. HasCallStack => String -> a
panic String
"mkSumOrTupleExpr"
    EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall p. XExplicitSum p -> Int -> Int -> LHsExpr p -> HsExpr p
ExplicitSum (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) AnnExplicitSum
an EpAnnComments
cs) Int
alt Int
arity GenLocated SrcSpanAnnA (HsExpr GhcPs)
e)
mkSumOrTupleExpr SrcSpanAnnA
l Boxity
Boxed a :: SumOrTuple (HsExpr GhcPs)
a@Sum{} [AddEpAnn]
_ =
    forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$ forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall a b. (a -> b) -> a -> b
$ SumOrTuple (HsExpr GhcPs) -> PsMessage
PsErrUnsupportedBoxedSumExpr SumOrTuple (HsExpr GhcPs)
a

mkSumOrTuplePat
  :: SrcSpanAnnA -> Boxity -> SumOrTuple (PatBuilder GhcPs) -> [AddEpAnn]
  -> PV (LocatedA (PatBuilder GhcPs))

-- Tuple
mkSumOrTuplePat :: SrcSpanAnnA
-> Boxity
-> SumOrTuple (PatBuilder GhcPs)
-> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
mkSumOrTuplePat SrcSpanAnnA
l Boxity
boxity (Tuple [Either (EpAnn EpaLocation) (LocatedA (PatBuilder GhcPs))]
ps) [AddEpAnn]
anns = do
  [GenLocated SrcSpanAnnA (Pat GhcPs)]
ps' <- forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Either (EpAnn EpaLocation) (LocatedA (PatBuilder GhcPs))
-> PV (LPat GhcPs)
toTupPat [Either (EpAnn EpaLocation) (LocatedA (PatBuilder GhcPs))]
ps
  EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall p. Pat p -> PatBuilder p
PatBuilderPat (forall p. XTuplePat p -> [LPat p] -> Boxity -> Pat p
TuplePat (forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) [AddEpAnn]
anns EpAnnComments
cs) [GenLocated SrcSpanAnnA (Pat GhcPs)]
ps' Boxity
boxity))
  where
    toTupPat :: Either (EpAnn EpaLocation) (LocatedA (PatBuilder GhcPs)) -> PV (LPat GhcPs)
    -- Ignore the element location so that the error message refers to the
    -- entire tuple. See #19504 (and the discussion) for details.
    toTupPat :: Either (EpAnn EpaLocation) (LocatedA (PatBuilder GhcPs))
-> PV (LPat GhcPs)
toTupPat Either (EpAnn EpaLocation) (LocatedA (PatBuilder GhcPs))
p = case Either (EpAnn EpaLocation) (LocatedA (PatBuilder GhcPs))
p of
      Left EpAnn EpaLocation
_ -> forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$
                  forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) PsMessage
PsErrTupleSectionInPat
      Right LocatedA (PatBuilder GhcPs)
p' -> LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
p'

-- Sum
mkSumOrTuplePat SrcSpanAnnA
l Boxity
Unboxed (Sum Int
alt Int
arity LocatedA (PatBuilder GhcPs)
p [EpaLocation]
barsb [EpaLocation]
barsa) [AddEpAnn]
anns = do
   GenLocated SrcSpanAnnA (Pat GhcPs)
p' <- LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat LocatedA (PatBuilder GhcPs)
p
   EpAnnComments
cs <- forall (m :: * -> *). MonadP m => SrcSpan -> m EpAnnComments
getCommentsFor (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
   let an :: EpAnn EpAnnSumPat
an = forall ann. Anchor -> ann -> EpAnnComments -> EpAnn ann
EpAnn (SrcSpan -> Anchor
spanAsAnchor forall a b. (a -> b) -> a -> b
$ forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) ([AddEpAnn] -> [EpaLocation] -> [EpaLocation] -> EpAnnSumPat
EpAnnSumPat [AddEpAnn]
anns [EpaLocation]
barsb [EpaLocation]
barsa) EpAnnComments
cs
   forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall p. Pat p -> PatBuilder p
PatBuilderPat (forall p. XSumPat p -> LPat p -> Int -> Int -> Pat p
SumPat EpAnn EpAnnSumPat
an GenLocated SrcSpanAnnA (Pat GhcPs)
p' Int
alt Int
arity))
mkSumOrTuplePat SrcSpanAnnA
l Boxity
Boxed a :: SumOrTuple (PatBuilder GhcPs)
a@Sum{} [AddEpAnn]
_ =
    forall (m :: * -> *) a. MonadP m => MsgEnvelope PsMessage -> m a
addFatalError forall a b. (a -> b) -> a -> b
$
      forall e. Diagnostic e => SrcSpan -> e -> MsgEnvelope e
mkPlainErrorMsgEnvelope (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l) forall a b. (a -> b) -> a -> b
$ SumOrTuple (PatBuilder GhcPs) -> PsMessage
PsErrUnsupportedBoxedSumPat SumOrTuple (PatBuilder GhcPs)
a

