{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
module GHC.Core.Coercion (
Coercion, CoercionN, CoercionR, CoercionP,
MCoercion(..), MCoercionN, MCoercionR,
CoSel(..), FunSel(..),
UnivCoProvenance, CoercionHole(..),
coHoleCoVar, setCoHoleCoVar,
LeftOrRight(..),
Var, CoVar, TyCoVar,
Role(..), ltRole,
coVarRType, coVarLType, coVarTypes,
coVarKind, coVarKindsTypesRole, coVarRole,
coercionType, mkCoercionType,
coercionKind, coercionLKind, coercionRKind,coercionKinds,
coercionRole, coercionKindRole,
mkGReflCo, mkReflCo, mkRepReflCo, mkNomReflCo,
mkCoVarCo, mkCoVarCos,
mkAxInstCo, mkUnbranchedAxInstCo,
mkAxInstRHS, mkUnbranchedAxInstRHS,
mkAxInstLHS, mkUnbranchedAxInstLHS,
mkPiCo, mkPiCos, mkCoCast,
mkSymCo, mkTransCo,
mkSelCo, getNthFun, getNthFromType, mkLRCo,
mkInstCo, mkAppCo, mkAppCos, mkTyConAppCo,
mkFunCo1, mkFunCo2, mkFunCoNoFTF, mkFunResCo,
mkNakedFunCo1, mkNakedFunCo2,
mkForAllCo, mkForAllCos, mkHomoForAllCos,
mkPhantomCo,
mkHoleCo, mkUnivCo, mkSubCo,
mkAxiomInstCo, mkProofIrrelCo,
downgradeRole, mkAxiomRuleCo,
mkGReflRightCo, mkGReflLeftCo, mkCoherenceLeftCo, mkCoherenceRightCo,
mkKindCo,
castCoercionKind, castCoercionKind1, castCoercionKind2,
mkPrimEqPred, mkReprPrimEqPred, mkPrimEqPredRole,
mkHeteroPrimEqPred, mkHeteroReprPrimEqPred,
instNewTyCon_maybe,
NormaliseStepper, NormaliseStepResult(..), composeSteppers, unwrapNewTypeStepper,
topNormaliseNewType_maybe, topNormaliseTypeX,
decomposeCo, decomposeFunCo, decomposePiCos, getCoVar_maybe,
splitAppCo_maybe,
splitFunCo_maybe,
splitForAllCo_maybe,
splitForAllCo_ty_maybe, splitForAllCo_co_maybe,
tyConRole, tyConRolesX, tyConRolesRepresentational, setNominalRole_maybe,
tyConRoleListX, tyConRoleListRepresentational, funRole,
pickLR,
isGReflCo, isReflCo, isReflCo_maybe, isGReflCo_maybe, isReflexiveCo, isReflexiveCo_maybe,
isReflCoVar_maybe, isGReflMCo, mkGReflLeftMCo, mkGReflRightMCo,
mkCoherenceRightMCo,
coToMCo, mkTransMCo, mkTransMCoL, mkTransMCoR, mkCastTyMCo, mkSymMCo,
mkHomoForAllMCo, mkFunResMCo, mkPiMCos,
isReflMCo, checkReflexiveMCo,
mkCoVar, isCoVar, coVarName, setCoVarName, setCoVarUnique,
tyCoVarsOfCo, tyCoVarsOfCos, coVarsOfCo,
tyCoFVsOfCo, tyCoFVsOfCos, tyCoVarsOfCoDSet,
coercionSize, anyFreeVarsOfCo,
CvSubstEnv, emptyCvSubstEnv,
lookupCoVar,
substCo, substCos, substCoVar, substCoVars, substCoWith,
substCoVarBndr,
extendTvSubstAndInScope, getCvSubstEnv,
liftCoSubst, liftCoSubstTyVar, liftCoSubstWith, liftCoSubstWithEx,
emptyLiftingContext, extendLiftingContext, extendLiftingContextAndInScope,
liftCoSubstVarBndrUsing, isMappedByLC,
mkSubstLiftingContext, zapLiftingContext,
substForAllCoBndrUsingLC, lcSubst, lcInScopeSet,
LiftCoEnv, LiftingContext(..), liftEnvSubstLeft, liftEnvSubstRight,
substRightCo, substLeftCo, swapLiftCoEnv, lcSubstLeft, lcSubstRight,
eqCoercion, eqCoercionX,
seqCo,
pprCo, pprParendCo,
pprCoAxiom, pprCoAxBranch, pprCoAxBranchLHS,
pprCoAxBranchUser, tidyCoAxBndrsForUser,
etaExpandCoAxBranch,
tidyCo, tidyCos,
promoteCoercion, buildCoercion,
multToCo, mkRuntimeRepCo,
hasCoercionHoleTy, hasCoercionHoleCo, hasThisCoercionHoleTy,
setCoHoleType
) where
import {-# SOURCE #-} GHC.CoreToIface (toIfaceTyCon, tidyToIfaceTcArgs)
import GHC.Prelude
import GHC.Iface.Type
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.FVs
import GHC.Core.TyCo.Ppr
import GHC.Core.TyCo.Subst
import GHC.Core.TyCo.Tidy
import GHC.Core.TyCo.Compare( eqType, eqTypeX )
import GHC.Core.Type
import GHC.Core.TyCon
import GHC.Core.TyCon.RecWalk
import GHC.Core.Coercion.Axiom
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Name hiding ( varName )
import GHC.Types.Basic
import GHC.Types.Unique
import GHC.Data.FastString
import GHC.Data.Pair
import GHC.Types.SrcLoc
import GHC.Builtin.Names
import GHC.Builtin.Types.Prim
import GHC.Data.List.SetOps
import GHC.Data.Maybe
import GHC.Types.Unique.FM
import GHC.Data.List.Infinite (Infinite (..))
import qualified GHC.Data.List.Infinite as Inf
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import Control.Monad (foldM, zipWithM)
import Data.Function ( on )
import Data.Char( isDigit )
import qualified Data.Monoid as Monoid
coVarName :: CoVar -> Name
coVarName :: CoVar -> Name
coVarName = CoVar -> Name
varName
setCoVarUnique :: CoVar -> Unique -> CoVar
setCoVarUnique :: CoVar -> Unique -> CoVar
setCoVarUnique = CoVar -> Unique -> CoVar
setVarUnique
setCoVarName :: CoVar -> Name -> CoVar
setCoVarName :: CoVar -> Name -> CoVar
setCoVarName = CoVar -> Name -> CoVar
setVarName
etaExpandCoAxBranch :: CoAxBranch -> ([TyVar], [Type], Type)
etaExpandCoAxBranch :: CoAxBranch -> ([CoVar], [Type], Type)
etaExpandCoAxBranch (CoAxBranch { cab_tvs :: CoAxBranch -> [CoVar]
cab_tvs = [CoVar]
tvs
, cab_eta_tvs :: CoAxBranch -> [CoVar]
cab_eta_tvs = [CoVar]
eta_tvs
, cab_lhs :: CoAxBranch -> [Type]
cab_lhs = [Type]
lhs
, cab_rhs :: CoAxBranch -> Type
cab_rhs = Type
rhs })
= ([CoVar]
tvs [CoVar] -> [CoVar] -> [CoVar]
forall a. [a] -> [a] -> [a]
++ [CoVar]
eta_tvs, [Type]
lhs [Type] -> [Type] -> [Type]
forall a. [a] -> [a] -> [a]
++ [Type]
eta_tys, Type -> [Type] -> Type
mkAppTys Type
rhs [Type]
eta_tys)
where
eta_tys :: [Type]
eta_tys = [CoVar] -> [Type]
mkTyVarTys [CoVar]
eta_tvs
pprCoAxiom :: CoAxiom br -> SDoc
pprCoAxiom :: forall (br :: BranchFlag). CoAxiom br -> SDoc
pprCoAxiom ax :: CoAxiom br
ax@(CoAxiom { co_ax_tc :: forall (br :: BranchFlag). CoAxiom br -> TyCon
co_ax_tc = TyCon
tc, co_ax_branches :: forall (br :: BranchFlag). CoAxiom br -> Branches br
co_ax_branches = Branches br
branches })
= SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"axiom" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> CoAxiom br -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoAxiom br
ax)
Arity
2 (SDoc -> SDoc
forall doc. IsLine doc => doc -> doc
braces (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat ((CoAxBranch -> SDoc) -> [CoAxBranch] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (TyCon -> CoAxBranch -> SDoc
pprCoAxBranchUser TyCon
tc) (Branches br -> [CoAxBranch]
forall (br :: BranchFlag). Branches br -> [CoAxBranch]
fromBranches Branches br
branches)))
pprCoAxBranchUser :: TyCon -> CoAxBranch -> SDoc
pprCoAxBranchUser :: TyCon -> CoAxBranch -> SDoc
pprCoAxBranchUser TyCon
tc CoAxBranch
br
| TyCon -> Bool
isDataFamilyTyCon TyCon
tc = TyCon -> CoAxBranch -> SDoc
pprCoAxBranchLHS TyCon
tc CoAxBranch
br
| Bool
otherwise = TyCon -> CoAxBranch -> SDoc
pprCoAxBranch TyCon
tc CoAxBranch
br
pprCoAxBranchLHS :: TyCon -> CoAxBranch -> SDoc
pprCoAxBranchLHS :: TyCon -> CoAxBranch -> SDoc
pprCoAxBranchLHS = (TidyEnv -> Type -> SDoc) -> TyCon -> CoAxBranch -> SDoc
ppr_co_ax_branch TidyEnv -> Type -> SDoc
forall {doc} {p} {p}. IsOutput doc => p -> p -> doc
pp_rhs
where
pp_rhs :: p -> p -> doc
pp_rhs p
_ p
_ = doc
forall doc. IsOutput doc => doc
empty
pprCoAxBranch :: TyCon -> CoAxBranch -> SDoc
pprCoAxBranch :: TyCon -> CoAxBranch -> SDoc
pprCoAxBranch = (TidyEnv -> Type -> SDoc) -> TyCon -> CoAxBranch -> SDoc
ppr_co_ax_branch TidyEnv -> Type -> SDoc
ppr_rhs
where
ppr_rhs :: TidyEnv -> Type -> SDoc
ppr_rhs TidyEnv
env Type
rhs = SDoc
forall doc. IsLine doc => doc
equals SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> TidyEnv -> PprPrec -> Type -> SDoc
pprPrecTypeX TidyEnv
env PprPrec
topPrec Type
rhs
ppr_co_ax_branch :: (TidyEnv -> Type -> SDoc)
-> TyCon -> CoAxBranch -> SDoc
ppr_co_ax_branch :: (TidyEnv -> Type -> SDoc) -> TyCon -> CoAxBranch -> SDoc
ppr_co_ax_branch TidyEnv -> Type -> SDoc
ppr_rhs TyCon
fam_tc CoAxBranch
branch
= (SDoc -> SDoc -> SDoc) -> [SDoc] -> SDoc
forall a. (a -> a -> a) -> [a] -> a
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 ((SDoc -> Arity -> SDoc -> SDoc) -> Arity -> SDoc -> SDoc -> SDoc
forall a b c. (a -> b -> c) -> b -> a -> c
flip SDoc -> Arity -> SDoc -> SDoc
hangNotEmpty Arity
2)
[ [ForAllTyBinder] -> SDoc
pprUserForAll (ForAllTyFlag -> [CoVar] -> [ForAllTyBinder]
forall vis. vis -> [CoVar] -> [VarBndr CoVar vis]
mkForAllTyBinders ForAllTyFlag
Inferred [CoVar]
bndrs')
, SDoc
pp_lhs SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> TidyEnv -> Type -> SDoc
ppr_rhs TidyEnv
tidy_env Type
ee_rhs
, [SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"-- Defined" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SDoc
pp_loc
, Bool -> SDoc -> SDoc
forall doc. IsOutput doc => Bool -> doc -> doc
ppUnless ([CoAxBranch] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [CoAxBranch]
incomps) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ SDoc -> SDoc
forall doc. IsOutput doc => doc -> doc
whenPprDebug (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"-- Incomps:" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> [SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat ((CoAxBranch -> SDoc) -> [CoAxBranch] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (TyCon -> CoAxBranch -> SDoc
pprCoAxBranch TyCon
fam_tc) [CoAxBranch]
incomps) ]
]
where
incomps :: [CoAxBranch]
incomps = CoAxBranch -> [CoAxBranch]
coAxBranchIncomps CoAxBranch
branch
loc :: SrcSpan
loc = CoAxBranch -> SrcSpan
coAxBranchSpan CoAxBranch
branch
pp_loc :: SDoc
pp_loc | SrcSpan -> Bool
isGoodSrcSpan SrcSpan
loc = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"at" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SrcLoc -> SDoc
forall a. Outputable a => a -> SDoc
ppr (SrcSpan -> SrcLoc
srcSpanStart SrcSpan
loc)
| Bool
otherwise = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"in" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SrcSpan -> SDoc
forall a. Outputable a => a -> SDoc
ppr SrcSpan
loc
([CoVar]
ee_tvs, [Type]
ee_lhs, Type
ee_rhs) = CoAxBranch -> ([CoVar], [Type], Type)
etaExpandCoAxBranch CoAxBranch
branch
pp_lhs :: SDoc
pp_lhs = PprPrec -> IfaceTyCon -> IfaceAppArgs -> SDoc
pprIfaceTypeApp PprPrec
topPrec (TyCon -> IfaceTyCon
toIfaceTyCon TyCon
fam_tc)
(TidyEnv -> TyCon -> [Type] -> IfaceAppArgs
tidyToIfaceTcArgs TidyEnv
tidy_env TyCon
fam_tc [Type]
ee_lhs)
(TidyEnv
tidy_env, [CoVar]
bndrs') = TidyEnv -> [CoVar] -> (TidyEnv, [CoVar])
tidyCoAxBndrsForUser TidyEnv
emptyTidyEnv [CoVar]
ee_tvs
tidyCoAxBndrsForUser :: TidyEnv -> [Var] -> (TidyEnv, [Var])
tidyCoAxBndrsForUser :: TidyEnv -> [CoVar] -> (TidyEnv, [CoVar])
tidyCoAxBndrsForUser TidyEnv
init_env [CoVar]
tcvs
= (TidyEnv
tidy_env, [CoVar] -> [CoVar]
forall a. [a] -> [a]
reverse [CoVar]
tidy_bndrs)
where
(TidyEnv
tidy_env, [CoVar]
tidy_bndrs) = ((TidyEnv, [CoVar]) -> CoVar -> (TidyEnv, [CoVar]))
-> (TidyEnv, [CoVar]) -> [CoVar] -> (TidyEnv, [CoVar])
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl (TidyEnv, [CoVar]) -> CoVar -> (TidyEnv, [CoVar])
tidy_one (TidyEnv
init_env, []) [CoVar]
tcvs
tidy_one :: (TidyEnv, [CoVar]) -> CoVar -> (TidyEnv, [CoVar])
tidy_one (env :: TidyEnv
env@(TidyOccEnv
occ_env, VarEnv CoVar
subst), [CoVar]
rev_bndrs') CoVar
bndr
| CoVar -> Bool
is_wildcard CoVar
bndr = (TidyEnv
env_wild, [CoVar]
rev_bndrs')
| Bool
otherwise = (TidyEnv
env', CoVar
bndr' CoVar -> [CoVar] -> [CoVar]
forall a. a -> [a] -> [a]
: [CoVar]
rev_bndrs')
where
(TidyEnv
env', CoVar
bndr') = TidyEnv -> CoVar -> (TidyEnv, CoVar)
tidyVarBndr TidyEnv
env CoVar
bndr
env_wild :: TidyEnv
env_wild = (TidyOccEnv
occ_env, VarEnv CoVar -> CoVar -> CoVar -> VarEnv CoVar
forall a. VarEnv a -> CoVar -> a -> VarEnv a
extendVarEnv VarEnv CoVar
subst CoVar
bndr CoVar
wild_bndr)
wild_bndr :: CoVar
wild_bndr = CoVar -> Name -> CoVar
setVarName CoVar
bndr (Name -> CoVar) -> Name -> CoVar
forall a b. (a -> b) -> a -> b
$
Name -> OccName -> Name
tidyNameOcc (CoVar -> Name
varName CoVar
bndr) (FastString -> OccName
mkTyVarOccFS (String -> FastString
fsLit String
"_"))
is_wildcard :: Var -> Bool
is_wildcard :: CoVar -> Bool
is_wildcard CoVar
tv = case OccName -> String
occNameString (CoVar -> OccName
forall a. NamedThing a => a -> OccName
getOccName CoVar
tv) of
(Char
'_' : String
rest) -> (Char -> Bool) -> String -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Char -> Bool
isDigit String
rest
String
_ -> Bool
False
coToMCo :: Coercion -> MCoercion
coToMCo :: Coercion -> MCoercion
coToMCo Coercion
co | Coercion -> Bool
isReflCo Coercion
co = MCoercion
MRefl
| Bool
otherwise = Coercion -> MCoercion
MCo Coercion
co
checkReflexiveMCo :: MCoercion -> MCoercion
checkReflexiveMCo :: MCoercion -> MCoercion
checkReflexiveMCo MCoercion
MRefl = MCoercion
MRefl
checkReflexiveMCo (MCo Coercion
co) | Coercion -> Bool
isReflexiveCo Coercion
co = MCoercion
MRefl
| Bool
otherwise = Coercion -> MCoercion
MCo Coercion
co
isGReflMCo :: MCoercion -> Bool
isGReflMCo :: MCoercion -> Bool
isGReflMCo MCoercion
MRefl = Bool
True
isGReflMCo (MCo Coercion
co) | Coercion -> Bool
isGReflCo Coercion
co = Bool
True
isGReflMCo MCoercion
_ = Bool
False
mkGReflCo :: Role -> Type -> MCoercionN -> Coercion
