{-# LANGUAGE ScopedTypeVariables, CPP, DeriveFunctor #-}
module Bag (
Bag,
emptyBag, unitBag, unionBags, unionManyBags,
mapBag,
elemBag, lengthBag,
filterBag, partitionBag, partitionBagWith,
concatBag, catBagMaybes, foldBag,
isEmptyBag, isSingletonBag, consBag, snocBag, anyBag, allBag,
listToBag, bagToList, mapAccumBagL,
concatMapBag, concatMapBagPair, mapMaybeBag,
mapBagM, mapBagM_,
flatMapBagM, flatMapBagPairM,
mapAndUnzipBagM, mapAccumBagLM,
anyBagM, filterBagM
) where
import GhcPrelude
import Outputable
import Util
import MonadUtils
import Control.Monad
import Data.Data
import Data.Maybe( mapMaybe )
import Data.List ( partition, mapAccumL )
import qualified Data.Foldable as Foldable
infixr 3 `consBag`
infixl 3 `snocBag`
data Bag a
= EmptyBag
| UnitBag a
| TwoBags (Bag a) (Bag a)
| ListBag [a]
deriving (Functor)
emptyBag :: Bag a
emptyBag = EmptyBag
unitBag :: a -> Bag a
unitBag = UnitBag
lengthBag :: Bag a -> Int
lengthBag EmptyBag = 0
lengthBag (UnitBag {}) = 1
lengthBag (TwoBags b1 b2) = lengthBag b1 + lengthBag b2
lengthBag (ListBag xs) = length xs
elemBag :: Eq a => a -> Bag a -> Bool
elemBag _ EmptyBag = False
elemBag x (UnitBag y) = x == y
elemBag x (TwoBags b1 b2) = x `elemBag` b1 || x `elemBag` b2
elemBag x (ListBag ys) = any (x ==) ys
unionManyBags :: [Bag a] -> Bag a
unionManyBags xs = foldr unionBags EmptyBag xs
unionBags :: Bag a -> Bag a -> Bag a
unionBags EmptyBag b = b
unionBags b EmptyBag = b
unionBags b1 b2 = TwoBags b1 b2
consBag :: a -> Bag a -> Bag a
snocBag :: Bag a -> a -> Bag a
consBag elt bag = (unitBag elt) `unionBags` bag
snocBag bag elt = bag `unionBags` (unitBag elt)
isEmptyBag :: Bag a -> Bool
isEmptyBag EmptyBag = True
isEmptyBag _ = False
isSingletonBag :: Bag a -> Bool
isSingletonBag EmptyBag = False
isSingletonBag (UnitBag _) = True
isSingletonBag (TwoBags _ _) = False
isSingletonBag (ListBag xs) = isSingleton xs
filterBag :: (a -> Bool) -> Bag a -> Bag a
filterBag _ EmptyBag = EmptyBag
filterBag pred b@(UnitBag val) = if pred val then b else EmptyBag
filterBag pred (TwoBags b1 b2) = sat1 `unionBags` sat2
where sat1 = filterBag pred b1
sat2 = filterBag pred b2
filterBag pred (ListBag vs) = listToBag (filter pred vs)
filterBagM :: Monad m => (a -> m Bool) -> Bag a -> m (Bag a)
filterBagM _ EmptyBag = return EmptyBag
filterBagM pred b@(UnitBag val) = do
flag <- pred val
if flag then return b
else return EmptyBag
filterBagM pred (TwoBags b1 b2) = do
sat1 <- filterBagM pred b1
sat2 <- filterBagM pred b2
return (sat1 `unionBags` sat2)
filterBagM pred (ListBag vs) = do
sat <- filterM pred vs
return (listToBag sat)
allBag :: (a -> Bool) -> Bag a -> Bool
allBag _ EmptyBag = True
allBag p (UnitBag v) = p v
allBag p (TwoBags b1 b2) = allBag p b1 && allBag p b2
allBag p (ListBag xs) = all p xs
anyBag :: (a -> Bool) -> Bag a -> Bool
anyBag _ EmptyBag = False
anyBag p (UnitBag v) = p v
anyBag p (TwoBags b1 b2) = anyBag p b1 || anyBag p b2
anyBag p (ListBag xs) = any p xs
anyBagM :: Monad m => (a -> m Bool) -> Bag a -> m Bool
anyBagM _ EmptyBag = return False
anyBagM p (UnitBag v) = p v
anyBagM p (TwoBags b1 b2) = do flag <- anyBagM p b1
if flag then return True
else anyBagM p b2
anyBagM p (ListBag xs) = anyM p xs
