{-# LANGUAGE DataKinds #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE LambdaCase #-}

-----------------------------------------------------------------------------
--
-- Stg to C-- code generation
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------

module GHC.StgToCmm ( codeGen ) where

import GHC.Prelude as Prelude

import GHC.StgToCmm.Prof (initCostCentres, ldvEnter)
import GHC.StgToCmm.Monad
import GHC.StgToCmm.Env
import GHC.StgToCmm.Bind
import GHC.StgToCmm.DataCon
import GHC.StgToCmm.Layout
import GHC.StgToCmm.Utils
import GHC.StgToCmm.Closure
import GHC.StgToCmm.Config
import GHC.StgToCmm.Hpc
import GHC.StgToCmm.Ticky
import GHC.StgToCmm.Types (ModuleLFInfos)

import GHC.Cmm
import GHC.Cmm.Utils
import GHC.Cmm.CLabel
import GHC.Cmm.Graph

import GHC.Stg.Syntax

import GHC.Types.CostCentre
import GHC.Types.IPE
import GHC.Types.HpcInfo
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.RepType
import GHC.Types.Basic
import GHC.Types.Var.Set ( isEmptyDVarSet )
import GHC.Types.Unique.FM
import GHC.Types.Name.Env

import GHC.Core.DataCon
import GHC.Core.TyCon
import GHC.Core.Multiplicity

import GHC.Unit.Module

import GHC.Utils.Error
import GHC.Utils.Outputable
import GHC.Utils.Panic.Plain
import GHC.Utils.Logger

import GHC.Utils.TmpFs

import GHC.Data.Stream
import GHC.Data.OrdList
import GHC.Types.Unique.Map

import Control.Monad (when,void, forM_)
import GHC.Utils.Misc
import System.IO.Unsafe
import qualified Data.ByteString as BS
import Data.IORef
import GHC.Utils.Panic (assertPpr)

codeGen :: Logger
        -> TmpFs
        -> StgToCmmConfig
        -> InfoTableProvMap
        -> [TyCon]
        -> CollectedCCs                -- (Local/global) cost-centres needing declaring/registering.
        -> [CgStgTopBinding]           -- Bindings to convert
        -> HpcInfo
        -> Stream IO CmmGroup ModuleLFInfos       -- Output as a stream, so codegen can
                                       -- be interleaved with output