mkGReflCo :: Role -> Type -> MCoercion -> Coercion
mkGReflCo Role
r Type
ty MCoercion
mco
| MCoercion -> Bool
isGReflMCo MCoercion
mco = if Role
r Role -> Role -> Bool
forall a. Eq a => a -> a -> Bool
== Role
Nominal then Type -> Coercion
Refl Type
ty
else Role -> Type -> MCoercion -> Coercion
GRefl Role
r Type
ty MCoercion
MRefl
| Bool
otherwise = Role -> Type -> MCoercion -> Coercion
GRefl Role
r Type
ty MCoercion
mco
mkTransMCo :: MCoercion -> MCoercion -> MCoercion
mkTransMCo :: MCoercion -> MCoercion -> MCoercion
mkTransMCo MCoercion
MRefl MCoercion
co2 = MCoercion
co2
mkTransMCo MCoercion
co1 MCoercion
MRefl = MCoercion
co1
mkTransMCo (MCo Coercion
co1) (MCo Coercion
co2) = Coercion -> MCoercion
MCo (Coercion -> Coercion -> Coercion
mkTransCo Coercion
co1 Coercion
co2)
mkTransMCoL :: MCoercion -> Coercion -> MCoercion
mkTransMCoL :: MCoercion -> Coercion -> MCoercion
mkTransMCoL MCoercion
MRefl Coercion
co2 = Coercion -> MCoercion
coToMCo Coercion
co2
mkTransMCoL (MCo Coercion
co1) Coercion
co2 = Coercion -> MCoercion
MCo (Coercion -> Coercion -> Coercion
mkTransCo Coercion
co1 Coercion
co2)
mkTransMCoR :: Coercion -> MCoercion -> MCoercion
mkTransMCoR :: Coercion -> MCoercion -> MCoercion
mkTransMCoR Coercion
co1 MCoercion
MRefl = Coercion -> MCoercion
coToMCo Coercion
co1
mkTransMCoR Coercion
co1 (MCo Coercion
co2) = Coercion -> MCoercion
MCo (Coercion -> Coercion -> Coercion
mkTransCo Coercion
co1 Coercion
co2)
mkSymMCo :: MCoercion -> MCoercion
mkSymMCo :: MCoercion -> MCoercion
mkSymMCo MCoercion
MRefl = MCoercion
MRefl
mkSymMCo (MCo Coercion
co) = Coercion -> MCoercion
MCo (Coercion -> Coercion
mkSymCo Coercion
co)
mkCastTyMCo :: Type -> MCoercion -> Type
mkCastTyMCo :: Type -> MCoercion -> Type
mkCastTyMCo Type
ty MCoercion
MRefl = Type
ty
mkCastTyMCo Type
ty (MCo Coercion
co) = Type
ty Type -> Coercion -> Type
`mkCastTy` Coercion
co
mkHomoForAllMCo :: TyCoVar -> MCoercion -> MCoercion
mkHomoForAllMCo :: CoVar -> MCoercion -> MCoercion
mkHomoForAllMCo CoVar
_ MCoercion
MRefl = MCoercion
MRefl
mkHomoForAllMCo CoVar
tcv (MCo Coercion
co) = Coercion -> MCoercion
MCo ([CoVar] -> Coercion -> Coercion
mkHomoForAllCos [CoVar
tcv] Coercion
co)
mkPiMCos :: [Var] -> MCoercion -> MCoercion
mkPiMCos :: [CoVar] -> MCoercion -> MCoercion
mkPiMCos [CoVar]
_ MCoercion
MRefl = MCoercion
MRefl
mkPiMCos [CoVar]
vs (MCo Coercion
co) = Coercion -> MCoercion
MCo (Role -> [CoVar] -> Coercion -> Coercion
mkPiCos Role
Representational [CoVar]
vs Coercion
co)
mkFunResMCo :: Id -> MCoercionR -> MCoercionR
mkFunResMCo :: CoVar -> MCoercion -> MCoercion
mkFunResMCo CoVar
_ MCoercion
MRefl = MCoercion
MRefl
mkFunResMCo CoVar
arg_id (MCo Coercion
co) = Coercion -> MCoercion
MCo (Role -> CoVar -> Coercion -> Coercion
mkFunResCo Role
Representational CoVar
arg_id Coercion
co)
mkGReflLeftMCo :: Role -> Type -> MCoercionN -> Coercion
mkGReflLeftMCo :: Role -> Type -> MCoercion -> Coercion
mkGReflLeftMCo Role
r Type
ty MCoercion
MRefl = Role -> Type -> Coercion
mkReflCo Role
r Type
ty
mkGReflLeftMCo Role
r Type
ty (MCo Coercion
co) = Role -> Type -> Coercion -> Coercion
mkGReflLeftCo Role
r Type
ty Coercion
co
mkGReflRightMCo :: Role -> Type -> MCoercionN -> Coercion
mkGReflRightMCo :: Role -> Type -> MCoercion -> Coercion
mkGReflRightMCo Role
r Type
ty MCoercion
MRefl = Role -> Type -> Coercion
mkReflCo Role
r Type
ty
mkGReflRightMCo Role
r Type
ty (MCo Coercion
co) = Role -> Type -> Coercion -> Coercion
mkGReflRightCo Role
r Type
ty Coercion
co
mkCoherenceRightMCo :: Role -> Type -> MCoercionN -> Coercion -> Coercion
mkCoherenceRightMCo :: Role -> Type -> MCoercion -> Coercion -> Coercion
mkCoherenceRightMCo Role
_ Type
_ MCoercion
MRefl Coercion
co2 = Coercion
co2
mkCoherenceRightMCo Role
r Type
ty (MCo Coercion
co) Coercion
co2 = Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceRightCo Role
r Type
ty Coercion
co Coercion
co2
isReflMCo :: MCoercion -> Bool
isReflMCo :: MCoercion -> Bool
isReflMCo MCoercion
MRefl = Bool
True
isReflMCo MCoercion
_ = Bool
False
decomposeCo :: Arity -> Coercion
-> Infinite Role
-> [Coercion]
decomposeCo :: Arity -> Coercion -> Infinite Role -> [Coercion]
decomposeCo Arity
arity Coercion
co Infinite Role
rs
= [(() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (Arity -> Role -> CoSel
SelTyCon Arity
n Role
r) Coercion
co | (Arity
n,Role
r) <- [Arity
0..(Arity
arityArity -> Arity -> Arity
forall a. Num a => a -> a -> a
-Arity
1)] [Arity] -> [Role] -> [(Arity, Role)]
forall a b. [a] -> [b] -> [(a, b)]
`zip` Infinite Role -> [Role]
forall a. Infinite a -> [a]
Inf.toList Infinite Role
rs ]
decomposeFunCo :: HasDebugCallStack
=> Coercion
-> (CoercionN, Coercion, Coercion)
decomposeFunCo :: (() :: Constraint) => Coercion -> (Coercion, Coercion, Coercion)
decomposeFunCo (FunCo { fco_mult :: Coercion -> Coercion
fco_mult = Coercion
w, fco_arg :: Coercion -> Coercion
fco_arg = Coercion
co1, fco_res :: Coercion -> Coercion
fco_res = Coercion
co2 })
= (Coercion
w, Coercion
co1, Coercion
co2)
decomposeFunCo Coercion
co
= Bool
-> SDoc
-> (Coercion, Coercion, Coercion)
-> (Coercion, Coercion, Coercion)
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr Bool
all_ok (Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co) ((Coercion, Coercion, Coercion) -> (Coercion, Coercion, Coercion))
-> (Coercion, Coercion, Coercion) -> (Coercion, Coercion, Coercion)
forall a b. (a -> b) -> a -> b
$
( (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (FunSel -> CoSel
SelFun FunSel
SelMult) Coercion
co
, (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (FunSel -> CoSel
SelFun FunSel
SelArg) Coercion
co
, (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (FunSel -> CoSel
SelFun FunSel
SelRes) Coercion
co )
where
Pair Type
s1t1 Type
s2t2 = Coercion -> Pair Type
coercionKind Coercion
co
all_ok :: Bool
all_ok = Type -> Bool
isFunTy Type
s1t1 Bool -> Bool -> Bool
&& Type -> Bool
isFunTy Type
s2t2
decomposePiCos :: HasDebugCallStack
=> CoercionN -> Pair Type
-> [Type]
-> ([CoercionN], CoercionN)
decomposePiCos :: (() :: Constraint) =>
Coercion -> Pair Type -> [Type] -> ([Coercion], Coercion)
decomposePiCos Coercion
orig_co (Pair Type
orig_k1 Type
orig_k2) [Type]
orig_args
= [Coercion]
-> (Subst, Type)
-> Coercion
-> (Subst, Type)
-> [Type]
-> ([Coercion], Coercion)
go [] (Subst
orig_subst,Type
orig_k1) Coercion
orig_co (Subst
orig_subst,Type
orig_k2) [Type]
orig_args
where
orig_subst :: Subst
orig_subst = InScopeSet -> Subst
mkEmptySubst (InScopeSet -> Subst) -> InScopeSet -> Subst
forall a b. (a -> b) -> a -> b
$ VarSet -> InScopeSet
mkInScopeSet (VarSet -> InScopeSet) -> VarSet -> InScopeSet
forall a b. (a -> b) -> a -> b
$
[Type] -> VarSet
tyCoVarsOfTypes [Type]
orig_args VarSet -> VarSet -> VarSet
`unionVarSet` Coercion -> VarSet
tyCoVarsOfCo Coercion
orig_co
go :: [CoercionN]
-> (Subst,Kind)
-> CoercionN
-> (Subst,Kind)
-> [Type]
-> ([CoercionN], Coercion)
go :: [Coercion]
-> (Subst, Type)
-> Coercion
-> (Subst, Type)
-> [Type]
-> ([Coercion], Coercion)
go [Coercion]
acc_arg_cos (Subst
subst1,Type
k1) Coercion
co (Subst
subst2,Type
k2) (Type
ty:[Type]
tys)
| Just (CoVar
a, Type
t1) <- Type -> Maybe (CoVar, Type)
splitForAllTyCoVar_maybe Type
k1
, Just (CoVar
b, Type
t2) <- Type -> Maybe (CoVar, Type)
splitForAllTyCoVar_maybe Type
k2
= let arg_co :: Coercion
arg_co = (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo CoSel
SelForAll (Coercion -> Coercion
mkSymCo Coercion
co)
res_co :: Coercion
res_co = Coercion -> Coercion -> Coercion
mkInstCo Coercion
co (Role -> Type -> Coercion -> Coercion
mkGReflLeftCo Role
Nominal Type
ty Coercion
arg_co)
subst1' :: Subst
subst1' = Subst -> CoVar -> Type -> Subst
extendTCvSubst Subst
subst1 CoVar
a (Type
ty Type -> Coercion -> Type
`CastTy` Coercion
arg_co)
subst2' :: Subst
subst2' = Subst -> CoVar -> Type -> Subst
extendTCvSubst Subst
subst2 CoVar
b Type
ty
in
[Coercion]
-> (Subst, Type)
-> Coercion
-> (Subst, Type)
-> [Type]
-> ([Coercion], Coercion)
go (Coercion
arg_co Coercion -> [Coercion] -> [Coercion]
forall a. a -> [a] -> [a]
: [Coercion]
acc_arg_cos) (Subst
subst1', Type
t1) Coercion
res_co (Subst
subst2', Type
t2) [Type]
tys
| Just (FunTyFlag
af1, Type
_w1, Type
_s1, Type
t1) <- Type -> Maybe (FunTyFlag, Type, Type, Type)
splitFunTy_maybe Type
k1
, Just (FunTyFlag
af2, Type
_w1, Type
_s2, Type
t2) <- Type -> Maybe (FunTyFlag, Type, Type, Type)
splitFunTy_maybe Type
k2
, FunTyFlag
af1 FunTyFlag -> FunTyFlag -> Bool
forall a. Eq a => a -> a -> Bool
== FunTyFlag
af2
= let (Coercion
_, Coercion
sym_arg_co, Coercion
res_co) = (() :: Constraint) => Coercion -> (Coercion, Coercion, Coercion)
Coercion -> (Coercion, Coercion, Coercion)
decomposeFunCo Coercion
co
arg_co :: Coercion
arg_co = Coercion -> Coercion
mkSymCo Coercion
sym_arg_co
in
[Coercion]
-> (Subst, Type)
-> Coercion
-> (Subst, Type)
-> [Type]
-> ([Coercion], Coercion)
go (Coercion
arg_co Coercion -> [Coercion] -> [Coercion]
forall a. a -> [a] -> [a]
: [Coercion]
acc_arg_cos) (Subst
subst1,Type
t1) Coercion
res_co (Subst
subst2,Type
t2) [Type]
tys
| Bool -> Bool
not (Subst -> Bool
isEmptyTCvSubst Subst
subst1) Bool -> Bool -> Bool
|| Bool -> Bool
not (Subst -> Bool
isEmptyTCvSubst Subst
subst2)
= [Coercion]
-> (Subst, Type)
-> Coercion
-> (Subst, Type)
-> [Type]
-> ([Coercion], Coercion)
go [Coercion]
acc_arg_cos (Subst -> Subst
zapSubst Subst
subst1, (() :: Constraint) => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst1 Type
k1)
Coercion
co
(Subst -> Subst
zapSubst Subst
subst2, (() :: Constraint) => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst1 Type
k2)
(Type
tyType -> [Type] -> [Type]
forall a. a -> [a] -> [a]
:[Type]
tys)
go [Coercion]
acc_arg_cos (Subst, Type)
_ki1 Coercion
co (Subst, Type)
_ki2 [Type]
_tys = ([Coercion] -> [Coercion]
forall a. [a] -> [a]
reverse [Coercion]
acc_arg_cos, Coercion
co)
getCoVar_maybe :: Coercion -> Maybe CoVar
getCoVar_maybe :: Coercion -> Maybe CoVar
getCoVar_maybe (CoVarCo CoVar
cv) = CoVar -> Maybe CoVar
forall a. a -> Maybe a
Just CoVar
cv
getCoVar_maybe Coercion
_ = Maybe CoVar
forall a. Maybe a
Nothing
multToCo :: Mult -> Coercion
multToCo :: Type -> Coercion
multToCo Type
r = Type -> Coercion
mkNomReflCo Type
r
splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
splitAppCo_maybe (AppCo Coercion
co Coercion
arg) = (Coercion, Coercion) -> Maybe (Coercion, Coercion)
forall a. a -> Maybe a
Just (Coercion
co, Coercion
arg)
splitAppCo_maybe (TyConAppCo Role
r TyCon
tc [Coercion]
args)
| [Coercion]
args [Coercion] -> Arity -> Bool
forall a. [a] -> Arity -> Bool
`lengthExceeds` TyCon -> Arity
tyConArity TyCon
tc
, Just ([Coercion]
args', Coercion
arg') <- [Coercion] -> Maybe ([Coercion], Coercion)
forall a. [a] -> Maybe ([a], a)
snocView [Coercion]
args
= (Coercion, Coercion) -> Maybe (Coercion, Coercion)
forall a. a -> Maybe a
Just ( (() :: Constraint) => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
r TyCon
tc [Coercion]
args', Coercion
arg' )
| Bool -> Bool
not (TyCon -> Bool
tyConMustBeSaturated TyCon
tc)
, Just ([Coercion]
args', Coercion
arg') <- [Coercion] -> Maybe ([Coercion], Coercion)
forall a. [a] -> Maybe ([a], a)
snocView [Coercion]
args
, Just Coercion
arg'' <- Role -> Coercion -> Maybe Coercion
setNominalRole_maybe (Role -> TyCon -> Arity -> Role
tyConRole Role
r TyCon
tc ([Coercion] -> Arity
forall a. [a] -> Arity
forall (t :: * -> *) a. Foldable t => t a -> Arity
length [Coercion]
args')) Coercion
arg'
= (Coercion, Coercion) -> Maybe (Coercion, Coercion)
forall a. a -> Maybe a
Just ( (() :: Constraint) => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
r TyCon
tc [Coercion]
args', Coercion
arg'' )
splitAppCo_maybe Coercion
co
| Just (Type
ty, Role
r) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
co
, Just (Type
ty1, Type
ty2) <- Type -> Maybe (Type, Type)
splitAppTy_maybe Type
ty
= (Coercion, Coercion) -> Maybe (Coercion, Coercion)
forall a. a -> Maybe a
Just (Role -> Type -> Coercion
mkReflCo Role
r Type
ty1, Type -> Coercion
mkNomReflCo Type
ty2)
splitAppCo_maybe Coercion
_ = Maybe (Coercion, Coercion)
forall a. Maybe a
Nothing
splitFunCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
splitFunCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
splitFunCo_maybe (FunCo { fco_arg :: Coercion -> Coercion
fco_arg = Coercion
arg, fco_res :: Coercion -> Coercion
fco_res = Coercion
res }) = (Coercion, Coercion) -> Maybe (Coercion, Coercion)
forall a. a -> Maybe a
Just (Coercion
arg, Coercion
res)
splitFunCo_maybe Coercion
_ = Maybe (Coercion, Coercion)
forall a. Maybe a
Nothing
splitForAllCo_maybe :: Coercion -> Maybe (TyCoVar, Coercion, Coercion)
splitForAllCo_maybe :: Coercion -> Maybe (CoVar, Coercion, Coercion)