mkLHsOpTy :: PromotionFlag -> LHsType GhcPs -> LocatedN RdrName -> LHsType GhcPs -> LHsType GhcPs
mkLHsOpTy :: PromotionFlag
-> LHsType GhcPs
-> GenLocated SrcSpanAnnN RdrName
-> LHsType GhcPs
-> LHsType GhcPs
mkLHsOpTy PromotionFlag
prom LHsType GhcPs
x GenLocated SrcSpanAnnN RdrName
op LHsType GhcPs
y =
  let loc :: SrcSpanAnnA
loc = forall l e. GenLocated l e -> l
getLoc LHsType GhcPs
x forall a. Semigroup a => SrcAnn a -> SrcAnn a -> SrcAnn a
`combineSrcSpansA` (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan forall a b. (a -> b) -> a -> b
$ forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA GenLocated SrcSpanAnnN RdrName
op) forall a. Semigroup a => SrcAnn a -> SrcAnn a -> SrcAnn a
`combineSrcSpansA` forall l e. GenLocated l e -> l
getLoc LHsType GhcPs
y
  in forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc (forall (p :: Pass).
(Anno (IdGhcP p) ~ SrcSpanAnnN) =>
PromotionFlag
-> LHsType (GhcPass p)
-> LocatedN (IdP (GhcPass p))
-> LHsType (GhcPass p)
-> HsType (GhcPass p)
mkHsOpTy PromotionFlag
prom LHsType GhcPs
x GenLocated SrcSpanAnnN RdrName
op LHsType GhcPs
y)

mkMultTy :: LHsToken "%" GhcPs -> LHsType GhcPs -> LHsUniToken "->" "→" GhcPs -> HsArrow GhcPs
mkMultTy :: LHsToken "%" GhcPs
-> LHsType GhcPs -> LHsUniToken "->" "\8594" GhcPs -> HsArrow GhcPs
mkMultTy LHsToken "%" GhcPs
pct t :: LHsType GhcPs
t@(L SrcSpanAnnA
_ (HsTyLit XTyLit GhcPs
_ (HsNumTy (SourceText String
"1") Integer
1))) LHsUniToken "->" "\8594" GhcPs
arr
  -- See #18888 for the use of (SourceText "1") above
  = forall pass. HsLinearArrowTokens pass -> HsArrow pass
HsLinearArrow (forall pass.
LHsToken "%1" pass
-> LHsUniToken "->" "\8594" pass -> HsLinearArrowTokens pass
HsPct1 (forall l e. l -> e -> GenLocated l e
L TokenLocation
locOfPct1 forall (tok :: Symbol). HsToken tok
HsTok) LHsUniToken "->" "\8594" GhcPs
arr)
  where
    -- The location of "%" combined with the location of "1".
    locOfPct1 :: TokenLocation
    locOfPct1 :: TokenLocation
locOfPct1 = TokenLocation -> SrcSpan -> TokenLocation
token_location_widenR (forall l e. GenLocated l e -> l
getLoc LHsToken "%" GhcPs
pct) (forall a. SrcSpanAnn' a -> SrcSpan
locA (forall l e. GenLocated l e -> l
getLoc LHsType GhcPs
t))
mkMultTy LHsToken "%" GhcPs
pct LHsType GhcPs
t LHsUniToken "->" "\8594" GhcPs
arr = forall pass.
LHsToken "%" pass
-> LHsType pass -> LHsUniToken "->" "\8594" pass -> HsArrow pass
HsExplicitMult LHsToken "%" GhcPs
pct LHsType GhcPs
t LHsUniToken "->" "\8594" GhcPs
arr

mkTokenLocation :: SrcSpan -> TokenLocation
mkTokenLocation :: SrcSpan -> TokenLocation
mkTokenLocation (UnhelpfulSpan UnhelpfulSpanReason
_) = TokenLocation
NoTokenLoc
mkTokenLocation (RealSrcSpan RealSrcSpan
r Maybe BufSpan
mb) = EpaLocation -> TokenLocation
TokenLoc (RealSrcSpan -> Maybe BufSpan -> EpaLocation
EpaSpan RealSrcSpan
r Maybe BufSpan
mb)