codeGen :: Logger
-> TmpFs
-> StgToCmmConfig
-> InfoTableProvMap
-> [TyCon]
-> CollectedCCs
-> [CgStgTopBinding]
-> HpcInfo
-> Stream IO CmmGroup ModuleLFInfos
codeGen Logger
logger TmpFs
tmpfs StgToCmmConfig
cfg (InfoTableProvMap (UniqMap UniqFM
  DataCon (DataCon, NonEmpty (WordOff, Maybe IpeSourceLocation))
denv) ClosureMap
_ InfoTableToSourceLocationMap
_) [TyCon]
data_tycons
        CollectedCCs
cost_centre_info [CgStgTopBinding]
stg_binds HpcInfo
hpc_info
  = do  {     -- cg: run the code generator, and yield the resulting CmmGroup
              -- Using an IORef to store the state is a bit crude, but otherwise
              -- we would need to add a state monad layer which regresses
              -- allocations by 0.5-2%.
        ; IORef CgState
cgref <- IO (IORef CgState) -> Stream IO CmmGroup (IORef CgState)
forall a. IO a -> Stream IO CmmGroup a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (IORef CgState) -> Stream IO CmmGroup (IORef CgState))
-> IO (IORef CgState) -> Stream IO CmmGroup (IORef CgState)
forall a b. (a -> b) -> a -> b
$ IO CgState
initC IO CgState -> (CgState -> IO (IORef CgState)) -> IO (IORef CgState)
forall a b. IO a -> (a -> IO b) -> IO b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \CgState
s -> CgState -> IO (IORef CgState)
forall a. a -> IO (IORef a)
newIORef CgState
s
        ; let cg :: FCode a -> Stream IO CmmGroup a
              cg :: forall a. FCode a -> Stream IO CmmGroup a
cg FCode a
fcode = do
                (a
a, CmmGroup
cmm) <- IO (a, CmmGroup) -> Stream IO CmmGroup (a, CmmGroup)
forall a. IO a -> Stream IO CmmGroup a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (a, CmmGroup) -> Stream IO CmmGroup (a, CmmGroup))
-> (IO (a, CmmGroup) -> IO (a, CmmGroup))
-> IO (a, CmmGroup)
-> Stream IO CmmGroup (a, CmmGroup)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Logger
-> SDoc
-> ((a, CmmGroup) -> ())
-> IO (a, CmmGroup)
-> IO (a, CmmGroup)
forall (m :: * -> *) a.
MonadIO m =>
Logger -> SDoc -> (a -> ()) -> m a -> m a
withTimingSilent Logger
logger (String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"STG -> Cmm") ((a, CmmGroup) -> () -> ()
forall a b. a -> b -> b
`seq` ()) (IO (a, CmmGroup) -> Stream IO CmmGroup (a, CmmGroup))
-> IO (a, CmmGroup) -> Stream IO CmmGroup (a, CmmGroup)
forall a b. (a -> b) -> a -> b
$ do
                         CgState
st <- IORef CgState -> IO CgState
forall a. IORef a -> IO a
readIORef IORef CgState
cgref
                         let fstate :: FCodeState
fstate = Platform -> FCodeState
initFCodeState (Platform -> FCodeState) -> Platform -> FCodeState
forall a b. (a -> b) -> a -> b
$ StgToCmmConfig -> Platform
stgToCmmPlatform StgToCmmConfig
cfg
                         let ((a, CmmGroup)
a,CgState
st') = StgToCmmConfig
-> FCodeState
-> CgState
-> FCode (a, CmmGroup)
-> ((a, CmmGroup), CgState)
forall a.
StgToCmmConfig -> FCodeState -> CgState -> FCode a -> (a, CgState)
runC StgToCmmConfig
cfg FCodeState
fstate CgState
st (FCode a -> FCode (a, CmmGroup)
forall a. FCode a -> FCode (a, CmmGroup)
getCmm FCode a
fcode)

                         -- NB. stub-out cgs_tops and cgs_stmts.  This fixes
                         -- a big space leak.  DO NOT REMOVE!
                         -- This is observed by the #3294 test
                         IORef CgState -> CgState -> IO ()
forall a. IORef a -> a -> IO ()
writeIORef IORef CgState
cgref (CgState -> IO ()) -> CgState -> IO ()
forall a b. (a -> b) -> a -> b
$! (CgState
st'{ cgs_tops = nilOL, cgs_stmts = mkNop })
                         (a, CmmGroup) -> IO (a, CmmGroup)
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (a, CmmGroup)
a
                CmmGroup -> Stream IO CmmGroup ()
forall (m :: * -> *) a. Monad m => a -> Stream m a ()
yield CmmGroup
cmm
                a -> Stream IO CmmGroup a
forall a. a -> Stream IO CmmGroup a
forall (m :: * -> *) a. Monad m => a -> m a
return a
a

               -- Note [codegen-split-init] the cmm_init block must come
               -- FIRST.  This is because when -split-objs is on we need to
               -- combine this block with its initialisation routines; see
               -- Note [pipeline-split-init].
        ; FCode () -> Stream IO CmmGroup ()
forall a. FCode a -> Stream IO CmmGroup a
cg (CollectedCCs -> Module -> HpcInfo -> FCode ()
mkModuleInit CollectedCCs
cost_centre_info (StgToCmmConfig -> Module
stgToCmmThisModule StgToCmmConfig
cfg) HpcInfo
hpc_info)