splitForAllCo_maybe (ForAllCo CoVar
tv Coercion
k_co Coercion
co) = (CoVar, Coercion, Coercion) -> Maybe (CoVar, Coercion, Coercion)
forall a. a -> Maybe a
Just (CoVar
tv, Coercion
k_co, Coercion
co)
splitForAllCo_maybe Coercion
_ = Maybe (CoVar, Coercion, Coercion)
forall a. Maybe a
Nothing
splitForAllCo_ty_maybe :: Coercion -> Maybe (TyVar, Coercion, Coercion)
splitForAllCo_ty_maybe :: Coercion -> Maybe (CoVar, Coercion, Coercion)
splitForAllCo_ty_maybe (ForAllCo CoVar
tv Coercion
k_co Coercion
co)
| CoVar -> Bool
isTyVar CoVar
tv = (CoVar, Coercion, Coercion) -> Maybe (CoVar, Coercion, Coercion)
forall a. a -> Maybe a
Just (CoVar
tv, Coercion
k_co, Coercion
co)
splitForAllCo_ty_maybe Coercion
_ = Maybe (CoVar, Coercion, Coercion)
forall a. Maybe a
Nothing
splitForAllCo_co_maybe :: Coercion -> Maybe (CoVar, Coercion, Coercion)
splitForAllCo_co_maybe :: Coercion -> Maybe (CoVar, Coercion, Coercion)
splitForAllCo_co_maybe (ForAllCo CoVar
cv Coercion
k_co Coercion
co)
| CoVar -> Bool
isCoVar CoVar
cv = (CoVar, Coercion, Coercion) -> Maybe (CoVar, Coercion, Coercion)
forall a. a -> Maybe a
Just (CoVar
cv, Coercion
k_co, Coercion
co)
splitForAllCo_co_maybe Coercion
_ = Maybe (CoVar, Coercion, Coercion)
forall a. Maybe a
Nothing
coVarLType, coVarRType :: HasDebugCallStack => CoVar -> Type
coVarLType :: (() :: Constraint) => CoVar -> Type
coVarLType CoVar
cv | (Type
_, Type
_, Type
ty1, Type
_, Role
_) <- (() :: Constraint) => CoVar -> (Type, Type, Type, Type, Role)
CoVar -> (Type, Type, Type, Type, Role)
coVarKindsTypesRole CoVar
cv = Type
ty1
coVarRType :: (() :: Constraint) => CoVar -> Type
coVarRType CoVar
cv | (Type
_, Type
_, Type
_, Type
ty2, Role
_) <- (() :: Constraint) => CoVar -> (Type, Type, Type, Type, Role)
CoVar -> (Type, Type, Type, Type, Role)
coVarKindsTypesRole CoVar
cv = Type
ty2
coVarTypes :: HasDebugCallStack => CoVar -> Pair Type
coVarTypes :: (() :: Constraint) => CoVar -> Pair Type
coVarTypes CoVar
cv
| (Type
_, Type
_, Type
ty1, Type
ty2, Role
_) <- (() :: Constraint) => CoVar -> (Type, Type, Type, Type, Role)
CoVar -> (Type, Type, Type, Type, Role)
coVarKindsTypesRole CoVar
cv
= Type -> Type -> Pair Type
forall a. a -> a -> Pair a
Pair Type
ty1 Type
ty2
coVarKindsTypesRole :: HasDebugCallStack => CoVar -> (Kind,Kind,Type,Type,Role)
coVarKindsTypesRole :: (() :: Constraint) => CoVar -> (Type, Type, Type, Type, Role)
coVarKindsTypesRole CoVar
cv
| Just (TyCon
tc, [Type
k1,Type
k2,Type
ty1,Type
ty2]) <- (() :: Constraint) => Type -> Maybe (TyCon, [Type])
Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe (CoVar -> Type
varType CoVar
cv)
= (Type
k1, Type
k2, Type
ty1, Type
ty2, TyCon -> Role
eqTyConRole TyCon
tc)
| Bool
otherwise
= String -> SDoc -> (Type, Type, Type, Type, Role)
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"coVarKindsTypesRole, non coercion variable"
(CoVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoVar
cv SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr (CoVar -> Type
varType CoVar
cv))
coVarKind :: CoVar -> Type
coVarKind :: CoVar -> Type
coVarKind CoVar
cv
= Bool -> (CoVar -> Type) -> CoVar -> Type
forall a. HasCallStack => Bool -> a -> a
assert (CoVar -> Bool
isCoVar CoVar
cv )
CoVar -> Type
varType CoVar
cv
coVarRole :: CoVar -> Role
coVarRole :: CoVar -> Role
coVarRole CoVar
cv
= TyCon -> Role
eqTyConRole (case Type -> Maybe TyCon
tyConAppTyCon_maybe (CoVar -> Type
varType CoVar
cv) of
Just TyCon
tc0 -> TyCon
tc0
Maybe TyCon
Nothing -> String -> SDoc -> TyCon
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"coVarRole: not tyconapp" (CoVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoVar
cv))
eqTyConRole :: TyCon -> Role
eqTyConRole :: TyCon -> Role
eqTyConRole TyCon
tc
| TyCon
tc TyCon -> Unique -> Bool
forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
eqPrimTyConKey
= Role
Nominal
| TyCon
tc TyCon -> Unique -> Bool
forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
eqReprPrimTyConKey
= Role
Representational
| Bool
otherwise
= String -> SDoc -> Role
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"eqTyConRole: unknown tycon" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)
mkRuntimeRepCo :: HasDebugCallStack => Coercion -> Coercion
mkRuntimeRepCo :: (() :: Constraint) => Coercion -> Coercion
mkRuntimeRepCo Coercion
co
= (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (Arity -> Role -> CoSel
SelTyCon Arity
0 Role
Nominal) Coercion
kind_co
where
kind_co :: Coercion
kind_co = Coercion -> Coercion
mkKindCo Coercion
co
isReflCoVar_maybe :: Var -> Maybe Coercion
isReflCoVar_maybe :: CoVar -> Maybe Coercion
isReflCoVar_maybe CoVar
cv
| CoVar -> Bool
isCoVar CoVar
cv
, Pair Type
ty1 Type
ty2 <- (() :: Constraint) => CoVar -> Pair Type
CoVar -> Pair Type
coVarTypes CoVar
cv
, Type
ty1 Type -> Type -> Bool
`eqType` Type
ty2
= Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just (Role -> Type -> Coercion
mkReflCo (CoVar -> Role
coVarRole CoVar
cv) Type
ty1)
| Bool
otherwise
= Maybe Coercion
forall a. Maybe a
Nothing
isGReflCo :: Coercion -> Bool
isGReflCo :: Coercion -> Bool
isGReflCo (GRefl{}) = Bool
True
isGReflCo (Refl{}) = Bool
True
isGReflCo Coercion
_ = Bool
False
isReflCo :: Coercion -> Bool
isReflCo :: Coercion -> Bool
isReflCo (Refl{}) = Bool
True
isReflCo (GRefl Role
_ Type
_ MCoercion
mco) | MCoercion -> Bool
isGReflMCo MCoercion
mco = Bool
True
isReflCo Coercion
_ = Bool
False
isGReflCo_maybe :: Coercion -> Maybe (Type, Role)
isGReflCo_maybe :: Coercion -> Maybe (Type, Role)
isGReflCo_maybe (GRefl Role
r Type
ty MCoercion
_) = (Type, Role) -> Maybe (Type, Role)
forall a. a -> Maybe a
Just (Type
ty, Role
r)
isGReflCo_maybe (Refl Type
ty) = (Type, Role) -> Maybe (Type, Role)
forall a. a -> Maybe a
Just (Type
ty, Role
Nominal)
isGReflCo_maybe Coercion
_ = Maybe (Type, Role)
forall a. Maybe a
Nothing
isReflCo_maybe :: Coercion -> Maybe (Type, Role)
isReflCo_maybe :: Coercion -> Maybe (Type, Role)
isReflCo_maybe (Refl Type
ty) = (Type, Role) -> Maybe (Type, Role)
forall a. a -> Maybe a
Just (Type
ty, Role
Nominal)
isReflCo_maybe (GRefl Role
r Type
ty MCoercion
mco) | MCoercion -> Bool
isGReflMCo MCoercion
mco = (Type, Role) -> Maybe (Type, Role)
forall a. a -> Maybe a
Just (Type
ty, Role
r)
isReflCo_maybe Coercion
_ = Maybe (Type, Role)
forall a. Maybe a
Nothing
isReflexiveCo :: Coercion -> Bool
isReflexiveCo :: Coercion -> Bool
isReflexiveCo = Maybe (Type, Role) -> Bool
forall a. Maybe a -> Bool
isJust (Maybe (Type, Role) -> Bool)
-> (Coercion -> Maybe (Type, Role)) -> Coercion -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coercion -> Maybe (Type, Role)
isReflexiveCo_maybe
isReflexiveCo_maybe :: Coercion -> Maybe (Type, Role)
isReflexiveCo_maybe :: Coercion -> Maybe (Type, Role)
isReflexiveCo_maybe (Refl Type
ty) = (Type, Role) -> Maybe (Type, Role)
forall a. a -> Maybe a
Just (Type
ty, Role
Nominal)
isReflexiveCo_maybe (GRefl Role
r Type
ty MCoercion
mco) | MCoercion -> Bool
isGReflMCo MCoercion
mco = (Type, Role) -> Maybe (Type, Role)
forall a. a -> Maybe a
Just (Type
ty, Role
r)
isReflexiveCo_maybe Coercion
co
| Type
ty1 Type -> Type -> Bool
`eqType` Type
ty2
= (Type, Role) -> Maybe (Type, Role)
forall a. a -> Maybe a
Just (Type
ty1, Role
r)
| Bool
otherwise
= Maybe (Type, Role)
forall a. Maybe a
Nothing
where (Pair Type
ty1 Type
ty2, Role
r) = Coercion -> (Pair Type, Role)
coercionKindRole Coercion
co
mkReflCo :: Role -> Type -> Coercion
mkReflCo :: Role -> Type -> Coercion
mkReflCo Role
Nominal Type
ty = Type -> Coercion
Refl Type
ty
mkReflCo Role
r Type
ty = Role -> Type -> MCoercion -> Coercion
GRefl Role
r Type
ty MCoercion
MRefl
mkRepReflCo :: Type -> Coercion
mkRepReflCo :: Type -> Coercion
mkRepReflCo Type
ty = Role -> Type -> MCoercion -> Coercion
GRefl Role
Representational Type
ty MCoercion
MRefl
mkNomReflCo :: Type -> Coercion
mkNomReflCo :: Type -> Coercion
mkNomReflCo = Type -> Coercion
Refl
mkTyConAppCo :: HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo :: (() :: Constraint) => Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
r TyCon
tc [Coercion]
cos
| Just Coercion
co <- (() :: Constraint) => Role -> TyCon -> [Coercion] -> Maybe Coercion
Role -> TyCon -> [Coercion] -> Maybe Coercion
tyConAppFunCo_maybe Role
r TyCon
tc [Coercion]
cos
= Coercion
co
| ExpandsSyn [(CoVar, Coercion)]
tv_co_prs Type
rhs_ty [Coercion]
leftover_cos <- TyCon -> [Coercion] -> ExpandSynResult Coercion
forall tyco. TyCon -> [tyco] -> ExpandSynResult tyco
expandSynTyCon_maybe TyCon
tc [Coercion]
cos
= Coercion -> [Coercion] -> Coercion
mkAppCos ((() :: Constraint) => Role -> LiftingContext -> Type -> Coercion
Role -> LiftingContext -> Type -> Coercion
liftCoSubst Role
r ([(CoVar, Coercion)] -> LiftingContext
mkLiftingContext [(CoVar, Coercion)]
tv_co_prs) Type
rhs_ty) [Coercion]
leftover_cos
| Just [(Type, Role)]
tys_roles <- (Coercion -> Maybe (Type, Role))
-> [Coercion] -> Maybe [(Type, Role)]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> [a] -> f [b]
traverse Coercion -> Maybe (Type, Role)
isReflCo_maybe [Coercion]
cos
= Role -> Type -> Coercion
mkReflCo Role
r (TyCon -> [Type] -> Type
mkTyConApp TyCon
tc (((Type, Role) -> Type) -> [(Type, Role)] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map (Type, Role) -> Type
forall a b. (a, b) -> a
fst [(Type, Role)]
tys_roles))
| Bool
otherwise = Role -> TyCon -> [Coercion] -> Coercion
TyConAppCo Role
r TyCon
tc [Coercion]
cos
mkFunCoNoFTF :: HasDebugCallStack => Role -> CoercionN -> Coercion -> Coercion -> Coercion
mkFunCoNoFTF :: (() :: Constraint) =>
Role -> Coercion -> Coercion -> Coercion -> Coercion
mkFunCoNoFTF Role
r Coercion
w Coercion
arg_co Coercion
res_co
= (() :: Constraint) =>
Role
-> FunTyFlag
-> FunTyFlag
-> Coercion
-> Coercion
-> Coercion
-> Coercion
Role
-> FunTyFlag
-> FunTyFlag
-> Coercion
-> Coercion
-> Coercion
-> Coercion
mkFunCo2 Role
r FunTyFlag
afl FunTyFlag
afr Coercion
w Coercion
arg_co Coercion
res_co
where
afl :: FunTyFlag
afl = (() :: Constraint) => Type -> Type -> FunTyFlag
Type -> Type -> FunTyFlag
chooseFunTyFlag Type
argl_ty Type
resl_ty
afr :: FunTyFlag
afr = (() :: Constraint) => Type -> Type -> FunTyFlag
Type -> Type -> FunTyFlag
chooseFunTyFlag Type
argr_ty Type
resr_ty
Pair Type
argl_ty Type
argr_ty = Coercion -> Pair Type
coercionKind Coercion
arg_co
Pair Type
resl_ty Type
resr_ty = Coercion -> Pair Type
coercionKind Coercion
res_co
mkFunCo1 :: HasDebugCallStack => Role -> FunTyFlag -> CoercionN -> Coercion -> Coercion -> Coercion
mkFunCo1 :: (() :: Constraint) =>
Role -> FunTyFlag -> Coercion -> Coercion -> Coercion -> Coercion
mkFunCo1 Role
r FunTyFlag
af Coercion
w Coercion
arg_co Coercion
res_co
= (() :: Constraint) =>
Role
-> FunTyFlag
-> FunTyFlag
-> Coercion
-> Coercion
-> Coercion
-> Coercion
Role
-> FunTyFlag
-> FunTyFlag
-> Coercion
-> Coercion
-> Coercion
-> Coercion
mkFunCo2 Role
r FunTyFlag
af FunTyFlag
af Coercion
w Coercion
arg_co Coercion
res_co
mkNakedFunCo1 :: Role -> FunTyFlag -> CoercionN -> Coercion -> Coercion -> Coercion
mkNakedFunCo1 :: Role -> FunTyFlag -> Coercion -> Coercion -> Coercion -> Coercion
mkNakedFunCo1 Role
r FunTyFlag
af Coercion
w Coercion
arg_co Coercion
res_co
= Role
-> FunTyFlag
-> FunTyFlag
-> Coercion
-> Coercion
-> Coercion
-> Coercion
mkNakedFunCo2 Role
r FunTyFlag
af FunTyFlag
af Coercion
w Coercion
arg_co Coercion
res_co
mkFunCo2 :: HasDebugCallStack => Role -> FunTyFlag -> FunTyFlag
-> CoercionN -> Coercion -> Coercion -> Coercion
mkFunCo2 :: (() :: Constraint) =>
Role
-> FunTyFlag
-> FunTyFlag
-> Coercion
-> Coercion
-> Coercion
-> Coercion
mkFunCo2 Role
r FunTyFlag
afl FunTyFlag
afr Coercion
w Coercion
arg_co Coercion
res_co
= Maybe SDoc -> Coercion -> Coercion
forall a. HasCallStack => Maybe SDoc -> a -> a
assertPprMaybe (Role
-> FunTyFlag
-> FunTyFlag
-> Coercion
-> Coercion
-> Coercion
-> Maybe SDoc
checkFunCo Role
r FunTyFlag
afl FunTyFlag
afr Coercion
w Coercion
arg_co Coercion
res_co) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Role
-> FunTyFlag
-> FunTyFlag
-> Coercion
-> Coercion
-> Coercion
-> Coercion
mkNakedFunCo2 Role
r FunTyFlag
afl FunTyFlag
afr Coercion
w Coercion
arg_co Coercion
res_co
mkNakedFunCo2 :: Role -> FunTyFlag -> FunTyFlag
-> CoercionN -> Coercion -> Coercion -> Coercion
mkNakedFunCo2 :: Role
-> FunTyFlag
-> FunTyFlag
-> Coercion
-> Coercion
-> Coercion
-> Coercion
mkNakedFunCo2 Role
r FunTyFlag
afl FunTyFlag
afr Coercion
w Coercion
arg_co Coercion
res_co
| Just (Type
ty1, Role
_) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
arg_co
, Just (Type
ty2, Role
_) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
res_co
, Just (Type
w, Role
_) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
w
= Role -> Type -> Coercion
mkReflCo Role