concatBag :: Bag (Bag a) -> Bag a
concatBag bss = foldr add emptyBag bss
where
add bs rs = bs `unionBags` rs
catBagMaybes :: Bag (Maybe a) -> Bag a
catBagMaybes bs = foldr add emptyBag bs
where
add Nothing rs = rs
add (Just x) rs = x `consBag` rs
partitionBag :: (a -> Bool) -> Bag a -> (Bag a ,
Bag a )
partitionBag _ EmptyBag = (EmptyBag, EmptyBag)
partitionBag pred b@(UnitBag val)
= if pred val then (b, EmptyBag) else (EmptyBag, b)
partitionBag pred (TwoBags b1 b2)
= (sat1 `unionBags` sat2, fail1 `unionBags` fail2)
where (sat1, fail1) = partitionBag pred b1
(sat2, fail2) = partitionBag pred b2
partitionBag pred (ListBag vs) = (listToBag sats, listToBag fails)
where (sats, fails) = partition pred vs
partitionBagWith :: (a -> Either b c) -> Bag a
-> (Bag b ,
Bag c )
partitionBagWith _ EmptyBag = (EmptyBag, EmptyBag)
partitionBagWith pred (UnitBag val)
= case pred val of
Left a -> (UnitBag a, EmptyBag)
Right b -> (EmptyBag, UnitBag b)
partitionBagWith pred (TwoBags b1 b2)
= (sat1 `unionBags` sat2, fail1 `unionBags` fail2)
where (sat1, fail1) = partitionBagWith pred b1
(sat2, fail2) = partitionBagWith pred b2
partitionBagWith pred (ListBag vs) = (listToBag sats, listToBag fails)
where (sats, fails) = partitionWith pred vs
foldBag :: (r -> r -> r)
-> (a -> r)
-> r
-> Bag a
-> r
foldBag _ _ e EmptyBag = e
foldBag t u e (UnitBag x) = u x `t` e
foldBag t u e (TwoBags b1 b2) = foldBag t u (foldBag t u e b2) b1
foldBag t u e (ListBag xs) = foldr (t.u) e xs
mapBag :: (a -> b) -> Bag a -> Bag b
mapBag = fmap
concatMapBag :: (a -> Bag b) -> Bag a -> Bag b
concatMapBag _ EmptyBag = EmptyBag
concatMapBag f (UnitBag x) = f x
concatMapBag f (TwoBags b1 b2) = unionBags (concatMapBag f b1) (concatMapBag f b2)
concatMapBag f (ListBag xs) = foldr (unionBags . f) emptyBag xs
concatMapBagPair :: (a -> (Bag b, Bag c)) -> Bag a -> (Bag b, Bag c)
concatMapBagPair _ EmptyBag = (EmptyBag, EmptyBag)
concatMapBagPair f (UnitBag x) = f x
concatMapBagPair f (TwoBags b1 b2) = (unionBags r1 r2, unionBags s1 s2)
where
(r1, s1) = concatMapBagPair f b1
(r2, s2) = concatMapBagPair f b2
concatMapBagPair f (ListBag xs) = foldr go (emptyBag, emptyBag) xs
where
go a (s1, s2) = (unionBags r1 s1, unionBags r2 s2)
where
(r1, r2) = f a
mapMaybeBag :: (a -> Maybe b) -> Bag a -> Bag b
mapMaybeBag _ EmptyBag = EmptyBag
mapMaybeBag f (UnitBag x) = case f x of
Nothing -> EmptyBag
Just y -> UnitBag y
mapMaybeBag f (TwoBags b1 b2) = unionBags (mapMaybeBag f b1) (mapMaybeBag f b2)
mapMaybeBag f (ListBag xs) = ListBag (mapMaybe f xs)
mapBagM :: Monad m => (a -> m b) -> Bag a -> m (Bag b)
mapBagM _ EmptyBag = return EmptyBag
mapBagM f (UnitBag x) = do r <- f x
return (UnitBag r)
mapBagM f (TwoBags b1 b2) = do r1 <- mapBagM f b1
r2 <- mapBagM f b2
return (TwoBags r1 r2)
mapBagM f (ListBag xs) = do rs <- mapM f xs
return (ListBag rs)
mapBagM_ :: Monad m => (a -> m b) -> Bag a -> m ()
mapBagM_ _ EmptyBag = return ()
mapBagM_ f (UnitBag x) = f x >> return ()
mapBagM_ f (TwoBags b1 b2) = mapBagM_ f b1 >> mapBagM_ f b2
mapBagM_ f (ListBag xs) = mapM_ f xs
flatMapBagM :: Monad m => (a -> m (Bag b)) -> Bag a -> m (Bag b)
flatMapBagM _ EmptyBag = return EmptyBag
flatMapBagM f (UnitBag x) = f x
flatMapBagM f (TwoBags b1 b2) = do r1 <- flatMapBagM f b1