        ; (CgStgTopBinding -> Stream IO CmmGroup ())
-> [CgStgTopBinding] -> Stream IO CmmGroup ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (FCode () -> Stream IO CmmGroup ()
forall a. FCode a -> Stream IO CmmGroup a
cg (FCode () -> Stream IO CmmGroup ())
-> (CgStgTopBinding -> FCode ())
-> CgStgTopBinding
-> Stream IO CmmGroup ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Logger -> TmpFs -> StgToCmmConfig -> CgStgTopBinding -> FCode ()
cgTopBinding Logger
logger TmpFs
tmpfs StgToCmmConfig
cfg) [CgStgTopBinding]
stg_binds
                -- Put datatype_stuff after code_stuff, because the
                -- datatype closure table (for enumeration types) to
                -- (say) PrelBase_True_closure, which is defined in
                -- code_stuff
        ; let do_tycon :: TyCon -> Stream IO CmmGroup ()
do_tycon TyCon
tycon = do
                -- Generate a table of static closures for an
                -- enumeration type Note that the closure pointers are
                -- tagged.
                 Bool -> Stream IO CmmGroup () -> Stream IO CmmGroup ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (TyCon -> Bool
isEnumerationTyCon TyCon
tycon) (Stream IO CmmGroup () -> Stream IO CmmGroup ())
-> Stream IO CmmGroup () -> Stream IO CmmGroup ()
forall a b. (a -> b) -> a -> b
$ FCode () -> Stream IO CmmGroup ()
forall a. FCode a -> Stream IO CmmGroup a
cg (TyCon -> FCode ()
cgEnumerationTyCon TyCon
tycon)
                 -- Emit normal info_tables, for data constructors defined in this module.
                 (DataCon -> Stream IO CmmGroup ())
-> [DataCon] -> Stream IO CmmGroup ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (FCode () -> Stream IO CmmGroup ()
forall a. FCode a -> Stream IO CmmGroup a
cg (FCode () -> Stream IO CmmGroup ())
-> (DataCon -> FCode ()) -> DataCon -> Stream IO CmmGroup ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConInfoTableLocation -> DataCon -> FCode ()
cgDataCon ConInfoTableLocation
DefinitionSite) (TyCon -> [DataCon]
tyConDataCons TyCon
tycon)

        ; (TyCon -> Stream IO CmmGroup ())
-> [TyCon] -> Stream IO CmmGroup ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ TyCon -> Stream IO CmmGroup ()
do_tycon [TyCon]
data_tycons

        -- Emit special info tables for everything used in this module
        -- This will only do something if  `-fdistinct-info-tables` is turned on.
        ; ((DataCon, NonEmpty (WordOff, Maybe IpeSourceLocation))
 -> Stream IO CmmGroup ())
-> [(DataCon, NonEmpty (WordOff, Maybe IpeSourceLocation))]
-> Stream IO CmmGroup ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (\(DataCon
dc, NonEmpty (WordOff, Maybe IpeSourceLocation)
ns) -> NonEmpty (WordOff, Maybe IpeSourceLocation)
-> ((WordOff, Maybe IpeSourceLocation) -> Stream IO CmmGroup ())
-> Stream IO CmmGroup ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ NonEmpty (WordOff, Maybe IpeSourceLocation)
ns (((WordOff, Maybe IpeSourceLocation) -> Stream IO CmmGroup ())
 -> Stream IO CmmGroup ())
-> ((WordOff, Maybe IpeSourceLocation) -> Stream IO CmmGroup ())
-> Stream IO CmmGroup ()
forall a b. (a -> b) -> a -> b
$ \(WordOff
k, Maybe IpeSourceLocation
_ss) -> FCode () -> Stream IO CmmGroup ()
forall a. FCode a -> Stream IO CmmGroup a
cg (ConInfoTableLocation -> DataCon -> FCode ()
cgDataCon (Module -> WordOff -> ConInfoTableLocation
UsageSite (StgToCmmConfig -> Module
stgToCmmThisModule StgToCmmConfig
cfg) WordOff
k) DataCon
dc)) (UniqFM
  DataCon (DataCon, NonEmpty (WordOff, Maybe IpeSourceLocation))
-> [(DataCon, NonEmpty (WordOff, Maybe IpeSourceLocation))]
forall key elt. UniqFM key elt -> [elt]
nonDetEltsUFM UniqFM
  DataCon (DataCon, NonEmpty (WordOff, Maybe IpeSourceLocation))
denv)

        ; CgState
final_state <- IO CgState -> Stream IO CmmGroup CgState
forall a. IO a -> Stream IO CmmGroup a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IORef CgState -> IO CgState
forall a. IORef a -> IO a
readIORef IORef CgState
cgref)
        ; let cg_id_infos :: CgBindings
cg_id_infos = CgState -> CgBindings
cgs_binds CgState
final_state