r ((() :: Constraint) => FunTyFlag -> Type -> Type -> Type -> Type
FunTyFlag -> Type -> Type -> Type -> Type
mkFunTy FunTyFlag
afl Type
w Type
ty1 Type
ty2)
| Bool
otherwise
= FunCo { fco_role :: Role
fco_role = Role
r, fco_afl :: FunTyFlag
fco_afl = FunTyFlag
afl, fco_afr :: FunTyFlag
fco_afr = FunTyFlag
afr
, fco_mult :: Coercion
fco_mult = Coercion
w, fco_arg :: Coercion
fco_arg = Coercion
arg_co, fco_res :: Coercion
fco_res = Coercion
res_co }
checkFunCo :: Role -> FunTyFlag -> FunTyFlag
-> CoercionN -> Coercion -> Coercion
-> Maybe SDoc
{-# NOINLINE checkFunCo #-}
checkFunCo :: Role
-> FunTyFlag
-> FunTyFlag
-> Coercion
-> Coercion
-> Coercion
-> Maybe SDoc
checkFunCo Role
_r FunTyFlag
afl FunTyFlag
afr Coercion
_w Coercion
arg_co Coercion
res_co
| Bool -> Bool
not (Type -> Bool
ok Type
argl_ty Bool -> Bool -> Bool
&& Type -> Bool
ok Type
argr_ty Bool -> Bool -> Bool
&& Type -> Bool
ok Type
resl_ty Bool -> Bool -> Bool
&& Type -> Bool
ok Type
resr_ty)
= SDoc -> Maybe SDoc
forall a. a -> Maybe a
Just (SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"Bad arg or res types") Arity
2 SDoc
pp_inputs)
| FunTyFlag
afl FunTyFlag -> FunTyFlag -> Bool
forall a. Eq a => a -> a -> Bool
== FunTyFlag
computed_afl
, FunTyFlag
afr FunTyFlag -> FunTyFlag -> Bool
forall a. Eq a => a -> a -> Bool
== FunTyFlag
computed_afr
= Maybe SDoc
forall a. Maybe a
Nothing
| Bool
otherwise
= SDoc -> Maybe SDoc
forall a. a -> Maybe a
Just ([SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"afl (provided,computed):" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> FunTyFlag -> SDoc
forall a. Outputable a => a -> SDoc
ppr FunTyFlag
afl SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> FunTyFlag -> SDoc
forall a. Outputable a => a -> SDoc
ppr FunTyFlag
computed_afl
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"afr (provided,computed):" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> FunTyFlag -> SDoc
forall a. Outputable a => a -> SDoc
ppr FunTyFlag
afr SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> FunTyFlag -> SDoc
forall a. Outputable a => a -> SDoc
ppr FunTyFlag
computed_afr
, SDoc
pp_inputs ])
where
computed_afl :: FunTyFlag
computed_afl = (() :: Constraint) => Type -> Type -> FunTyFlag
Type -> Type -> FunTyFlag
chooseFunTyFlag Type
argl_ty Type
resl_ty
computed_afr :: FunTyFlag
computed_afr = (() :: Constraint) => Type -> Type -> FunTyFlag
Type -> Type -> FunTyFlag
chooseFunTyFlag Type
argr_ty Type
resr_ty
Pair Type
argl_ty Type
argr_ty = Coercion -> Pair Type
coercionKind Coercion
arg_co
Pair Type
resl_ty Type
resr_ty = Coercion -> Pair Type
coercionKind Coercion
res_co
pp_inputs :: SDoc
pp_inputs = [SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> Type -> SDoc
pp_ty String
"argl" Type
argl_ty, String -> Type -> SDoc
pp_ty String
"argr" Type
argr_ty
, String -> Type -> SDoc
pp_ty String
"resl" Type
resl_ty, String -> Type -> SDoc
pp_ty String
"resr" Type
resr_ty
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"arg_co:" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
arg_co
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"res_co:" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
res_co ]
ok :: Type -> Bool
ok Type
ty = Type -> Bool
isTYPEorCONSTRAINT ((() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty)
pp_ty :: String -> Type -> SDoc
pp_ty String
str Type
ty = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
str SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> SDoc
forall doc. IsLine doc => doc
colon SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SDoc -> Arity -> SDoc -> SDoc
hang (Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty)
Arity
2 (SDoc
dcolon SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr ((() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty))
mkAppCo :: Coercion
-> Coercion
-> Coercion
mkAppCo :: Coercion -> Coercion -> Coercion
mkAppCo Coercion
co Coercion
arg
| Just (Type
ty1, Role
r) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
co
, Just (Type
ty2, Role
_) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
arg
= Role -> Type -> Coercion
mkReflCo Role
r (Type -> Type -> Type
mkAppTy Type
ty1 Type
ty2)
| Just (Type
ty1, Role
r) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
co
, Just (TyCon
tc, [Type]
tys) <- (() :: Constraint) => Type -> Maybe (TyCon, [Type])
Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe Type
ty1
= (() :: Constraint) => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
r TyCon
tc (Infinite Role -> [Type] -> [Coercion]
zip_roles (Role -> TyCon -> Infinite Role
tyConRolesX Role
r TyCon
tc) [Type]
tys)
where
zip_roles :: Infinite Role -> [Type] -> [Coercion]
zip_roles (Inf Role
r1 Infinite Role
_) [] = [Role -> Role -> Coercion -> Coercion
downgradeRole Role
r1 Role
Nominal Coercion
arg]
zip_roles (Inf Role
r1 Infinite Role
rs) (Type
ty1:[Type]
tys) = Role -> Type -> Coercion
mkReflCo Role
r1 Type
ty1 Coercion -> [Coercion] -> [Coercion]
forall a. a -> [a] -> [a]
: Infinite Role -> [Type] -> [Coercion]
zip_roles Infinite Role
rs [Type]
tys
mkAppCo (TyConAppCo Role
r TyCon
tc [Coercion]
args) Coercion
arg
= case Role
r of
Role
Nominal -> (() :: Constraint) => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
Nominal TyCon
tc ([Coercion]
args [Coercion] -> [Coercion] -> [Coercion]
forall a. [a] -> [a] -> [a]
++ [Coercion
arg])
Role
Representational -> (() :: Constraint) => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
Representational TyCon
tc ([Coercion]
args [Coercion] -> [Coercion] -> [Coercion]
forall a. [a] -> [a] -> [a]
++ [Coercion
arg'])
where new_role :: Role
new_role = TyCon -> Infinite Role
tyConRolesRepresentational TyCon
tc Infinite Role -> Arity -> Role
forall a. Infinite a -> Arity -> a
Inf.!! [Coercion] -> Arity
forall a. [a] -> Arity
forall (t :: * -> *) a. Foldable t => t a -> Arity
length [Coercion]
args
arg' :: Coercion
arg' = Role -> Role -> Coercion -> Coercion
downgradeRole Role
new_role Role
Nominal Coercion
arg
Role
Phantom -> (() :: Constraint) => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
Phantom TyCon
tc ([Coercion]
args [Coercion] -> [Coercion] -> [Coercion]
forall a. [a] -> [a] -> [a]
++ [Coercion -> Coercion
toPhantomCo Coercion
arg])
mkAppCo Coercion
co Coercion
arg = Coercion -> Coercion -> Coercion
AppCo Coercion
co Coercion
arg
mkAppCos :: Coercion
-> [Coercion]
-> Coercion
mkAppCos :: Coercion -> [Coercion] -> Coercion
mkAppCos Coercion
co1 [Coercion]
cos = (Coercion -> Coercion -> Coercion)
-> Coercion -> [Coercion] -> Coercion
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' Coercion -> Coercion -> Coercion
mkAppCo Coercion
co1 [Coercion]
cos
mkForAllCo :: TyCoVar -> CoercionN -> Coercion -> Coercion
mkForAllCo :: CoVar -> Coercion -> Coercion -> Coercion
mkForAllCo CoVar
v Coercion
kind_co Coercion
co
| Bool -> Bool -> Bool
forall a. HasCallStack => Bool -> a -> a
assert (CoVar -> Type
varType CoVar
v Type -> Type -> Bool
`eqType` (Coercion -> Type
coercionLKind Coercion
kind_co)) Bool
True
, Bool -> Bool -> Bool
forall a. HasCallStack => Bool -> a -> a
assert (CoVar -> Bool
isTyVar CoVar
v Bool -> Bool -> Bool
|| CoVar -> Coercion -> Bool
almostDevoidCoVarOfCo CoVar
v Coercion
co) Bool
True
, Just (Type
ty, Role
r) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
co
, Coercion -> Bool
isGReflCo Coercion
kind_co
= Role -> Type -> Coercion
mkReflCo Role
r (CoVar -> Type -> Type
mkTyCoInvForAllTy CoVar
v Type
ty)
| Bool
otherwise
= CoVar -> Coercion -> Coercion -> Coercion
ForAllCo CoVar
v Coercion
kind_co Coercion
co
mkForAllCo_NoRefl :: TyCoVar -> CoercionN -> Coercion -> Coercion
mkForAllCo_NoRefl :: CoVar -> Coercion -> Coercion -> Coercion
mkForAllCo_NoRefl CoVar
v Coercion
kind_co Coercion
co
| Bool -> Bool -> Bool
forall a. HasCallStack => Bool -> a -> a
assert (CoVar -> Type
varType CoVar
v Type -> Type -> Bool
`eqType` (Coercion -> Type
coercionLKind Coercion
kind_co)) Bool
True
, Bool -> Bool -> Bool
forall a. HasCallStack => Bool -> a -> a
assert (Bool -> Bool
not (Coercion -> Bool
isReflCo Coercion
co)) Bool
True
, CoVar -> Bool
isCoVar CoVar
v
, Bool -> Bool -> Bool
forall a. HasCallStack => Bool -> a -> a
assert (CoVar -> Coercion -> Bool
almostDevoidCoVarOfCo CoVar
v Coercion
co) Bool
True
, Bool -> Bool
not (CoVar
v CoVar -> VarSet -> Bool
`elemVarSet` Coercion -> VarSet
tyCoVarsOfCo Coercion
co)
= (() :: Constraint) =>
Role -> Coercion -> Coercion -> Coercion -> Coercion
Role -> Coercion -> Coercion -> Coercion -> Coercion
mkFunCoNoFTF (Coercion -> Role
coercionRole Coercion
co) (Type -> Coercion
multToCo Type
ManyTy) Coercion
kind_co Coercion
co
| Bool
otherwise
= CoVar -> Coercion -> Coercion -> Coercion
ForAllCo CoVar
v Coercion
kind_co Coercion
co
mkForAllCos :: [(TyCoVar, CoercionN)] -> Coercion -> Coercion
mkForAllCos :: [(CoVar, Coercion)] -> Coercion -> Coercion
mkForAllCos [(CoVar, Coercion)]
bndrs Coercion
co
| Just (Type
ty, Role
r ) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
co
= let ([(CoVar, Coercion)]
refls_rev'd, [(CoVar, Coercion)]
non_refls_rev'd) = ((CoVar, Coercion) -> Bool)
-> [(CoVar, Coercion)]
-> ([(CoVar, Coercion)], [(CoVar, Coercion)])
forall a. (a -> Bool) -> [a] -> ([a], [a])
span (Coercion -> Bool
isReflCo (Coercion -> Bool)
-> ((CoVar, Coercion) -> Coercion) -> (CoVar, Coercion) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (CoVar, Coercion) -> Coercion
forall a b. (a, b) -> b
snd) ([(CoVar, Coercion)] -> [(CoVar, Coercion)]
forall a. [a] -> [a]
reverse [(CoVar, Coercion)]
bndrs) in
(Coercion -> (CoVar, Coercion) -> Coercion)
-> Coercion -> [(CoVar, Coercion)] -> Coercion
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' (((CoVar, Coercion) -> Coercion -> Coercion)
-> Coercion -> (CoVar, Coercion) -> Coercion
forall a b c. (a -> b -> c) -> b -> a -> c
flip (((CoVar, Coercion) -> Coercion -> Coercion)
-> Coercion -> (CoVar, Coercion) -> Coercion)
-> ((CoVar, Coercion) -> Coercion -> Coercion)
-> Coercion
-> (CoVar, Coercion)
-> Coercion
forall a b. (a -> b) -> a -> b
$ (CoVar -> Coercion -> Coercion -> Coercion)
-> (CoVar, Coercion) -> Coercion -> Coercion
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry CoVar -> Coercion -> Coercion -> Coercion
mkForAllCo_NoRefl)
(Role -> Type -> Coercion
mkReflCo Role
r ([CoVar] -> Type -> Type
mkTyCoInvForAllTys ([CoVar] -> [CoVar]
forall a. [a] -> [a]
reverse (((CoVar, Coercion) -> CoVar) -> [(CoVar, Coercion)] -> [CoVar]
forall a b. (a -> b) -> [a] -> [b]
map (CoVar, Coercion) -> CoVar
forall a b. (a, b) -> a
fst [(CoVar, Coercion)]
refls_rev'd)) Type
ty))
[(CoVar, Coercion)]
non_refls_rev'd
| Bool
otherwise
= ((CoVar, Coercion) -> Coercion -> Coercion)
-> Coercion -> [(CoVar, Coercion)] -> Coercion
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr ((CoVar -> Coercion -> Coercion -> Coercion)
-> (CoVar, Coercion) -> Coercion -> Coercion
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry CoVar -> Coercion -> Coercion -> Coercion
mkForAllCo_NoRefl) Coercion
co [(CoVar, Coercion)]
bndrs
mkHomoForAllCos :: [TyCoVar] -> Coercion -> Coercion
mkHomoForAllCos :: [CoVar] -> Coercion -> Coercion
mkHomoForAllCos [CoVar]
vs Coercion
co
| Just (Type
ty, Role
r) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
co
= Role -> Type -> Coercion
mkReflCo Role
r ([CoVar] -> Type -> Type
mkTyCoInvForAllTys [CoVar]
vs Type
ty)
| Bool
otherwise
= [CoVar] -> Coercion -> Coercion
mkHomoForAllCos_NoRefl [CoVar]
vs Coercion
co
mkHomoForAllCos_NoRefl :: [TyCoVar] -> Coercion -> Coercion
mkHomoForAllCos_NoRefl :: [CoVar] -> Coercion -> Coercion
mkHomoForAllCos_NoRefl [CoVar]
vs Coercion
orig_co
= Bool
-> ((CoVar -> Coercion -> Coercion)
-> Coercion -> [CoVar] -> Coercion)
-> (CoVar -> Coercion -> Coercion)
-> Coercion
-> [CoVar]
-> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (Bool -> Bool
not (Coercion -> Bool
isReflCo Coercion
orig_co))
(CoVar -> Coercion -> Coercion) -> Coercion -> [CoVar] -> Coercion
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr CoVar -> Coercion -> Coercion
go Coercion
orig_co [CoVar]
vs
where
go :: CoVar -> Coercion -> Coercion
go CoVar
v Coercion
co = CoVar -> Coercion -> Coercion -> Coercion
mkForAllCo_NoRefl CoVar
v (Type -> Coercion
mkNomReflCo (CoVar -> Type
varType CoVar
v)) Coercion
co
mkCoVarCo :: CoVar -> Coercion
mkCoVarCo :: CoVar -> Coercion
mkCoVarCo CoVar
cv = CoVar -> Coercion
CoVarCo CoVar
cv
mkCoVarCos :: [CoVar] -> [Coercion]
mkCoVarCos :: [CoVar] -> [Coercion]
mkCoVarCos = (CoVar -> Coercion) -> [CoVar] -> [Coercion]
forall a b. (a -> b) -> [a] -> [b]
map CoVar -> Coercion
mkCoVarCo
mkAxInstCo :: Role -> CoAxiom br -> BranchIndex -> [Type] -> [Coercion]
-> Coercion
mkAxInstCo :: forall (br :: BranchFlag).
