Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Synopsis
- type UnaryType = Type
- type NvUnaryType = Type
- isNvUnaryType :: Type -> Bool
- unwrapType :: Type -> Type
- isZeroBitTy :: HasDebugCallStack => Type -> Bool
- typePrimRep :: HasDebugCallStack => Type -> [PrimRep]
- typePrimRep1 :: HasDebugCallStack => UnaryType -> PrimRep
- runtimeRepPrimRep :: HasDebugCallStack => SDoc -> RuntimeRepType -> [PrimRep]
- typePrimRepArgs :: HasDebugCallStack => Type -> [PrimRep]
- data PrimRep
- primRepToRuntimeRep :: PrimRep -> RuntimeRepType
- primRepToType :: PrimRep -> Type
- countFunRepArgs :: Arity -> Type -> RepArity
- countConRepArgs :: DataCon -> RepArity
- dataConRuntimeRepStrictness :: HasDebugCallStack => DataCon -> [StrictnessMark]
- tyConPrimRep :: HasDebugCallStack => TyCon -> [PrimRep]
- tyConPrimRep1 :: HasDebugCallStack => TyCon -> PrimRep
- runtimeRepPrimRep_maybe :: Type -> Maybe [PrimRep]
- kindPrimRep_maybe :: HasDebugCallStack => Kind -> Maybe [PrimRep]
- typePrimRep_maybe :: Type -> Maybe [PrimRep]
- ubxSumRepType :: [[PrimRep]] -> NonEmpty SlotTy
- layoutUbxSum :: HasDebugCallStack => SortedSlotTys -> [SlotTy] -> [Int]
- typeSlotTy :: UnaryType -> Maybe SlotTy
- data SlotTy
- slotPrimRep :: SlotTy -> PrimRep
- primRepSlot :: PrimRep -> SlotTy
- mightBeFunTy :: Type -> Bool
Code generator views onto Types
type NvUnaryType = Type Source #
isNvUnaryType :: Type -> Bool Source #
unwrapType :: Type -> Type Source #
Gets rid of the stuff that prevents us from understanding the runtime representation of a type. Including: 1. Casts 2. Newtypes 3. Foralls 4. Synonyms But not type/data families, because we don't have the envs to hand.
Predicates on types
isZeroBitTy :: HasDebugCallStack => Type -> Bool Source #
True if the type has zero width.
Type representation for the code generator
typePrimRep :: HasDebugCallStack => Type -> [PrimRep] Source #
typePrimRep1 :: HasDebugCallStack => UnaryType -> PrimRep Source #
Like typePrimRep
, but assumes that there is precisely one PrimRep
output;
an empty list of PrimReps becomes a VoidRep.
This assumption holds after unarise, see Note [Post-unarisation invariants].
Before unarise it may or may not hold.
See also Note [RuntimeRep and PrimRep] and Note [VoidRep]
runtimeRepPrimRep :: HasDebugCallStack => SDoc -> RuntimeRepType -> [PrimRep] Source #
Take a type of kind RuntimeRep and extract the list of PrimRep
that
it encodes. See also Note [Getting from RuntimeRep to PrimRep]
The [PrimRep] is the final runtime representation after unarisation
typePrimRepArgs :: HasDebugCallStack => Type -> [PrimRep] Source #
A PrimRep
is an abstraction of a type. It contains information that
the code generator needs in order to pass arguments, return results,
and store values of this type. See also Note [RuntimeRep and PrimRep] in
GHC.Types.RepType and Note [VoidRep] in GHC.Types.RepType.