          -- See Note [Conveying CAF-info and LFInfo between modules] in
          -- GHC.StgToCmm.Types
        ; let extractInfo :: CgIdInfo -> (Name, LambdaFormInfo)
extractInfo CgIdInfo
info = (Name
name, LambdaFormInfo
lf)
                where
                  !name :: Name
name = Var -> Name
idName (CgIdInfo -> Var
cg_id CgIdInfo
info)
                  !lf :: LambdaFormInfo
lf = CgIdInfo -> LambdaFormInfo
cg_lf CgIdInfo
info

              !generatedInfo :: ModuleLFInfos
generatedInfo
                | StgToCmmConfig -> Bool
stgToCmmOmitIfPragmas StgToCmmConfig
cfg
                = ModuleLFInfos
forall a. NameEnv a
emptyNameEnv
                | Bool
otherwise
                = [(Name, LambdaFormInfo)] -> ModuleLFInfos
forall a. [(Name, a)] -> NameEnv a
mkNameEnv ((CgIdInfo -> (Name, LambdaFormInfo))
-> [CgIdInfo] -> [(Name, LambdaFormInfo)]
forall a b. (a -> b) -> [a] -> [b]
Prelude.map CgIdInfo -> (Name, LambdaFormInfo)
extractInfo (CgBindings -> [CgIdInfo]
forall key elt. UniqFM key elt -> [elt]
nonDetEltsUFM CgBindings
cg_id_infos))

        ; ModuleLFInfos -> Stream IO CmmGroup ModuleLFInfos
forall a. a -> Stream IO CmmGroup a
forall (m :: * -> *) a. Monad m => a -> m a
return ModuleLFInfos
generatedInfo
        }

---------------------------------------------------------------
--      Top-level bindings
---------------------------------------------------------------

{- 'cgTopBinding' is only used for top-level bindings, since they need
to be allocated statically (not in the heap) and need to be labelled.
No unboxed bindings can happen at top level.

In the code below, the static bindings are accumulated in the
@MkCgState@, and transferred into the ``statics'' slot by @forkStatics@.
This is so that we can write the top level processing in a compositional
style, with the increasing static environment being plumbed as a state
variable. -}

cgTopBinding :: Logger -> TmpFs -> StgToCmmConfig -> CgStgTopBinding -> FCode ()
cgTopBinding :: Logger -> TmpFs -> StgToCmmConfig -> CgStgTopBinding -> FCode ()
cgTopBinding Logger
logger TmpFs
tmpfs StgToCmmConfig
cfg = \case
    StgTopLifted (StgNonRec BinderP 'CodeGen
id GenStgRhs 'CodeGen
rhs) -> do
        let (CgIdInfo
info, FCode ()
fcode) = StgToCmmConfig
-> RecFlag -> Var -> GenStgRhs 'CodeGen -> (CgIdInfo, FCode ())
cgTopRhs StgToCmmConfig
cfg RecFlag
NonRecursive Var
BinderP 'CodeGen
id GenStgRhs 'CodeGen
rhs
        FCode ()
fcode
        CgIdInfo -> FCode ()
addBindC CgIdInfo
info

    StgTopLifted (StgRec [(BinderP 'CodeGen, GenStgRhs 'CodeGen)]
pairs) -> do
        let ([Var]
bndrs, [GenStgRhs 'CodeGen]
rhss) = [(Var, GenStgRhs 'CodeGen)] -> ([Var], [GenStgRhs 'CodeGen])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Var, GenStgRhs 'CodeGen)]
[(BinderP 'CodeGen, GenStgRhs 'CodeGen)]
pairs
        let pairs' :: [(Var, GenStgRhs 'CodeGen)]
pairs' = [Var] -> [GenStgRhs 'CodeGen] -> [(Var, GenStgRhs 'CodeGen)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Var]
bndrs [GenStgRhs 'CodeGen]
rhss
            r :: [(CgIdInfo, FCode ())]
r = (Var -> GenStgRhs 'CodeGen -> (CgIdInfo, FCode ()))
-> [(Var, GenStgRhs 'CodeGen)] -> [(CgIdInfo, FCode ())]
forall a b c. (a -> b -> c) -> [(a, b)] -> [c]
unzipWith (StgToCmmConfig
-> RecFlag -> Var -> GenStgRhs 'CodeGen -> (CgIdInfo, FCode ())
cgTopRhs StgToCmmConfig
cfg RecFlag
Recursive) [(Var, GenStgRhs 'CodeGen)]
pairs'
            ([CgIdInfo]
infos, [FCode ()]
fcodes) = [(CgIdInfo, FCode ())] -> ([CgIdInfo], [FCode ()])
forall a b. [(a, b)] -> ([a], [b])
unzip [(CgIdInfo, FCode ())]
r
        [CgIdInfo] -> FCode ()
addBindsC [CgIdInfo]
infos
        [FCode ()] -> FCode ()
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, Monad m) =>
t (m a) -> m ()
sequence_ [FCode ()]
fcodes