Role -> CoAxiom br -> Arity -> [Type] -> [Coercion] -> Coercion
mkAxInstCo Role
role CoAxiom br
ax Arity
index [Type]
tys [Coercion]
cos
| Arity
arity Arity -> Arity -> Bool
forall a. Eq a => a -> a -> Bool
== Arity
n_tys = Role -> Role -> Coercion -> Coercion
downgradeRole Role
role Role
ax_role (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
CoAxiom Branched -> Arity -> [Coercion] -> Coercion
mkAxiomInstCo CoAxiom Branched
ax_br Arity
index ([Coercion]
rtys [Coercion] -> [Coercion] -> [Coercion]
forall a. [a] -> [a] -> [a]
`chkAppend` [Coercion]
cos)
| Bool
otherwise = Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (Arity
arity Arity -> Arity -> Bool
forall a. Ord a => a -> a -> Bool
< Arity
n_tys) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Role -> Role -> Coercion -> Coercion
downgradeRole Role
role Role
ax_role (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Coercion -> [Coercion] -> Coercion
mkAppCos (CoAxiom Branched -> Arity -> [Coercion] -> Coercion
mkAxiomInstCo CoAxiom Branched
ax_br Arity
index
([Coercion]
ax_args [Coercion] -> [Coercion] -> [Coercion]
forall a. [a] -> [a] -> [a]
`chkAppend` [Coercion]
cos))
[Coercion]
leftover_args
where
n_tys :: Arity
n_tys = [Type] -> Arity
forall a. [a] -> Arity
forall (t :: * -> *) a. Foldable t => t a -> Arity
length [Type]
tys
ax_br :: CoAxiom Branched
ax_br = CoAxiom br -> CoAxiom Branched
forall (br :: BranchFlag). CoAxiom br -> CoAxiom Branched
toBranchedAxiom CoAxiom br
ax
branch :: CoAxBranch
branch = CoAxiom Branched -> Arity -> CoAxBranch
forall (br :: BranchFlag). CoAxiom br -> Arity -> CoAxBranch
coAxiomNthBranch CoAxiom Branched
ax_br Arity
index
tvs :: [CoVar]
tvs = CoAxBranch -> [CoVar]
coAxBranchTyVars CoAxBranch
branch
arity :: Arity
arity = [CoVar] -> Arity
forall a. [a] -> Arity
forall (t :: * -> *) a. Foldable t => t a -> Arity
length [CoVar]
tvs
arg_roles :: [Role]
arg_roles = CoAxBranch -> [Role]
coAxBranchRoles CoAxBranch
branch
rtys :: [Coercion]
rtys = (Role -> Type -> Coercion) -> [Role] -> [Type] -> [Coercion]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Role -> Type -> Coercion
mkReflCo ([Role]
arg_roles [Role] -> [Role] -> [Role]
forall a. [a] -> [a] -> [a]
++ Role -> [Role]
forall a. a -> [a]
repeat Role
Nominal) [Type]
tys
([Coercion]
ax_args, [Coercion]
leftover_args)
= Arity -> [Coercion] -> ([Coercion], [Coercion])
forall a. Arity -> [a] -> ([a], [a])
splitAt Arity
arity [Coercion]
rtys
ax_role :: Role
ax_role = CoAxiom br -> Role
forall (br :: BranchFlag). CoAxiom br -> Role
coAxiomRole CoAxiom br
ax
mkAxiomInstCo :: CoAxiom Branched -> BranchIndex -> [Coercion] -> Coercion
mkAxiomInstCo :: CoAxiom Branched -> Arity -> [Coercion] -> Coercion
mkAxiomInstCo CoAxiom Branched
ax Arity
index [Coercion]
args
= Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert ([Coercion]
args [Coercion] -> Arity -> Bool
forall a. [a] -> Arity -> Bool
`lengthIs` CoAxiom Branched -> Arity -> Arity
forall (br :: BranchFlag). CoAxiom br -> Arity -> Arity
coAxiomArity CoAxiom Branched
ax Arity
index) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
CoAxiom Branched -> Arity -> [Coercion] -> Coercion
AxiomInstCo CoAxiom Branched
ax Arity
index [Coercion]
args
mkUnbranchedAxInstCo :: Role -> CoAxiom Unbranched
-> [Type] -> [Coercion] -> Coercion
mkUnbranchedAxInstCo :: Role -> CoAxiom Unbranched -> [Type] -> [Coercion] -> Coercion
mkUnbranchedAxInstCo Role
role CoAxiom Unbranched
ax [Type]
tys [Coercion]
cos
= Role
-> CoAxiom Unbranched -> Arity -> [Type] -> [Coercion] -> Coercion
forall (br :: BranchFlag).
Role -> CoAxiom br -> Arity -> [Type] -> [Coercion] -> Coercion
mkAxInstCo Role
role CoAxiom Unbranched
ax Arity
0 [Type]
tys [Coercion]
cos
mkAxInstRHS :: CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type
mkAxInstRHS :: forall (br :: BranchFlag).
CoAxiom br -> Arity -> [Type] -> [Coercion] -> Type
mkAxInstRHS CoAxiom br
ax Arity
index [Type]
tys [Coercion]
cos
= Bool -> Type -> Type
forall a. HasCallStack => Bool -> a -> a
assert ([CoVar]
tvs [CoVar] -> [Type] -> Bool
forall a b. [a] -> [b] -> Bool
`equalLength` [Type]
tys1) (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$
Type -> [Type] -> Type
mkAppTys Type
rhs' [Type]
tys2
where
branch :: CoAxBranch
branch = CoAxiom br -> Arity -> CoAxBranch
forall (br :: BranchFlag). CoAxiom br -> Arity -> CoAxBranch
coAxiomNthBranch CoAxiom br
ax Arity
index
tvs :: [CoVar]
tvs = CoAxBranch -> [CoVar]
coAxBranchTyVars CoAxBranch
branch
cvs :: [CoVar]
cvs = CoAxBranch -> [CoVar]
coAxBranchCoVars CoAxBranch
branch
([Type]
tys1, [Type]
tys2) = [CoVar] -> [Type] -> ([Type], [Type])
forall b a. [b] -> [a] -> ([a], [a])
splitAtList [CoVar]
tvs [Type]
tys
rhs' :: Type
rhs' = [CoVar] -> [Type] -> Type -> Type
(() :: Constraint) => [CoVar] -> [Type] -> Type -> Type
substTyWith [CoVar]
tvs [Type]
tys1 (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$
[CoVar] -> [Coercion] -> Type -> Type
substTyWithCoVars [CoVar]
cvs [Coercion]
cos (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$
CoAxBranch -> Type
coAxBranchRHS CoAxBranch
branch
mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
mkUnbranchedAxInstRHS CoAxiom Unbranched
ax = CoAxiom Unbranched -> Arity -> [Type] -> [Coercion] -> Type
forall (br :: BranchFlag).
CoAxiom br -> Arity -> [Type] -> [Coercion] -> Type
mkAxInstRHS CoAxiom Unbranched
ax Arity
0
mkAxInstLHS :: CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type
mkAxInstLHS :: forall (br :: BranchFlag).
CoAxiom br -> Arity -> [Type] -> [Coercion] -> Type
mkAxInstLHS CoAxiom br
ax Arity
index [Type]
tys [Coercion]
cos
= Bool -> Type -> Type
forall a. HasCallStack => Bool -> a -> a
assert ([CoVar]
tvs [CoVar] -> [Type] -> Bool
forall a b. [a] -> [b] -> Bool
`equalLength` [Type]
tys1) (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$
TyCon -> [Type] -> Type
mkTyConApp TyCon
fam_tc ([Type]
lhs_tys [Type] -> [Type] -> [Type]
forall a. [a] -> [a] -> [a]
`chkAppend` [Type]
tys2)
where
branch :: CoAxBranch
branch = CoAxiom br -> Arity -> CoAxBranch
forall (br :: BranchFlag). CoAxiom br -> Arity -> CoAxBranch
coAxiomNthBranch CoAxiom br
ax Arity
index
tvs :: [CoVar]
tvs = CoAxBranch -> [CoVar]
coAxBranchTyVars CoAxBranch
branch
cvs :: [CoVar]
cvs = CoAxBranch -> [CoVar]
coAxBranchCoVars CoAxBranch
branch
([Type]
tys1, [Type]
tys2) = [CoVar] -> [Type] -> ([Type], [Type])
forall b a. [b] -> [a] -> ([a], [a])
splitAtList [CoVar]
tvs [Type]
tys
lhs_tys :: [Type]
lhs_tys = [CoVar] -> [Type] -> [Type] -> [Type]
substTysWith [CoVar]
tvs [Type]
tys1 ([Type] -> [Type]) -> [Type] -> [Type]
forall a b. (a -> b) -> a -> b
$
[CoVar] -> [Coercion] -> [Type] -> [Type]
substTysWithCoVars [CoVar]
cvs [Coercion]
cos ([Type] -> [Type]) -> [Type] -> [Type]
forall a b. (a -> b) -> a -> b
$
CoAxBranch -> [Type]
coAxBranchLHS CoAxBranch
branch
fam_tc :: TyCon
fam_tc = CoAxiom br -> TyCon
forall (br :: BranchFlag). CoAxiom br -> TyCon
coAxiomTyCon CoAxiom br
ax
mkUnbranchedAxInstLHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
mkUnbranchedAxInstLHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
mkUnbranchedAxInstLHS CoAxiom Unbranched
ax = CoAxiom Unbranched -> Arity -> [Type] -> [Coercion] -> Type
forall (br :: BranchFlag).
CoAxiom br -> Arity -> [Type] -> [Coercion] -> Type
mkAxInstLHS CoAxiom Unbranched
ax Arity
0
mkHoleCo :: CoercionHole -> Coercion
mkHoleCo :: CoercionHole -> Coercion
mkHoleCo CoercionHole
h = CoercionHole -> Coercion
HoleCo CoercionHole
h
mkUnivCo :: UnivCoProvenance
-> Role
-> Type
-> Type
-> Coercion
mkUnivCo :: UnivCoProvenance -> Role -> Type -> Type -> Coercion
mkUnivCo UnivCoProvenance
prov Role
role Type
ty1 Type
ty2
| Type
ty1 Type -> Type -> Bool
`eqType` Type
ty2 = Role -> Type -> Coercion
mkReflCo Role
role Type
ty1
| Bool
otherwise = UnivCoProvenance -> Role -> Type -> Type -> Coercion
UnivCo UnivCoProvenance
prov Role
role Type
ty1 Type
ty2
mkSymCo :: Coercion -> Coercion
mkSymCo :: Coercion -> Coercion
mkSymCo Coercion
co | Coercion -> Bool
isReflCo Coercion
co = Coercion
co
mkSymCo (SymCo Coercion
co) = Coercion
co
mkSymCo (SubCo (SymCo Coercion
co)) = Coercion -> Coercion
SubCo Coercion
co
mkSymCo Coercion
co = Coercion -> Coercion
SymCo Coercion
co
mkTransCo :: Coercion -> Coercion -> Coercion
mkTransCo :: Coercion -> Coercion -> Coercion
mkTransCo Coercion
co1 Coercion
co2 | Coercion -> Bool
isReflCo Coercion
co1 = Coercion
co2
| Coercion -> Bool
isReflCo Coercion
co2 = Coercion
co1
mkTransCo (GRefl Role
r Type
t1 (MCo Coercion
co1)) (GRefl Role
_ Type
_ (MCo Coercion
co2))
= Role -> Type -> MCoercion -> Coercion
GRefl Role
r Type
t1 (Coercion -> MCoercion
MCo (Coercion -> MCoercion) -> Coercion -> MCoercion
forall a b. (a -> b) -> a -> b
$ Coercion -> Coercion -> Coercion
mkTransCo Coercion
co1 Coercion
co2)
mkTransCo Coercion
co1 Coercion
co2 = Coercion -> Coercion -> Coercion
TransCo Coercion
co1 Coercion
co2
mkSelCo :: HasDebugCallStack
=> CoSel
-> Coercion
-> Coercion
mkSelCo :: (() :: Constraint) => CoSel -> Coercion -> Coercion
mkSelCo CoSel
n Coercion
co = (() :: Constraint) => CoSel -> Coercion -> Maybe Coercion
CoSel -> Coercion -> Maybe Coercion
mkSelCo_maybe CoSel
n Coercion
co Maybe Coercion -> Coercion -> Coercion
forall a. Maybe a -> a -> a
`orElse` CoSel -> Coercion -> Coercion
SelCo CoSel
n Coercion
co
mkSelCo_maybe :: HasDebugCallStack
=> CoSel
-> Coercion
-> Maybe Coercion
mkSelCo_maybe :: (() :: Constraint) => CoSel -> Coercion -> Maybe Coercion
mkSelCo_maybe CoSel
cs Coercion
co
= Bool -> SDoc -> Maybe Coercion -> Maybe Coercion
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (CoSel -> Bool
good_call CoSel
cs) SDoc
bad_call_msg (Maybe Coercion -> Maybe Coercion)
-> Maybe Coercion -> Maybe Coercion
forall a b. (a -> b) -> a -> b
$
CoSel -> Coercion -> Maybe Coercion
go CoSel
cs Coercion
co
where
Pair Type
ty1 Type
ty2 = Coercion -> Pair Type
coercionKind Coercion
co
go :: CoSel -> Coercion -> Maybe Coercion
go CoSel
cs Coercion
co
| Just (Type
ty, Role
r) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
co
= Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just (Role -> Type -> Coercion
mkReflCo Role
r ((() :: Constraint) => CoSel -> Type -> Type
CoSel -> Type -> Type
getNthFromType CoSel
cs Type
ty))
go CoSel
SelForAll (ForAllCo CoVar
_ Coercion
kind_co Coercion
_)
= Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just Coercion
kind_co
go (SelFun FunSel
fs) (FunCo Role
_ FunTyFlag
_ FunTyFlag
_ Coercion
w Coercion
arg Coercion
res)
= Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just (FunSel -> Coercion -> Coercion -> Coercion -> Coercion
forall a. FunSel -> a -> a -> a -> a
getNthFun FunSel
fs Coercion
w Coercion
arg Coercion
res)
go (SelTyCon Arity
i Role
r) (TyConAppCo Role
r0 TyCon
tc [Coercion]
arg_cos)
= Bool -> SDoc -> Maybe Coercion -> Maybe Coercion
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (Role
r Role -> Role -> Bool
forall a. Eq a => a -> a -> Bool
== Role -> TyCon -> Arity -> Role
tyConRole Role
r0 TyCon
tc Arity
i)
([SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc, [Coercion] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Coercion]
arg_cos, Role -> SDoc
forall a. Outputable a => a -> SDoc
ppr Role
r0, Arity -> SDoc
forall a. Outputable a => a -> SDoc
ppr Arity
i, Role -> SDoc
forall a. Outputable a => a -> SDoc
ppr Role
r ]) (Maybe Coercion -> Maybe Coercion)
-> Maybe Coercion -> Maybe Coercion
forall a b. (a -> b) -> a -> b
$
Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just ([Coercion]
arg_cos [Coercion] -> Arity -> Coercion
forall a. Outputable a => [a] -> Arity -> a
`getNth` Arity
i)
go CoSel
cs (SymCo Coercion
co)
= do { Coercion
co' <- CoSel -> Coercion -> Maybe Coercion
go CoSel
cs Coercion
co; Coercion -> Maybe Coercion
forall a. a -> Maybe a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> Coercion
mkSymCo Coercion
co') }
go CoSel
_ Coercion
_ = Maybe Coercion
forall a. Maybe a
Nothing
bad_call_msg :: SDoc
bad_call_msg = [SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"Coercion =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"LHS ty =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty1
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"RHS ty =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty2
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"cs =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> CoSel -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoSel
cs
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"coercion role =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Role -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Coercion -> Role
coercionRole Coercion
co) ]
good_call :: CoSel -> Bool
good_call CoSel
SelForAll
| Just (CoVar
_tv1, Type
_) <- Type -> Maybe (CoVar, Type)
splitForAllTyCoVar_maybe Type
ty1
, Just (CoVar
_tv2, Type
_) <- Type -> Maybe (CoVar, Type)
splitForAllTyCoVar_maybe Type
ty2
= Bool
True
good_call (SelFun {})
= Type -> Bool
isFunTy Type
ty1 Bool -> Bool -> Bool
&& Type -> Bool
isFunTy Type
ty2
good_call (SelTyCon Arity
n Role
r)
| Just (TyCon
tc1, [Type]
tys1) <- (() :: Constraint) => Type -> Maybe (TyCon, [Type])
Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe Type
ty1
, Just (TyCon
tc2, [Type]
tys2) <- (() :: Constraint) => Type -> Maybe (TyCon, [Type])
Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe Type
ty2
, let { len1 :: Arity
len1 = [Type] -> Arity
forall a. [a] -> Arity
forall (t :: * -> *) a. Foldable t => t a -> Arity
length [Type]
tys1
; len2 :: Arity
len2 = [Type] -> Arity
forall a. [a] -> Arity
forall (t :: * -> *) a. Foldable t => t a -> Arity
length [Type]
tys2 }
= TyCon
tc1 TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tc2
Bool -> Bool -> Bool
&& Arity
len1 Arity -> Arity -> Bool
forall a. Eq a => a -> a -> Bool
== Arity
len2
Bool -> Bool -> Bool
&& Arity
n Arity -> Arity -> Bool
forall a. Ord a => a -> a -> Bool
< Arity
len1
Bool -> Bool -> Bool
&& Role
r Role -> Role -> Bool
forall a. Eq a => a -> a -> Bool
== Role -> TyCon -> Arity -> Role
tyConRole (Coercion -> Role
coercionRole Coercion
co) TyCon
tc1 Arity
n
good_call CoSel
_ = Bool
False
getNthFun :: FunSel
-> a
-> a
-> a
-> a
getNthFun :: forall a. FunSel -> a -> a -> a -> a
getNthFun FunSel
SelMult a
mult a
_ a
_ = a
mult
getNthFun FunSel
SelArg a
_ a
arg a
_ = a
arg
getNthFun FunSel
SelRes a
_ a
_ a
res = a
res
mkLRCo :: LeftOrRight -> Coercion -> Coercion
mkLRCo :: LeftOrRight -> Coercion -> Coercion
mkLRCo LeftOrRight
lr Coercion
co
| Just (Type
ty, Role
eq) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
co
= Role -> Type -> Coercion
mkReflCo Role