-- Precondition: the TokenLocation has EpaSpan, never EpaDelta.
token_location_widenR :: TokenLocation -> SrcSpan -> TokenLocation
token_location_widenR :: TokenLocation -> SrcSpan -> TokenLocation
token_location_widenR TokenLocation
NoTokenLoc SrcSpan
_ = TokenLocation
NoTokenLoc
token_location_widenR TokenLocation
tl (UnhelpfulSpan UnhelpfulSpanReason
_) = TokenLocation
tl
token_location_widenR (TokenLoc (EpaSpan RealSrcSpan
r1 Maybe BufSpan
mb1)) (RealSrcSpan RealSrcSpan
r2 Maybe BufSpan
mb2) =
                      (EpaLocation -> TokenLocation
TokenLoc (RealSrcSpan -> Maybe BufSpan -> EpaLocation
EpaSpan (RealSrcSpan -> RealSrcSpan -> RealSrcSpan
combineRealSrcSpans RealSrcSpan
r1 RealSrcSpan
r2) (forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 BufSpan -> BufSpan -> BufSpan
combineBufSpans Maybe BufSpan
mb1 Maybe BufSpan
mb2)))
token_location_widenR (TokenLoc (EpaDelta DeltaPos
_ [LEpaComment]
_)) SrcSpan
_ =
  -- Never happens because the parser does not produce EpaDelta.
  forall a. HasCallStack => String -> a
panic String
"token_location_widenR: EpaDelta"


-----------------------------------------------------------------------------
-- Token symbols

starSym :: Bool -> FastString
starSym :: Bool -> FastString
starSym Bool
True = String -> FastString
fsLit String
"★"
starSym Bool
False = String -> FastString
fsLit String
"*"

-----------------------------------------
-- Bits and pieces for RecordDotSyntax.

mkRdrGetField :: SrcSpanAnnA -> LHsExpr GhcPs -> LocatedAn NoEpAnns (DotFieldOcc GhcPs)
  -> EpAnnCO -> LHsExpr GhcPs
mkRdrGetField :: SrcSpanAnnA
-> LHsExpr GhcPs
-> LocatedAn NoEpAnns (DotFieldOcc GhcPs)
-> EpAnnCO
-> LHsExpr GhcPs
mkRdrGetField SrcSpanAnnA
loc LHsExpr GhcPs
arg LocatedAn NoEpAnns (DotFieldOcc GhcPs)
field EpAnnCO
anns =
  forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc HsGetField {
      gf_ext :: XGetField GhcPs
gf_ext = EpAnnCO
anns
    , gf_expr :: LHsExpr GhcPs
gf_expr = LHsExpr GhcPs
arg
    , gf_field :: XRec GhcPs (DotFieldOcc GhcPs)
gf_field = LocatedAn NoEpAnns (DotFieldOcc GhcPs)
field
    }

mkRdrProjection :: NonEmpty (LocatedAn NoEpAnns (DotFieldOcc GhcPs)) -> EpAnn AnnProjection -> HsExpr GhcPs
mkRdrProjection :: NonEmpty (LocatedAn NoEpAnns (DotFieldOcc GhcPs))
-> EpAnn AnnProjection -> HsExpr GhcPs
mkRdrProjection NonEmpty (LocatedAn NoEpAnns (DotFieldOcc GhcPs))
flds EpAnn AnnProjection
anns =
  HsProjection {
      proj_ext :: XProjection GhcPs
proj_ext = EpAnn AnnProjection
anns
    , proj_flds :: NonEmpty (XRec GhcPs (DotFieldOcc GhcPs))
proj_flds = NonEmpty (LocatedAn NoEpAnns (DotFieldOcc GhcPs))
flds
    }

mkRdrProjUpdate :: SrcSpanAnnA -> Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
                -> LHsExpr GhcPs -> Bool -> EpAnn [AddEpAnn]
                -> LHsRecProj GhcPs (LHsExpr GhcPs)
mkRdrProjUpdate :: SrcSpanAnnA
-> Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
-> LHsExpr GhcPs
-> Bool
-> EpAnn [AddEpAnn]
-> LHsRecProj GhcPs (LHsExpr GhcPs)
mkRdrProjUpdate SrcSpanAnnA
_ (L SrcSpan
_ []) LHsExpr GhcPs
_ Bool
_ EpAnn [AddEpAnn]
_ = forall a. HasCallStack => String -> a
panic String
"mkRdrProjUpdate: The impossible has happened!"
mkRdrProjUpdate SrcSpanAnnA
loc (L SrcSpan
l [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
flds) LHsExpr GhcPs
arg Bool
isPun EpAnn [AddEpAnn]
anns =
  forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc HsFieldBind {
      hfbAnn :: XHsFieldBind
  (GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs))
hfbAnn = EpAnn [AddEpAnn]
anns
    , hfbLHS :: GenLocated (SrcAnn NoEpAnns) (FieldLabelStrings GhcPs)
hfbLHS = forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
l) (forall p. [XRec p (DotFieldOcc p)] -> FieldLabelStrings p
FieldLabelStrings [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
flds)
    , hfbRHS :: GenLocated SrcSpanAnnA (HsExpr GhcPs)
hfbRHS = LHsExpr GhcPs
arg
    , hfbPun :: Bool
hfbPun = Bool
isPun
  }