    StgTopStringLit Var
id ByteString
str -> do
        let label :: CLabel
label = Name -> CLabel
mkBytesLabel (Var -> Name
idName Var
id)
        -- emit either a CmmString literal or dump the string in a file and emit a
        -- CmmFileEmbed literal.  If binary blobs aren't supported,
        -- the threshold in `cfg` will be 0.
        -- See Note [Embedding large binary blobs] in GHC.CmmToAsm.Ppr
        let asString :: Bool
asString = case StgToCmmConfig -> Maybe Word
stgToCmmBinBlobThresh StgToCmmConfig
cfg of
              Just Word
bin_blob_threshold -> WordOff -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral (ByteString -> WordOff
BS.length ByteString
str) Word -> Word -> Bool
forall a. Ord a => a -> a -> Bool
<= Word
bin_blob_threshold
              Maybe Word
Nothing                -> Bool
True

            (CmmLit
lit,CmmDecl
decl) = if Bool
asString
              then CLabel -> ByteString -> (CmmLit, CmmDecl)
forall (raw :: Bool) info stmt.
CLabel
-> ByteString -> (CmmLit, GenCmmDecl (GenCmmStatics raw) info stmt)
mkByteStringCLit CLabel
label ByteString
str
              else IO (CmmLit, CmmDecl) -> (CmmLit, CmmDecl)
forall a. IO a -> a
unsafePerformIO (IO (CmmLit, CmmDecl) -> (CmmLit, CmmDecl))
-> IO (CmmLit, CmmDecl) -> (CmmLit, CmmDecl)
forall a b. (a -> b) -> a -> b
$ do
                     String
bFile <- Logger
-> TmpFs -> TempDir -> TempFileLifetime -> String -> IO String
newTempName Logger
logger TmpFs
tmpfs (StgToCmmConfig -> TempDir
stgToCmmTmpDir StgToCmmConfig
cfg) TempFileLifetime
TFL_CurrentModule String
".dat"
                     String -> ByteString -> IO ()
BS.writeFile String
bFile ByteString
str
                     (CmmLit, CmmDecl) -> IO (CmmLit, CmmDecl)
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ((CmmLit, CmmDecl) -> IO (CmmLit, CmmDecl))
-> (CmmLit, CmmDecl) -> IO (CmmLit, CmmDecl)
forall a b. (a -> b) -> a -> b
$ CLabel -> String -> WordOff -> (CmmLit, CmmDecl)
forall (raw :: Bool) info stmt.
CLabel
-> String
-> WordOff
-> (CmmLit, GenCmmDecl (GenCmmStatics raw) info stmt)
mkFileEmbedLit CLabel
label String
bFile (ByteString -> WordOff
BS.length ByteString
str)
        CmmDecl -> FCode ()
emitDecl CmmDecl
decl
        CgIdInfo -> FCode ()
addBindC (Platform -> Var -> LambdaFormInfo -> CmmLit -> CgIdInfo
litIdInfo (StgToCmmConfig -> Platform
stgToCmmPlatform StgToCmmConfig
cfg) Var
id LambdaFormInfo
mkLFStringLit CmmLit
lit)


cgTopRhs :: StgToCmmConfig -> RecFlag -> Id -> CgStgRhs -> (CgIdInfo, FCode ())
        -- The Id is passed along for setting up a binding...