eq (LeftOrRight -> (Type, Type) -> Type
forall a. LeftOrRight -> (a, a) -> a
pickLR LeftOrRight
lr (Type -> (Type, Type)
splitAppTy Type
ty))
| Bool
otherwise
= LeftOrRight -> Coercion -> Coercion
LRCo LeftOrRight
lr Coercion
co
mkInstCo :: Coercion -> CoercionN -> Coercion
mkInstCo :: Coercion -> Coercion -> Coercion
mkInstCo (ForAllCo CoVar
tcv Coercion
_kind_co Coercion
body_co) Coercion
co
| Just (Type
arg, Role
_) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
co
= Subst -> Coercion -> Coercion
substCoUnchecked ([CoVar] -> [Type] -> Subst
(() :: Constraint) => [CoVar] -> [Type] -> Subst
zipTCvSubst [CoVar
tcv] [Type
arg]) Coercion
body_co
mkInstCo Coercion
co Coercion
arg = Coercion -> Coercion -> Coercion
InstCo Coercion
co Coercion
arg
mkGReflRightCo :: Role -> Type -> CoercionN -> Coercion
mkGReflRightCo :: Role -> Type -> Coercion -> Coercion
mkGReflRightCo Role
r Type
ty Coercion
co
| Coercion -> Bool
isGReflCo Coercion
co = Role -> Type -> Coercion
mkReflCo Role
r Type
ty
| Bool
otherwise = Role -> Type -> MCoercion -> Coercion
GRefl Role
r Type
ty (Coercion -> MCoercion
MCo Coercion
co)
mkGReflLeftCo :: Role -> Type -> CoercionN -> Coercion
mkGReflLeftCo :: Role -> Type -> Coercion -> Coercion
mkGReflLeftCo Role
r Type
ty Coercion
co
| Coercion -> Bool
isGReflCo Coercion
co = Role -> Type -> Coercion
mkReflCo Role
r Type
ty
| Bool
otherwise = Coercion -> Coercion
mkSymCo (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Type -> MCoercion -> Coercion
GRefl Role
r Type
ty (Coercion -> MCoercion
MCo Coercion
co)
mkCoherenceLeftCo :: Role -> Type -> CoercionN -> Coercion -> Coercion
mkCoherenceLeftCo :: Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceLeftCo Role
r Type
ty Coercion
co Coercion
co2
| Coercion -> Bool
isGReflCo Coercion
co = Coercion
co2
| Bool
otherwise = (Coercion -> Coercion
mkSymCo (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Type -> MCoercion -> Coercion
GRefl Role
r Type
ty (Coercion -> MCoercion
MCo Coercion
co)) Coercion -> Coercion -> Coercion
`mkTransCo` Coercion
co2
mkCoherenceRightCo :: Role -> Type -> CoercionN -> Coercion -> Coercion
mkCoherenceRightCo :: Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceRightCo Role
r Type
ty Coercion
co Coercion
co2
| Coercion -> Bool
isGReflCo Coercion
co = Coercion
co2
| Bool
otherwise = Coercion
co2 Coercion -> Coercion -> Coercion
`mkTransCo` Role -> Type -> MCoercion -> Coercion
GRefl Role
r Type
ty (Coercion -> MCoercion
MCo Coercion
co)
mkKindCo :: Coercion -> Coercion
mkKindCo :: Coercion -> Coercion
mkKindCo Coercion
co | Just (Type
ty, Role
_) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
co = Type -> Coercion
Refl ((() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty)
mkKindCo (GRefl Role
_ Type
_ (MCo Coercion
co)) = Coercion
co
mkKindCo (UnivCo (PhantomProv Coercion
h) Role
_ Type
_ Type
_) = Coercion
h
mkKindCo (UnivCo (ProofIrrelProv Coercion
h) Role
_ Type
_ Type
_) = Coercion
h
mkKindCo Coercion
co
| Pair Type
ty1 Type
ty2 <- Coercion -> Pair Type
coercionKind Coercion
co
, let tk1 :: Type
tk1 = (() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty1
tk2 :: Type
tk2 = (() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty2
, Type
tk1 Type -> Type -> Bool
`eqType` Type
tk2
= Type -> Coercion
Refl Type
tk1
| Bool
otherwise
= Coercion -> Coercion
KindCo Coercion
co
mkSubCo :: HasDebugCallStack => Coercion -> Coercion
mkSubCo :: (() :: Constraint) => Coercion -> Coercion
mkSubCo (Refl Type
ty) = Role -> Type -> MCoercion -> Coercion
GRefl Role
Representational Type
ty MCoercion
MRefl
mkSubCo (GRefl Role
Nominal Type
ty MCoercion
co) = Role -> Type -> MCoercion -> Coercion
GRefl Role
Representational Type
ty MCoercion
co
mkSubCo (TyConAppCo Role
Nominal TyCon
tc [Coercion]
cos)
= Role -> TyCon -> [Coercion] -> Coercion
TyConAppCo Role
Representational TyCon
tc (TyCon -> [Coercion] -> [Coercion]
applyRoles TyCon
tc [Coercion]
cos)
mkSubCo co :: Coercion
co@(FunCo { fco_role :: Coercion -> Role
fco_role = Role
Nominal, fco_arg :: Coercion -> Coercion
fco_arg = Coercion
arg, fco_res :: Coercion -> Coercion
fco_res = Coercion
res })
= Coercion
co { fco_role = Representational
, fco_arg = downgradeRole Representational Nominal arg
, fco_res = downgradeRole Representational Nominal res }
mkSubCo Coercion
co = Bool -> SDoc -> Coercion -> Coercion
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (Coercion -> Role
coercionRole Coercion
co Role -> Role -> Bool
forall a. Eq a => a -> a -> Bool
== Role
Nominal) (Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Role -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Coercion -> Role
coercionRole Coercion
co)) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Coercion -> Coercion
SubCo Coercion
co
downgradeRole_maybe :: Role
-> Role
-> Coercion -> Maybe Coercion
downgradeRole_maybe :: Role -> Role -> Coercion -> Maybe Coercion
downgradeRole_maybe Role
Nominal Role
Nominal Coercion
co = Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just Coercion
co
downgradeRole_maybe Role
Nominal Role
_ Coercion
_ = Maybe Coercion
forall a. Maybe a
Nothing
downgradeRole_maybe Role
Representational Role
Nominal Coercion
co = Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just ((() :: Constraint) => Coercion -> Coercion
Coercion -> Coercion
mkSubCo Coercion
co)
downgradeRole_maybe Role
Representational Role
Representational Coercion
co = Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just Coercion
co
downgradeRole_maybe Role
Representational Role
Phantom Coercion
_ = Maybe Coercion
forall a. Maybe a
Nothing
downgradeRole_maybe Role
Phantom Role
Phantom Coercion
co = Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just Coercion
co
downgradeRole_maybe Role
Phantom Role
_ Coercion
co = Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just (Coercion -> Coercion
toPhantomCo Coercion
co)
downgradeRole :: Role
-> Role
-> Coercion -> Coercion
downgradeRole :: Role -> Role -> Coercion -> Coercion
downgradeRole Role
r1 Role
r2 Coercion
co
= case Role -> Role -> Coercion -> Maybe Coercion
downgradeRole_maybe Role
r1 Role
r2 Coercion
co of
Just Coercion
co' -> Coercion
co'
Maybe Coercion
Nothing -> String -> SDoc -> Coercion
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"downgradeRole" (Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co)
mkAxiomRuleCo :: CoAxiomRule -> [Coercion] -> Coercion
mkAxiomRuleCo :: CoAxiomRule -> [Coercion] -> Coercion
mkAxiomRuleCo = CoAxiomRule -> [Coercion] -> Coercion
AxiomRuleCo
mkProofIrrelCo :: Role
-> CoercionN
-> Coercion
-> Coercion
-> Coercion
mkProofIrrelCo :: Role -> Coercion -> Coercion -> Coercion -> Coercion
mkProofIrrelCo Role
r Coercion
co Coercion
g Coercion
_ | Coercion -> Bool
isGReflCo Coercion
co = Role -> Type -> Coercion
mkReflCo Role
r (Coercion -> Type
mkCoercionTy Coercion
g)
mkProofIrrelCo Role
r Coercion
kco Coercion
g1 Coercion
g2 = UnivCoProvenance -> Role -> Type -> Type -> Coercion
mkUnivCo (Coercion -> UnivCoProvenance
ProofIrrelProv Coercion
kco) Role
r
(Coercion -> Type
mkCoercionTy Coercion
g1) (Coercion -> Type
mkCoercionTy Coercion
g2)
setNominalRole_maybe :: Role
-> Coercion -> Maybe Coercion
setNominalRole_maybe :: Role -> Coercion -> Maybe Coercion
setNominalRole_maybe Role
r Coercion
co
| Role
r Role -> Role -> Bool
forall a. Eq a => a -> a -> Bool
== Role
Nominal = Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just Coercion
co
| Bool
otherwise = Coercion -> Maybe Coercion
setNominalRole_maybe_helper Coercion
co
where
setNominalRole_maybe_helper :: Coercion -> Maybe Coercion
setNominalRole_maybe_helper (SubCo Coercion
co) = Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just Coercion
co
setNominalRole_maybe_helper co :: Coercion
co@(Refl Type
_) = Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just Coercion
co
setNominalRole_maybe_helper (GRefl Role
_ Type
ty MCoercion
co) = Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just (Coercion -> Maybe Coercion) -> Coercion -> Maybe Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Type -> MCoercion -> Coercion
GRefl Role
Nominal Type
ty MCoercion
co
setNominalRole_maybe_helper (TyConAppCo Role
Representational TyCon
tc [Coercion]
cos)
= do { [Coercion]
cos' <- (Role -> Coercion -> Maybe Coercion)
-> [Role] -> [Coercion] -> Maybe [Coercion]
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM Role -> Coercion -> Maybe Coercion
setNominalRole_maybe (Role -> TyCon -> [Role]
tyConRoleListX Role
Representational TyCon
tc) [Coercion]
cos
; Coercion -> Maybe Coercion
forall a. a -> Maybe a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> Maybe Coercion) -> Coercion -> Maybe Coercion
forall a b. (a -> b) -> a -> b
$ Role -> TyCon -> [Coercion] -> Coercion
TyConAppCo Role
Nominal TyCon
tc [Coercion]
cos' }
setNominalRole_maybe_helper co :: Coercion
co@(FunCo { fco_role :: Coercion -> Role
fco_role = Role
Representational
, fco_arg :: Coercion -> Coercion
fco_arg = Coercion
co1, fco_res :: Coercion -> Coercion
fco_res = Coercion
co2 })
= do { Coercion
co1' <- Role -> Coercion -> Maybe Coercion
setNominalRole_maybe Role
Representational Coercion
co1
; Coercion
co2' <- Role -> Coercion -> Maybe Coercion
setNominalRole_maybe Role
Representational Coercion
co2
; Coercion -> Maybe Coercion
forall a. a -> Maybe a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> Maybe Coercion) -> Coercion -> Maybe Coercion
forall a b. (a -> b) -> a -> b
$ Coercion
co { fco_role = Nominal, fco_arg = co1', fco_res = co2' }
}
setNominalRole_maybe_helper (SymCo Coercion
co)
= Coercion -> Coercion
SymCo (Coercion -> Coercion) -> Maybe Coercion -> Maybe Coercion
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Coercion -> Maybe Coercion
setNominalRole_maybe_helper Coercion
co
setNominalRole_maybe_helper (TransCo Coercion
co1 Coercion
co2)
= Coercion -> Coercion -> Coercion
TransCo (Coercion -> Coercion -> Coercion)
-> Maybe Coercion -> Maybe (Coercion -> Coercion)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Coercion -> Maybe Coercion
setNominalRole_maybe_helper Coercion
co1 Maybe (Coercion -> Coercion) -> Maybe Coercion -> Maybe Coercion
forall a b. Maybe (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Coercion -> Maybe Coercion
setNominalRole_maybe_helper Coercion
co2
setNominalRole_maybe_helper (AppCo Coercion
co1 Coercion
co2)
= Coercion -> Coercion -> Coercion
AppCo (Coercion -> Coercion -> Coercion)
-> Maybe Coercion -> Maybe (Coercion -> Coercion)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Coercion -> Maybe Coercion
setNominalRole_maybe_helper Coercion
co1 Maybe (Coercion -> Coercion) -> Maybe Coercion -> Maybe Coercion
forall a b. Maybe (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Coercion -> Maybe Coercion
forall a. a -> Maybe a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Coercion
co2
setNominalRole_maybe_helper (ForAllCo CoVar
tv Coercion
kind_co Coercion
co)
= CoVar -> Coercion -> Coercion -> Coercion
ForAllCo CoVar
tv Coercion
kind_co (Coercion -> Coercion) -> Maybe Coercion -> Maybe Coercion
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Coercion -> Maybe Coercion
setNominalRole_maybe_helper Coercion
co
setNominalRole_maybe_helper (SelCo CoSel
n Coercion
co)
= CoSel -> Coercion -> Coercion
SelCo CoSel
n (Coercion -> Coercion) -> Maybe Coercion -> Maybe Coercion
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Role -> Coercion -> Maybe Coercion
setNominalRole_maybe (Coercion -> Role
coercionRole Coercion
co) Coercion
co
setNominalRole_maybe_helper (InstCo Coercion
co Coercion
arg)
= Coercion -> Coercion -> Coercion
InstCo (Coercion -> Coercion -> Coercion)
-> Maybe Coercion -> Maybe (Coercion -> Coercion)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Coercion -> Maybe Coercion
setNominalRole_maybe_helper Coercion
co Maybe (Coercion -> Coercion) -> Maybe Coercion -> Maybe Coercion
forall a b. Maybe (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Coercion -> Maybe Coercion
forall a. a -> Maybe a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Coercion
arg
setNominalRole_maybe_helper (UnivCo UnivCoProvenance
prov Role
_ Type
co1 Type
co2)
| case UnivCoProvenance
prov of PhantomProv Coercion
_ -> Bool
False
ProofIrrelProv Coercion
_ -> Bool
True
PluginProv String
_ -> Bool
False
CorePrepProv Bool
_ -> Bool
True
= Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just (Coercion -> Maybe Coercion) -> Coercion -> Maybe Coercion
forall a b. (a -> b) -> a -> b
$ UnivCoProvenance -> Role -> Type -> Type -> Coercion
UnivCo UnivCoProvenance
prov Role
Nominal Type
co1 Type
co2
setNominalRole_maybe_helper Coercion
_ = Maybe Coercion
forall a. Maybe a
Nothing
mkPhantomCo :: Coercion -> Type -> Type -> Coercion
mkPhantomCo :: Coercion -> Type -> Type -> Coercion
mkPhantomCo Coercion
h Type
t1 Type
t2
= UnivCoProvenance -> Role -> Type -> Type -> Coercion
mkUnivCo (Coercion -> UnivCoProvenance
PhantomProv Coercion
h) Role
Phantom Type
t1 Type
t2
toPhantomCo :: Coercion -> Coercion
toPhantomCo :: Coercion -> Coercion
toPhantomCo Coercion
co
= Coercion -> Type -> Type -> Coercion
mkPhantomCo (Coercion -> Coercion
mkKindCo Coercion
co) Type
ty1 Type
ty2
where Pair Type
ty1 Type
ty2 = Coercion -> Pair Type
coercionKind Coercion
co
applyRoles :: TyCon -> [Coercion] -> [Coercion]
applyRoles :: TyCon -> [Coercion] -> [Coercion]
applyRoles = (Role -> Coercion -> Coercion)
-> [Role] -> [Coercion] -> [Coercion]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (Role -> Role -> Coercion -> Coercion
`downgradeRole` Role
Nominal) ([Role] -> [Coercion] -> [Coercion])
-> (TyCon -> [Role]) -> TyCon -> [Coercion] -> [Coercion]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyCon -> [Role]
tyConRoleListRepresentational
tyConRolesX :: Role -> TyCon -> Infinite Role
tyConRolesX :: Role -> TyCon -> Infinite Role
tyConRolesX Role
Representational TyCon
tc = TyCon -> Infinite Role
tyConRolesRepresentational TyCon
tc
tyConRolesX Role
role TyCon
_ = Role -> Infinite Role
forall a. a -> Infinite a
Inf.repeat Role
role
tyConRoleListX :: Role -> TyCon -> [Role]
tyConRoleListX :: Role -> TyCon -> [Role]
tyConRoleListX Role
role = Infinite Role -> [Role]
forall a. Infinite a -> [a]
Inf.toList (Infinite Role -> [Role])
-> (TyCon -> Infinite Role) -> TyCon -> [Role]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Role -> TyCon -> Infinite Role
tyConRolesX Role
role
tyConRolesRepresentational :: TyCon -> Infinite Role
tyConRolesRepresentational :: TyCon -> Infinite Role
tyConRolesRepresentational TyCon
tc = TyCon -> [Role]
tyConRoles TyCon
tc [Role] -> Infinite Role -> Infinite Role
forall (f :: * -> *) a.