VoidRep | |
LiftedRep | |
UnliftedRep | Unlifted pointer |
Int8Rep | Signed, 8-bit value |
Int16Rep | Signed, 16-bit value |
Int32Rep | Signed, 32-bit value |
Int64Rep | Signed, 64 bit value |
IntRep | Signed, word-sized value |
Word8Rep | Unsigned, 8 bit value |
Word16Rep | Unsigned, 16 bit value |
Word32Rep | Unsigned, 32 bit value |
Word64Rep | Unsigned, 64 bit value |
WordRep | Unsigned, word-sized value |
AddrRep | A pointer, but not to a Haskell value (use '(Un)liftedRep') |
FloatRep | |
DoubleRep | |
VecRep Int PrimElemRep | A vector |
Instances
Data PrimRep Source # | |
Defined in GHC.Core.TyCon gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PrimRep -> c PrimRep # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PrimRep # toConstr :: PrimRep -> Constr # dataTypeOf :: PrimRep -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PrimRep) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PrimRep) # gmapT :: (forall b. Data b => b -> b) -> PrimRep -> PrimRep # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PrimRep -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PrimRep -> r # gmapQ :: (forall d. Data d => d -> u) -> PrimRep -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PrimRep -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PrimRep -> m PrimRep # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PrimRep -> m PrimRep # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PrimRep -> m PrimRep # | |
Show PrimRep Source # | |
Binary PrimRep Source # | |
Outputable PrimRep Source # | |
Eq PrimRep Source # | |
Ord PrimRep Source # | |
primRepToType :: PrimRep -> Type Source #
Convert a PrimRep back to a Type. Used only in the unariser to give types to fresh Ids. Really, only the type's representation matters. See also Note [RuntimeRep and PrimRep]
countConRepArgs :: DataCon -> RepArity Source #
dataConRuntimeRepStrictness :: HasDebugCallStack => DataCon -> [StrictnessMark] Source #
Give the demands on the arguments of a Core constructor application (Con dc args) at runtime. Assumes the constructor is not levity polymorphic. For example unboxed tuples won't work.
tyConPrimRep :: HasDebugCallStack => TyCon -> [PrimRep] Source #
Find the runtime representation of a TyCon
. Defined here to
avoid module loops. Returns a list of the register shapes necessary.
See also Note [Getting from RuntimeRep to PrimRep]
tyConPrimRep1 :: HasDebugCallStack => TyCon -> PrimRep Source #
Like tyConPrimRep
, but assumed that there is precisely zero or
one PrimRep
output
See also Note [Getting from RuntimeRep to PrimRep] and Note [VoidRep]
runtimeRepPrimRep_maybe :: Type -> Maybe [PrimRep] Source #
Take a type of kind RuntimeRep and extract the list of PrimRep
that
it encodes. See also Note [Getting from RuntimeRep to PrimRep]
The [PrimRep] is the final runtime representation after unarisation
Returns Nothing if rep can't be determined. Eg. levity polymorphic types.
kindPrimRep_maybe :: HasDebugCallStack => Kind -> Maybe [PrimRep] Source #
Take a kind (of shape `TYPE rr` or `CONSTRAINT rr`) and produce the PrimRep
s
of values of types of this kind.
See also Note [Getting from RuntimeRep to PrimRep]
Returns Nothing if rep can't be determined. Eg. levity polymorphic types.
typePrimRep_maybe :: Type -> Maybe [PrimRep] Source #
Discovers the primitive representation of a Type
. Returns
a list of PrimRep
: it's a list because of the possibility of
no runtime representation (void) or multiple (unboxed tuple/sum)
See also Note [Getting from RuntimeRep to PrimRep]
Returns Nothing if rep can't be determined. Eg. levity polymorphic types.
Unboxed sum representation type
ubxSumRepType :: [[PrimRep]] -> NonEmpty SlotTy Source #
Given the arguments of a sum type constructor application, return the unboxed sum rep type.
E.g.
(# Int# | Maybe Int | (# Int#, Float# #) #)
We call `ubxSumRepType [ [IntRep], [LiftedRep], [IntRep, FloatRep] ]`, which returns [WordSlot, PtrSlot, WordSlot, FloatSlot]
INVARIANT: Result slots are sorted (via Ord SlotTy), except that at the head of the list we have the slot for the tag.
layoutUbxSum :: HasDebugCallStack => SortedSlotTys -> [SlotTy] -> [Int] Source #
slotPrimRep :: SlotTy -> PrimRep Source #
primRepSlot :: PrimRep -> SlotTy Source #
Is this type known to be data?
mightBeFunTy :: Type -> Bool Source #