r2 <- flatMapBagM f b2
return (r1 `unionBags` r2)
flatMapBagM f (ListBag xs) = foldrM k EmptyBag xs
where
k x b2 = do { b1 <- f x; return (b1 `unionBags` b2) }
flatMapBagPairM :: Monad m => (a -> m (Bag b, Bag c)) -> Bag a -> m (Bag b, Bag c)
flatMapBagPairM _ EmptyBag = return (EmptyBag, EmptyBag)
flatMapBagPairM f (UnitBag x) = f x
flatMapBagPairM f (TwoBags b1 b2) = do (r1,s1) <- flatMapBagPairM f b1
(r2,s2) <- flatMapBagPairM f b2
return (r1 `unionBags` r2, s1 `unionBags` s2)
flatMapBagPairM f (ListBag xs) = foldrM k (EmptyBag, EmptyBag) xs
where
k x (r2,s2) = do { (r1,s1) <- f x
; return (r1 `unionBags` r2, s1 `unionBags` s2) }
mapAndUnzipBagM :: Monad m => (a -> m (b,c)) -> Bag a -> m (Bag b, Bag c)
mapAndUnzipBagM _ EmptyBag = return (EmptyBag, EmptyBag)
mapAndUnzipBagM f (UnitBag x) = do (r,s) <- f x
return (UnitBag r, UnitBag s)
mapAndUnzipBagM f (TwoBags b1 b2) = do (r1,s1) <- mapAndUnzipBagM f b1
(r2,s2) <- mapAndUnzipBagM f b2
return (TwoBags r1 r2, TwoBags s1 s2)
mapAndUnzipBagM f (ListBag xs) = do ts <- mapM f xs
let (rs,ss) = unzip ts
return (ListBag rs, ListBag ss)
mapAccumBagL ::(acc -> x -> (acc, y))
-> acc
-> Bag x
-> (acc, Bag y)
mapAccumBagL _ s EmptyBag = (s, EmptyBag)
mapAccumBagL f s (UnitBag x) = let (s1, x1) = f s x in (s1, UnitBag x1)
mapAccumBagL f s (TwoBags b1 b2) = let (s1, b1') = mapAccumBagL f s b1
(s2, b2') = mapAccumBagL f s1 b2
in (s2, TwoBags b1' b2')
mapAccumBagL f s (ListBag xs) = let (s', xs') = mapAccumL f s xs
in (s', ListBag xs')
mapAccumBagLM :: Monad m
=> (acc -> x -> m (acc, y))
-> acc
-> Bag x
-> m (acc, Bag y)
mapAccumBagLM _ s EmptyBag = return (s, EmptyBag)
mapAccumBagLM f s (UnitBag x) = do { (s1, x1) <- f s x; return (s1, UnitBag x1) }
mapAccumBagLM f s (TwoBags b1 b2) = do { (s1, b1') <- mapAccumBagLM f s b1
; (s2, b2') <- mapAccumBagLM f s1 b2
; return (s2, TwoBags b1' b2') }
mapAccumBagLM f s (ListBag xs) = do { (s', xs') <- mapAccumLM f s xs
; return (s', ListBag xs') }
listToBag :: [a] -> Bag a
listToBag [] = EmptyBag
listToBag [x] = UnitBag x
listToBag vs = ListBag vs
bagToList :: Bag a -> [a]
bagToList b = foldr (:) [] b
instance (Outputable a) => Outputable (Bag a) where
ppr bag = braces (pprWithCommas ppr (bagToList bag))
instance Data a => Data (Bag a) where
gfoldl k z b = z listToBag `k` bagToList b
toConstr _ = abstractConstr $ "Bag("++show (typeOf (undefined::a))++")"
gunfold _ _ = error "gunfold"
dataTypeOf _ = mkNoRepType "Bag"
dataCast1 x = gcast1 x
instance Foldable.Foldable Bag where
foldr _ z EmptyBag = z
foldr k z (UnitBag x) = k x z
foldr k z (TwoBags b1 b2) = foldr k (foldr k z b2) b1
foldr k z (ListBag xs) = foldr k z xs
foldl _ z EmptyBag = z
foldl k z (UnitBag x) = k z x
foldl k z (TwoBags b1 b2) = foldl k (foldl k z b1) b2
foldl k z (ListBag xs) = foldl k z xs
foldl' _ z EmptyBag = z
foldl' k z (UnitBag x) = k z x
foldl' k z (TwoBags b1 b2) = let r1 = foldl' k z b1 in seq r1 $ foldl' k r1 b2
foldl' k z (ListBag xs) = foldl' k z xs
instance Traversable Bag where
traverse _ EmptyBag = pure EmptyBag
traverse f (UnitBag x) = UnitBag <$> f x
traverse f (TwoBags b1 b2) = TwoBags <$> traverse f b1 <*> traverse f b2
traverse f (ListBag xs) = ListBag <$> traverse f xs