Foldable f =>
f a -> Infinite a -> Infinite a
Inf.++ Role -> Infinite Role
forall a. a -> Infinite a
Inf.repeat Role
Nominal
tyConRoleListRepresentational :: TyCon -> [Role]
tyConRoleListRepresentational :: TyCon -> [Role]
tyConRoleListRepresentational = Infinite Role -> [Role]
forall a. Infinite a -> [a]
Inf.toList (Infinite Role -> [Role])
-> (TyCon -> Infinite Role) -> TyCon -> [Role]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyCon -> Infinite Role
tyConRolesRepresentational
tyConRole :: Role -> TyCon -> Int -> Role
tyConRole :: Role -> TyCon -> Arity -> Role
tyConRole Role
Nominal TyCon
_ Arity
_ = Role
Nominal
tyConRole Role
Phantom TyCon
_ Arity
_ = Role
Phantom
tyConRole Role
Representational TyCon
tc Arity
n = TyCon -> Infinite Role
tyConRolesRepresentational TyCon
tc Infinite Role -> Arity -> Role
forall a. Infinite a -> Arity -> a
Inf.!! Arity
n
funRole :: Role -> FunSel -> Role
funRole :: Role -> FunSel -> Role
funRole Role
Nominal FunSel
_ = Role
Nominal
funRole Role
Phantom FunSel
_ = Role
Phantom
funRole Role
Representational FunSel
fs = FunSel -> Role
funRoleRepresentational FunSel
fs
funRoleRepresentational :: FunSel -> Role
funRoleRepresentational :: FunSel -> Role
funRoleRepresentational FunSel
SelMult = Role
Nominal
funRoleRepresentational FunSel
SelArg = Role
Representational
funRoleRepresentational FunSel
SelRes = Role
Representational
ltRole :: Role -> Role -> Bool
ltRole :: Role -> Role -> Bool
ltRole Role
Phantom Role
_ = Bool
False
ltRole Role
Representational Role
Phantom = Bool
True
ltRole Role
Representational Role
_ = Bool
False
ltRole Role
Nominal Role
Nominal = Bool
False
ltRole Role
Nominal Role
_ = Bool
True
promoteCoercion :: Coercion -> CoercionN
promoteCoercion :: Coercion -> Coercion
promoteCoercion Coercion
co = case Coercion
co of
Refl Type
_ -> Type -> Coercion
mkNomReflCo Type
ki1
GRefl Role
_ Type
_ MCoercion
MRefl -> Type -> Coercion
mkNomReflCo Type
ki1
GRefl Role
_ Type
_ (MCo Coercion
co) -> Coercion
co
Coercion
_ | Type
ki1 Type -> Type -> Bool
`eqType` Type
ki2
-> Type -> Coercion
mkNomReflCo ((() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty1)
TyConAppCo Role
_ TyCon
tc [Coercion]
args
| Just Coercion
co' <- Coercion -> [Coercion] -> Maybe Coercion
instCoercions (Type -> Coercion
mkNomReflCo (TyCon -> Type
tyConKind TyCon
tc)) [Coercion]
args
-> Coercion
co'
| Bool
otherwise
-> Coercion -> Coercion
mkKindCo Coercion
co
AppCo Coercion
co1 Coercion
arg
| Just Coercion
co' <- Pair Type -> Coercion -> Coercion -> Maybe Coercion
instCoercion (Coercion -> Pair Type
coercionKind (Coercion -> Coercion
mkKindCo Coercion
co1))
(Coercion -> Coercion
promoteCoercion Coercion
co1) Coercion
arg
-> Coercion
co'
| Bool
otherwise
-> Coercion -> Coercion
mkKindCo Coercion
co
ForAllCo CoVar
tv Coercion
_ Coercion
g
| CoVar -> Bool
isTyVar CoVar
tv
-> Coercion -> Coercion
promoteCoercion Coercion
g
ForAllCo {}
-> Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert Bool
False (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Type -> Coercion
mkNomReflCo Type
liftedTypeKind
FunCo {} -> Coercion -> Coercion
mkKindCo Coercion
co
CoVarCo {} -> Coercion -> Coercion
mkKindCo Coercion
co
HoleCo {} -> Coercion -> Coercion
mkKindCo Coercion
co
AxiomInstCo {} -> Coercion -> Coercion
mkKindCo Coercion
co
AxiomRuleCo {} -> Coercion -> Coercion
mkKindCo Coercion
co
UnivCo (PhantomProv Coercion
kco) Role
_ Type
_ Type
_ -> Coercion
kco
UnivCo (ProofIrrelProv Coercion
kco) Role
_ Type
_ Type
_ -> Coercion
kco
UnivCo (PluginProv String
_) Role
_ Type
_ Type
_ -> Coercion -> Coercion
mkKindCo Coercion
co
UnivCo (CorePrepProv Bool
_) Role
_ Type
_ Type
_ -> Coercion -> Coercion
mkKindCo Coercion
co
SymCo Coercion
g
-> Coercion -> Coercion
mkSymCo (Coercion -> Coercion
promoteCoercion Coercion
g)
TransCo Coercion
co1 Coercion
co2
-> Coercion -> Coercion -> Coercion
mkTransCo (Coercion -> Coercion
promoteCoercion Coercion
co1) (Coercion -> Coercion
promoteCoercion Coercion
co2)
SelCo CoSel
n Coercion
co1
| Just Coercion
co' <- (() :: Constraint) => CoSel -> Coercion -> Maybe Coercion
CoSel -> Coercion -> Maybe Coercion
mkSelCo_maybe CoSel
n Coercion
co1
-> Coercion -> Coercion
promoteCoercion Coercion
co'
| Bool
otherwise
-> Coercion -> Coercion
mkKindCo Coercion
co
LRCo LeftOrRight
lr Coercion
co1
| Just (Coercion
lco, Coercion
rco) <- Coercion -> Maybe (Coercion, Coercion)
splitAppCo_maybe Coercion
co1
-> case LeftOrRight
lr of
LeftOrRight
CLeft -> Coercion -> Coercion
promoteCoercion Coercion
lco
LeftOrRight
CRight -> Coercion -> Coercion
promoteCoercion Coercion
rco
| Bool
otherwise
-> Coercion -> Coercion
mkKindCo Coercion
co
InstCo Coercion
g Coercion
_
| Type -> Bool
isForAllTy_ty Type
ty1
-> Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (Type -> Bool
isForAllTy_ty Type
ty2) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Coercion -> Coercion
promoteCoercion Coercion
g
| Bool
otherwise
-> Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert Bool
False (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Type -> Coercion
mkNomReflCo Type
liftedTypeKind
KindCo Coercion
_
-> Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert Bool
False (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Type -> Coercion
mkNomReflCo Type
liftedTypeKind
SubCo Coercion
g
-> Coercion -> Coercion
promoteCoercion Coercion
g
where
Pair Type
ty1 Type
ty2 = Coercion -> Pair Type
coercionKind Coercion
co
ki1 :: Type
ki1 = (() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty1
ki2 :: Type
ki2 = (() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty2
instCoercion :: Pair Type
-> CoercionN
-> Coercion
-> Maybe CoercionN
instCoercion :: Pair Type -> Coercion -> Coercion -> Maybe Coercion
instCoercion (Pair Type
lty Type
rty) Coercion
g Coercion
w
| (Type -> Bool
isForAllTy_ty Type
lty Bool -> Bool -> Bool
&& Type -> Bool
isForAllTy_ty Type
rty)
Bool -> Bool -> Bool
|| (Type -> Bool
isForAllTy_co Type
lty Bool -> Bool -> Bool
&& Type -> Bool
isForAllTy_co Type
rty)
, Just Coercion
w' <- Role -> Coercion -> Maybe Coercion
setNominalRole_maybe (Coercion -> Role
coercionRole Coercion
w) Coercion
w
= Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just (Coercion -> Maybe Coercion) -> Coercion -> Maybe Coercion
forall a b. (a -> b) -> a -> b
$ Coercion -> Coercion -> Coercion
mkInstCo Coercion
g Coercion
w'
| Type -> Bool
isFunTy Type
lty Bool -> Bool -> Bool
&& Type -> Bool
isFunTy Type
rty
= Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just (Coercion -> Maybe Coercion) -> Coercion -> Maybe Coercion
forall a b. (a -> b) -> a -> b
$ (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (FunSel -> CoSel
SelFun FunSel
SelRes) Coercion
g
| Bool
otherwise
= Maybe Coercion
forall a. Maybe a
Nothing
instCoercions :: CoercionN -> [Coercion] -> Maybe CoercionN
instCoercions :: Coercion -> [Coercion] -> Maybe Coercion
instCoercions Coercion
g [Coercion]
ws
= let arg_ty_pairs :: [Pair Type]
arg_ty_pairs = (Coercion -> Pair Type) -> [Coercion] -> [Pair Type]
forall a b. (a -> b) -> [a] -> [b]
map Coercion -> Pair Type
coercionKind [Coercion]
ws in
(Pair Type, Coercion) -> Coercion
forall a b. (a, b) -> b
snd ((Pair Type, Coercion) -> Coercion)
-> Maybe (Pair Type, Coercion) -> Maybe Coercion
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((Pair Type, Coercion)
-> (Pair Type, Coercion) -> Maybe (Pair Type, Coercion))
-> (Pair Type, Coercion)
-> [(Pair Type, Coercion)]
-> Maybe (Pair Type, Coercion)
forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM (Pair Type, Coercion)
-> (Pair Type, Coercion) -> Maybe (Pair Type, Coercion)
go (Coercion -> Pair Type
coercionKind Coercion
g, Coercion
g) ([Pair Type] -> [Coercion] -> [(Pair Type, Coercion)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Pair Type]
arg_ty_pairs [Coercion]
ws)
where
go :: (Pair Type, Coercion) -> (Pair Type, Coercion)
-> Maybe (Pair Type, Coercion)
go :: (Pair Type, Coercion)
-> (Pair Type, Coercion) -> Maybe (Pair Type, Coercion)
go (Pair Type
g_tys, Coercion
g) (Pair Type
w_tys, Coercion
w)
= do { Coercion
g' <- Pair Type -> Coercion -> Coercion -> Maybe Coercion
instCoercion Pair Type
g_tys Coercion
g Coercion
w
; (Pair Type, Coercion) -> Maybe (Pair Type, Coercion)
forall a. a -> Maybe a
forall (m :: * -> *) a. Monad m => a -> m a
return ((() :: Constraint) => Type -> Type -> Type
Type -> Type -> Type
piResultTy (Type -> Type -> Type) -> Pair Type -> Pair (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pair Type
g_tys Pair (Type -> Type) -> Pair Type -> Pair Type
forall a b. Pair (a -> b) -> Pair a -> Pair b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Pair Type
w_tys, Coercion
g') }
castCoercionKind2 :: Coercion -> Role -> Type -> Type
-> CoercionN -> CoercionN -> Coercion
castCoercionKind2 :: Coercion
-> Role -> Type -> Type -> Coercion -> Coercion -> Coercion
castCoercionKind2 Coercion
g Role
r Type
t1 Type
t2 Coercion
h1 Coercion
h2
= Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceRightCo Role
r Type
t2 Coercion
h2 (Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceLeftCo Role
r Type
t1 Coercion
h1 Coercion
g)
castCoercionKind1 :: Coercion -> Role -> Type -> Type
-> CoercionN -> Coercion
castCoercionKind1 :: Coercion -> Role -> Type -> Type -> Coercion -> Coercion
castCoercionKind1 Coercion
g Role
r Type
t1 Type
t2 Coercion
h
= case Coercion
g of
Refl {} -> Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (Role
r Role -> Role -> Bool
forall a. Eq a => a -> a -> Bool
== Role
Nominal) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Type -> Coercion
mkNomReflCo (Type -> Coercion -> Type
mkCastTy Type
t2 Coercion
h)
GRefl Role
_ Type
_ MCoercion
mco -> case MCoercion
mco of
MCoercion
MRefl -> Role -> Type -> Coercion
mkReflCo Role
r (Type -> Coercion -> Type
mkCastTy Type
t2 Coercion
h)
MCo Coercion
kind_co -> Role -> Type -> MCoercion -> Coercion
GRefl Role
r (Type -> Coercion -> Type
mkCastTy Type
t1 Coercion
h) (MCoercion -> Coercion) -> MCoercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Coercion -> MCoercion
MCo (Coercion -> Coercion
mkSymCo Coercion
h Coercion -> Coercion -> Coercion
`mkTransCo` Coercion
kind_co Coercion -> Coercion -> Coercion
`mkTransCo` Coercion
h)
Coercion
_ -> Coercion
-> Role -> Type -> Type -> Coercion -> Coercion -> Coercion
castCoercionKind2 Coercion
g Role
r Type
t1 Type
t2 Coercion
h Coercion
h
castCoercionKind :: Coercion -> CoercionN -> CoercionN -> Coercion
castCoercionKind :: Coercion -> Coercion -> Coercion -> Coercion
castCoercionKind Coercion
g Coercion
h1 Coercion
h2
= Coercion
-> Role -> Type -> Type -> Coercion -> Coercion -> Coercion
castCoercionKind2 Coercion
g Role
r Type
t1 Type
t2 Coercion
h1 Coercion
h2
where
(Pair Type
t1 Type
t2, Role
r) = Coercion -> (Pair Type, Role)
coercionKindRole Coercion
g
mkPiCos :: Role -> [Var] -> Coercion -> Coercion
mkPiCos :: Role -> [CoVar] -> Coercion -> Coercion
mkPiCos Role
r [CoVar]
vs Coercion
co = (CoVar -> Coercion -> Coercion) -> Coercion -> [CoVar] -> Coercion
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (Role -> CoVar -> Coercion -> Coercion
mkPiCo Role
r) Coercion
co [CoVar]
vs
mkPiCo :: Role -> Var -> Coercion -> Coercion
mkPiCo :: Role -> CoVar -> Coercion -> Coercion
mkPiCo Role
r CoVar
v Coercion
co | CoVar -> Bool
isTyVar CoVar
v = [CoVar] -> Coercion -> Coercion
mkHomoForAllCos [CoVar
v] Coercion
co
| CoVar -> Bool
isCoVar CoVar
v = Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (Bool -> Bool
not (CoVar
v CoVar -> VarSet -> Bool
`elemVarSet` Coercion -> VarSet
tyCoVarsOfCo Coercion
co)) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Role -> CoVar -> Coercion -> Coercion
mkFunResCo Role
r CoVar
v Coercion
co
| Bool
otherwise = Role -> CoVar -> Coercion -> Coercion
mkFunResCo Role
r CoVar
v Coercion
co
mkFunResCo :: Role -> Id -> Coercion -> Coercion
mkFunResCo :: Role -> CoVar -> Coercion -> Coercion
mkFunResCo Role
role CoVar
id Coercion
res_co
= (() :: Constraint) =>
Role -> Coercion -> Coercion -> Coercion -> Coercion
Role -> Coercion -> Coercion -> Coercion -> Coercion
mkFunCoNoFTF Role
role Coercion
mult Coercion
arg_co Coercion
res_co
where
arg_co :: Coercion
arg_co = Role -> Type -> Coercion
mkReflCo Role
role (CoVar -> Type
varType CoVar
id)
mult :: Coercion
mult = Type -> Coercion
multToCo (CoVar -> Type
varMult CoVar
id)
mkCoCast :: Coercion -> CoercionR -> Coercion
mkCoCast :: Coercion -> Coercion -> Coercion
mkCoCast Coercion
c Coercion
g
| (Coercion
g2:Coercion
g1:[Coercion]
_) <- [Coercion] -> [Coercion]
forall a. [a] -> [a]
reverse [Coercion]
co_list
= Coercion -> Coercion
mkSymCo Coercion
g1 Coercion -> Coercion -> Coercion
`mkTransCo` Coercion
c Coercion -> Coercion -> Coercion
`mkTransCo` Coercion
g2
| Bool
otherwise
= String -> SDoc -> Coercion
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"mkCoCast" (Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
g SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Pair Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Coercion -> Pair Type
coercionKind Coercion
g))
where
(TyCon
tc, [Type]
_) = Type -> (TyCon, [Type])
splitTyConApp (Coercion -> Type
coercionLKind Coercion
g)
co_list :: [Coercion]
co_list = Arity -> Coercion -> Infinite Role -> [Coercion]
decomposeCo (TyCon -> Arity
tyConArity TyCon
tc) Coercion
g (TyCon -> Infinite Role
tyConRolesRepresentational TyCon
tc)
instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion)
instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion)
instNewTyCon_maybe TyCon
tc [Type]
tys
| Just ([CoVar]
tvs, Type
ty, CoAxiom Unbranched
co_tc) <- TyCon -> Maybe ([CoVar], Type, CoAxiom Unbranched)
unwrapNewTyConEtad_maybe TyCon
tc
, [CoVar]
tvs [CoVar] -> [Type] -> Bool
forall a b. [a] -> [b] -> Bool
`leLength` [Type]
tys
= (Type, Coercion) -> Maybe (Type, Coercion)
forall a. a -> Maybe a
Just ([CoVar] -> Type -> [Type] -> Type
applyTysX [CoVar]
tvs Type
ty [Type]
tys, Role -> CoAxiom Unbranched -> [Type] -> [Coercion] -> Coercion
mkUnbranchedAxInstCo Role
Representational CoAxiom Unbranched
co_tc [Type]
tys [])
| Bool
otherwise
= Maybe (Type, Coercion)
forall a. Maybe a
Nothing
type NormaliseStepper ev = RecTcChecker
-> TyCon
-> [Type]
-> NormaliseStepResult ev
data NormaliseStepResult ev
= NS_Done
| NS_Abort
| NS_Step RecTcChecker Type ev
deriving ((forall a b.