cgTopRhs :: StgToCmmConfig
-> RecFlag -> Var -> GenStgRhs 'CodeGen -> (CgIdInfo, FCode ())
cgTopRhs StgToCmmConfig
cfg RecFlag
_rec Var
bndr (StgRhsCon CostCentreStack
_cc DataCon
con ConstructorNumber
mn [StgTickish]
_ts [StgArg]
args Type
_typ)
  = StgToCmmConfig
-> Var
-> DataCon
-> ConstructorNumber
-> [NonVoid StgArg]
-> (CgIdInfo, FCode ())
cgTopRhsCon StgToCmmConfig
cfg Var
bndr DataCon
con ConstructorNumber
mn ([StgArg] -> [NonVoid StgArg]
assertNonVoidStgArgs [StgArg]
args)
      -- con args are always non-void,
      -- see Note [Post-unarisation invariants] in GHC.Stg.Unarise

cgTopRhs StgToCmmConfig
cfg RecFlag
rec Var
bndr (StgRhsClosure XRhsClosure 'CodeGen
fvs CostCentreStack
cc UpdateFlag
upd_flag [BinderP 'CodeGen]
args GenStgExpr 'CodeGen
body Type
_typ)
  = Bool -> SDoc -> (CgIdInfo, FCode ()) -> (CgIdInfo, FCode ())
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (DIdSet -> Bool
isEmptyDVarSet DIdSet
XRhsClosure 'CodeGen
fvs) (String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"fvs:" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> DIdSet -> SDoc
forall a. Outputable a => a -> SDoc
ppr DIdSet
XRhsClosure 'CodeGen
fvs) ((CgIdInfo, FCode ()) -> (CgIdInfo, FCode ()))
-> (CgIdInfo, FCode ()) -> (CgIdInfo, FCode ())
forall a b. (a -> b) -> a -> b
$   -- There should be no free variables
    Platform
-> RecFlag
-> Var
-> CostCentreStack
-> UpdateFlag
-> [Var]
-> GenStgExpr 'CodeGen
-> (CgIdInfo, FCode ())
cgTopRhsClosure (StgToCmmConfig -> Platform
stgToCmmPlatform StgToCmmConfig
cfg) RecFlag
rec Var
bndr CostCentreStack
cc UpdateFlag
upd_flag [Var]
[BinderP 'CodeGen]
args GenStgExpr 'CodeGen
body


---------------------------------------------------------------
--      Module initialisation code
---------------------------------------------------------------

mkModuleInit
        :: CollectedCCs         -- cost centre info
        -> Module
        -> HpcInfo
        -> FCode ()

mkModuleInit :: CollectedCCs -> Module -> HpcInfo -> FCode ()
mkModuleInit CollectedCCs
cost_centre_info Module
this_mod HpcInfo
hpc_info
  = do  { Module -> HpcInfo -> FCode ()
initHpc Module
this_mod HpcInfo
hpc_info
        ; CollectedCCs -> FCode ()
initCostCentres CollectedCCs
cost_centre_info
        }


---------------------------------------------------------------
--      Generating static stuff for algebraic data types
---------------------------------------------------------------


cgEnumerationTyCon :: TyCon -> FCode ()
cgEnumerationTyCon :: TyCon -> FCode ()
cgEnumerationTyCon TyCon
tycon
  = do Platform
platform <- FCode Platform
getPlatform
       CLabel -> [CmmLit] -> FCode ()
emitRODataLits (Name -> CafInfo -> CLabel
mkClosureTableLabel (TyCon -> Name
tyConName TyCon
tycon) CafInfo
NoCafRefs)
             [ CLabel -> WordOff -> CmmLit
CmmLabelOff (Name -> CafInfo -> CLabel
mkClosureLabel (DataCon -> Name
dataConName DataCon
con) CafInfo
NoCafRefs)
                           (Platform -> DataCon -> WordOff
tagForCon Platform
platform DataCon
con)
             | DataCon
con <- TyCon -> [DataCon]
tyConDataCons TyCon
tycon]


cgDataCon :: ConInfoTableLocation -> DataCon -> FCode ()
-- Generate the entry code, info tables, and (for niladic constructor)
-- the static closure, for a constructor.
cgDataCon :: ConInfoTableLocation -> DataCon -> FCode ()
cgDataCon ConInfoTableLocation
mn DataCon
data_con
  = do  { Bool -> FCode ()
forall (m :: * -> *). (HasCallStack, Applicative m) => Bool -> m ()
massert (Bool -> Bool
not (DataCon -> Bool
isUnboxedTupleDataCon DataCon
data_con Bool -> Bool -> Bool
|| DataCon -> Bool
isUnboxedSumDataCon DataCon
data_con))
        ; Profile
profile <- FCode Profile
getProfile
        ; Platform
platform <- FCode Platform
getPlatform
        ; let
            (WordOff
tot_wds, --  #ptr_wds + #nonptr_wds
             WordOff
ptr_wds) --  #ptr_wds
              = Profile -> [NonVoid PrimRep] -> (WordOff, WordOff)
mkVirtConstrSizes Profile
profile [NonVoid PrimRep]
arg_reps

            nonptr_wds :: WordOff
nonptr_wds   = WordOff
tot_wds WordOff -> WordOff -> WordOff
forall a. Num a => a -> a -> a
- WordOff
ptr_wds

            dyn_info_tbl :: CmmInfoTable
dyn_info_tbl =
              Profile
-> DataCon
-> ConInfoTableLocation
-> Bool
-> WordOff
-> WordOff
-> CmmInfoTable
mkDataConInfoTable Profile
profile DataCon
data_con ConInfoTableLocation
mn Bool
False WordOff
ptr_wds WordOff
nonptr_wds

            -- We're generating info tables, so we don't know and care about
            -- what the actual arguments are. Using () here as the place holder.
            arg_reps :: [NonVoid PrimRep]
            arg_reps :: [NonVoid PrimRep]
arg_reps = [ PrimRep -> NonVoid PrimRep
forall a. a -> NonVoid a
NonVoid PrimRep
rep_ty
                       | Scaled Type
ty <- DataCon -> [Scaled Type]
dataConRepArgTys DataCon
data_con
                       , PrimRep
rep_ty <- HasDebugCallStack => Type -> [PrimRep]
Type -> [PrimRep]
typePrimRep (Scaled Type -> Type
forall a. Scaled a -> a
scaledThing Scaled Type
ty)
                       , Bool -> Bool
not (PrimRep -> Bool
isVoidRep PrimRep
rep_ty) ]

        ; Platform
-> CmmInfoTable -> Convention -> [LocalReg] -> FCode () -> FCode ()
emitClosureAndInfoTable Platform
platform CmmInfoTable
dyn_info_tbl Convention
NativeDirectCall [] (FCode () -> FCode ()) -> FCode () -> FCode ()
forall a b. (a -> b) -> a -> b
$
            -- NB: the closure pointer is assumed *untagged* on
            -- entry to a constructor.  If the pointer is tagged,
            -- then we should not be entering it.  This assumption
            -- is used in ldvEnter and when tagging the pointer to
            -- return it.
            -- NB 2: We don't set CC when entering data (WDP 94/06)
            do { FCode ()
tickyEnterDynCon
               ; let node :: CmmExpr
node = CmmReg -> CmmExpr
CmmReg (CmmReg -> CmmExpr) -> CmmReg -> CmmExpr
forall a b. (a -> b) -> a -> b
$ Platform -> CmmReg
nodeReg Platform
platform
               ; CmmExpr -> FCode ()
ldvEnter CmmExpr
node
               ; WordOff -> FCode ()
tickyReturnOldCon ([NonVoid PrimRep] -> WordOff
forall a. [a] -> WordOff
forall (t :: * -> *) a. Foldable t => t a -> WordOff
length [NonVoid PrimRep]
arg_reps)
               ; FCode ReturnKind -> FCode ()
forall (f :: * -> *) a. Functor f => f a -> f ()
void (FCode ReturnKind -> FCode ()) -> FCode ReturnKind -> FCode ()
forall a b. (a -> b) -> a -> b
$ [CmmExpr] -> FCode ReturnKind
emitReturn [Platform -> CmmExpr -> WordOff -> CmmExpr
cmmOffsetB Platform
platform CmmExpr
node (Platform -> DataCon -> WordOff
tagForCon Platform
platform DataCon
data_con)]
               }
                    -- The case continuation code expects a tagged pointer
        }