(a -> b) -> NormaliseStepResult a -> NormaliseStepResult b)
-> (forall a b.
a -> NormaliseStepResult b -> NormaliseStepResult a)
-> Functor NormaliseStepResult
forall a b. a -> NormaliseStepResult b -> NormaliseStepResult a
forall a b.
(a -> b) -> NormaliseStepResult a -> NormaliseStepResult b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
$cfmap :: forall a b.
(a -> b) -> NormaliseStepResult a -> NormaliseStepResult b
fmap :: forall a b.
(a -> b) -> NormaliseStepResult a -> NormaliseStepResult b
$c<$ :: forall a b. a -> NormaliseStepResult b -> NormaliseStepResult a
<$ :: forall a b. a -> NormaliseStepResult b -> NormaliseStepResult a
Functor)
instance Outputable ev => Outputable (NormaliseStepResult ev) where
ppr :: NormaliseStepResult ev -> SDoc
ppr NormaliseStepResult ev
NS_Done = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"NS_Done"
ppr NormaliseStepResult ev
NS_Abort = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"NS_Abort"
ppr (NS_Step RecTcChecker
_ Type
ty ev
ev) = [SDoc] -> SDoc
forall doc. IsLine doc => [doc] -> doc
sep [String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"NS_Step", Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty, ev -> SDoc
forall a. Outputable a => a -> SDoc
ppr ev
ev]
composeSteppers :: NormaliseStepper ev -> NormaliseStepper ev
-> NormaliseStepper ev
composeSteppers :: forall ev.
NormaliseStepper ev -> NormaliseStepper ev -> NormaliseStepper ev
composeSteppers NormaliseStepper ev
step1 NormaliseStepper ev
step2 RecTcChecker
rec_nts TyCon
tc [Type]
tys
= case NormaliseStepper ev
step1 RecTcChecker
rec_nts TyCon
tc [Type]
tys of
success :: NormaliseStepResult ev
success@(NS_Step {}) -> NormaliseStepResult ev
success
NormaliseStepResult ev
NS_Done -> NormaliseStepper ev
step2 RecTcChecker
rec_nts TyCon
tc [Type]
tys
NormaliseStepResult ev
NS_Abort -> NormaliseStepResult ev
forall ev. NormaliseStepResult ev
NS_Abort
unwrapNewTypeStepper :: NormaliseStepper Coercion
unwrapNewTypeStepper :: NormaliseStepper Coercion
unwrapNewTypeStepper RecTcChecker
rec_nts TyCon
tc [Type]
tys
| Just (Type
ty', Coercion
co) <- TyCon -> [Type] -> Maybe (Type, Coercion)
instNewTyCon_maybe TyCon
tc [Type]
tys
=
case RecTcChecker -> TyCon -> Maybe RecTcChecker
checkRecTc RecTcChecker
rec_nts TyCon
tc of
Just RecTcChecker
rec_nts' -> RecTcChecker -> Type -> Coercion -> NormaliseStepResult Coercion
forall ev. RecTcChecker -> Type -> ev -> NormaliseStepResult ev
NS_Step RecTcChecker
rec_nts' Type
ty' Coercion
co
Maybe RecTcChecker
Nothing -> NormaliseStepResult Coercion
forall ev. NormaliseStepResult ev
NS_Abort
| Bool
otherwise
= NormaliseStepResult Coercion
forall ev. NormaliseStepResult ev
NS_Done
topNormaliseTypeX :: NormaliseStepper ev
-> (ev -> ev -> ev)
-> Type -> Maybe (ev, Type)
topNormaliseTypeX :: forall ev.
NormaliseStepper ev -> (ev -> ev -> ev) -> Type -> Maybe (ev, Type)
topNormaliseTypeX NormaliseStepper ev
stepper ev -> ev -> ev
plus Type
ty
| Just (TyCon
tc, [Type]
tys) <- (() :: Constraint) => Type -> Maybe (TyCon, [Type])
Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe Type
ty
, NS_Step RecTcChecker
rec_nts Type
ty' ev
ev <- NormaliseStepper ev
stepper RecTcChecker
initRecTc TyCon
tc [Type]
tys
= RecTcChecker -> ev -> Type -> Maybe (ev, Type)
go RecTcChecker
rec_nts ev
ev Type
ty'
| Bool
otherwise
= Maybe (ev, Type)
forall a. Maybe a
Nothing
where
go :: RecTcChecker -> ev -> Type -> Maybe (ev, Type)
go RecTcChecker
rec_nts ev
ev Type
ty
| Just (TyCon
tc, [Type]
tys) <- (() :: Constraint) => Type -> Maybe (TyCon, [Type])
Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe Type
ty
= case NormaliseStepper ev
stepper RecTcChecker
rec_nts TyCon
tc [Type]
tys of
NS_Step RecTcChecker
rec_nts' Type
ty' ev
ev' -> RecTcChecker -> ev -> Type -> Maybe (ev, Type)
go RecTcChecker
rec_nts' (ev
ev ev -> ev -> ev
`plus` ev
ev') Type
ty'
NormaliseStepResult ev
NS_Done -> (ev, Type) -> Maybe (ev, Type)
forall a. a -> Maybe a
Just (ev
ev, Type
ty)
NormaliseStepResult ev
NS_Abort -> Maybe (ev, Type)
forall a. Maybe a
Nothing
| Bool
otherwise
= (ev, Type) -> Maybe (ev, Type)
forall a. a -> Maybe a
Just (ev
ev, Type
ty)
topNormaliseNewType_maybe :: Type -> Maybe (Coercion, Type)
topNormaliseNewType_maybe :: Type -> Maybe (Coercion, Type)
topNormaliseNewType_maybe Type
ty
= NormaliseStepper Coercion
-> (Coercion -> Coercion -> Coercion)
-> Type
-> Maybe (Coercion, Type)
forall ev.
NormaliseStepper ev -> (ev -> ev -> ev) -> Type -> Maybe (ev, Type)
topNormaliseTypeX NormaliseStepper Coercion
unwrapNewTypeStepper Coercion -> Coercion -> Coercion
mkTransCo Type
ty
eqCoercion :: Coercion -> Coercion -> Bool
eqCoercion :: Coercion -> Coercion -> Bool
eqCoercion = Type -> Type -> Bool
eqType (Type -> Type -> Bool)
-> (Coercion -> Type) -> Coercion -> Coercion -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Coercion -> Type
coercionType
eqCoercionX :: RnEnv2 -> Coercion -> Coercion -> Bool
eqCoercionX :: RnEnv2 -> Coercion -> Coercion -> Bool
eqCoercionX RnEnv2
env = RnEnv2 -> Type -> Type -> Bool
eqTypeX RnEnv2
env (Type -> Type -> Bool)
-> (Coercion -> Type) -> Coercion -> Coercion -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Coercion -> Type
coercionType
data LiftingContext = LC Subst LiftCoEnv
instance Outputable LiftingContext where
ppr :: LiftingContext -> SDoc
ppr (LC Subst
_ LiftCoEnv
env) = SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"LiftingContext:") Arity
2 (LiftCoEnv -> SDoc
forall a. Outputable a => a -> SDoc
ppr LiftCoEnv
env)
type LiftCoEnv = VarEnv Coercion
liftCoSubstWithEx :: Role
-> [TyVar]
-> [Coercion]
-> [TyCoVar]
-> [Type]
-> (Type -> Coercion, [Type])
liftCoSubstWithEx :: Role
-> [CoVar]
-> [Coercion]
-> [CoVar]
-> [Type]
-> (Type -> Coercion, [Type])
liftCoSubstWithEx Role
role [CoVar]
univs [Coercion]
omegas [CoVar]
exs [Type]
rhos
= let theta :: LiftingContext
theta = [(CoVar, Coercion)] -> LiftingContext
mkLiftingContext (String -> [CoVar] -> [Coercion] -> [(CoVar, Coercion)]
forall a b. (() :: Constraint) => String -> [a] -> [b] -> [(a, b)]
zipEqual String
"liftCoSubstWithExU" [CoVar]
univs [Coercion]
omegas)
psi :: LiftingContext
psi = LiftingContext -> [(CoVar, Type)] -> LiftingContext
extendLiftingContextEx LiftingContext
theta (String -> [CoVar] -> [Type] -> [(CoVar, Type)]
forall a b. (() :: Constraint) => String -> [a] -> [b] -> [(a, b)]
zipEqual String
"liftCoSubstWithExX" [CoVar]
exs [Type]
rhos)
in (LiftingContext -> Role -> Type -> Coercion
ty_co_subst LiftingContext
psi Role
role, (() :: Constraint) => Subst -> [Type] -> [Type]
Subst -> [Type] -> [Type]
substTys (LiftingContext -> Subst
lcSubstRight LiftingContext
psi) ([CoVar] -> [Type]
mkTyCoVarTys [CoVar]
exs))
liftCoSubstWith :: Role -> [TyCoVar] -> [Coercion] -> Type -> Coercion
liftCoSubstWith :: Role -> [CoVar] -> [Coercion] -> Type -> Coercion
liftCoSubstWith Role
r [CoVar]
tvs [Coercion]
cos Type
ty
= (() :: Constraint) => Role -> LiftingContext -> Type -> Coercion
Role -> LiftingContext -> Type -> Coercion
liftCoSubst Role
r ([(CoVar, Coercion)] -> LiftingContext
mkLiftingContext ([(CoVar, Coercion)] -> LiftingContext)
-> [(CoVar, Coercion)] -> LiftingContext
forall a b. (a -> b) -> a -> b
$ String -> [CoVar] -> [Coercion] -> [(CoVar, Coercion)]
forall a b. (() :: Constraint) => String -> [a] -> [b] -> [(a, b)]
zipEqual String
"liftCoSubstWith" [CoVar]
tvs [Coercion]
cos) Type
ty
liftCoSubst :: HasDebugCallStack => Role -> LiftingContext -> Type -> Coercion
{-# INLINE liftCoSubst #-}
liftCoSubst :: (() :: Constraint) => Role -> LiftingContext -> Type -> Coercion
liftCoSubst Role
r lc :: LiftingContext
lc@(LC Subst
subst LiftCoEnv
env) Type
ty
| LiftCoEnv -> Bool
forall a. VarEnv a -> Bool
isEmptyVarEnv LiftCoEnv
env = Role -> Type -> Coercion
mkReflCo Role
r ((() :: Constraint) => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
ty)
| Bool
otherwise = LiftingContext -> Role -> Type -> Coercion
ty_co_subst LiftingContext
lc Role
r Type
ty
emptyLiftingContext :: InScopeSet -> LiftingContext
emptyLiftingContext :: InScopeSet -> LiftingContext
emptyLiftingContext InScopeSet
in_scope = Subst -> LiftCoEnv -> LiftingContext
LC (InScopeSet -> Subst
mkEmptySubst InScopeSet
in_scope) LiftCoEnv
forall a. VarEnv a
emptyVarEnv
mkLiftingContext :: [(TyCoVar,Coercion)] -> LiftingContext
mkLiftingContext :: [(CoVar, Coercion)] -> LiftingContext
mkLiftingContext [(CoVar, Coercion)]
pairs
= Subst -> LiftCoEnv -> LiftingContext
LC (InScopeSet -> Subst
mkEmptySubst (InScopeSet -> Subst) -> InScopeSet -> Subst
forall a b. (a -> b) -> a -> b
$ VarSet -> InScopeSet
mkInScopeSet (VarSet -> InScopeSet) -> VarSet -> InScopeSet
forall a b. (a -> b) -> a -> b
$ [Coercion] -> VarSet
tyCoVarsOfCos (((CoVar, Coercion) -> Coercion)
-> [(CoVar, Coercion)] -> [Coercion]
forall a b. (a -> b) -> [a] -> [b]
map (CoVar, Coercion) -> Coercion
forall a b. (a, b) -> b
snd [(CoVar, Coercion)]
pairs))
([(CoVar, Coercion)] -> LiftCoEnv
forall a. [(CoVar, a)] -> VarEnv a
mkVarEnv [(CoVar, Coercion)]
pairs)
mkSubstLiftingContext :: Subst -> LiftingContext
mkSubstLiftingContext :: Subst -> LiftingContext
mkSubstLiftingContext Subst
subst = Subst -> LiftCoEnv -> LiftingContext
LC Subst
subst LiftCoEnv
forall a. VarEnv a
emptyVarEnv
extendLiftingContext :: LiftingContext
-> TyCoVar
-> Coercion
-> LiftingContext
extendLiftingContext :: LiftingContext -> CoVar -> Coercion -> LiftingContext
extendLiftingContext (LC Subst
subst LiftCoEnv
env) CoVar
tv Coercion
arg
| Just (Type
ty, Role
_) <- Coercion -> Maybe (Type, Role)
isReflCo_maybe Coercion
arg
= Subst -> LiftCoEnv -> LiftingContext
LC (Subst -> CoVar -> Type -> Subst
extendTCvSubst Subst
subst CoVar
tv Type
ty) LiftCoEnv
env
| Bool
otherwise
= Subst -> LiftCoEnv -> LiftingContext
LC Subst
subst (LiftCoEnv -> CoVar -> Coercion -> LiftCoEnv
forall a. VarEnv a -> CoVar -> a -> VarEnv a
extendVarEnv LiftCoEnv
env CoVar
tv Coercion
arg)
extendLiftingContextAndInScope :: LiftingContext
-> TyCoVar
-> Coercion
-> LiftingContext
extendLiftingContextAndInScope :: LiftingContext -> CoVar -> Coercion -> LiftingContext
extendLiftingContextAndInScope (LC Subst
subst LiftCoEnv
env) CoVar
tv Coercion
co
= LiftingContext -> CoVar -> Coercion -> LiftingContext
extendLiftingContext (Subst -> LiftCoEnv -> LiftingContext
LC (Subst -> VarSet -> Subst
extendSubstInScopeSet Subst
subst (Coercion -> VarSet
tyCoVarsOfCo Coercion
co)) LiftCoEnv
env) CoVar
tv Coercion
co
extendLiftingContextEx :: LiftingContext
-> [(TyCoVar,Type)]
-> LiftingContext
extendLiftingContextEx :: LiftingContext -> [(CoVar, Type)] -> LiftingContext
extendLiftingContextEx LiftingContext
lc [] = LiftingContext
lc
extendLiftingContextEx lc :: LiftingContext
lc@(LC Subst
subst LiftCoEnv
env) ((CoVar
v,Type
ty):[(CoVar, Type)]
rest)
| CoVar -> Bool
isTyVar CoVar
v
= let lc' :: LiftingContext
lc' = Subst -> LiftCoEnv -> LiftingContext
LC (Subst
subst Subst -> VarSet -> Subst
`extendSubstInScopeSet` Type -> VarSet
tyCoVarsOfType Type
ty)
(LiftCoEnv -> CoVar -> Coercion -> LiftCoEnv
forall a. VarEnv a -> CoVar -> a -> VarEnv a
extendVarEnv LiftCoEnv
env CoVar
v (Coercion -> LiftCoEnv) -> Coercion -> LiftCoEnv
forall a b. (a -> b) -> a -> b
$
Role -> Type -> Coercion -> Coercion
mkGReflRightCo Role
Nominal
Type
ty
(LiftingContext -> Role -> Type -> Coercion
ty_co_subst LiftingContext
lc Role
Nominal (CoVar -> Type
tyVarKind CoVar
v)))
in LiftingContext -> [(CoVar, Type)] -> LiftingContext
extendLiftingContextEx LiftingContext
lc' [(CoVar, Type)]
rest
| CoercionTy Coercion
co <- Type
ty
=
Bool -> LiftingContext -> LiftingContext
forall a. HasCallStack => Bool -> a -> a
assert (CoVar -> Bool
isCoVar CoVar
v) (LiftingContext -> LiftingContext)
-> LiftingContext -> LiftingContext
forall a b. (a -> b) -> a -> b
$
let (Type
_, Type
_, Type
s1, Type
s2, Role
r) = (() :: Constraint) => CoVar -> (Type, Type, Type, Type, Role)
CoVar -> (Type, Type, Type, Type, Role)
coVarKindsTypesRole CoVar
v
lift_s1 :: Coercion
lift_s1 = LiftingContext -> Role -> Type -> Coercion
ty_co_subst LiftingContext
lc Role
r Type
s1
lift_s2 :: Coercion
lift_s2 = LiftingContext -> Role -> Type -> Coercion
ty_co_subst LiftingContext
lc Role
r Type
s2
kco :: Coercion
kco = (() :: Constraint) => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
Nominal (Role -> TyCon
equalityTyCon Role
r)
[ Coercion -> Coercion
mkKindCo Coercion
lift_s1, Coercion -> Coercion
mkKindCo Coercion
lift_s2
, Coercion
lift_s1 , Coercion
lift_s2 ]
lc' :: LiftingContext
lc' = Subst -> LiftCoEnv -> LiftingContext
LC (Subst
subst Subst -> VarSet -> Subst
`extendSubstInScopeSet` Coercion -> VarSet
tyCoVarsOfCo Coercion
co)
(LiftCoEnv -> CoVar -> Coercion -> LiftCoEnv
forall a. VarEnv a -> CoVar -> a -> VarEnv a
extendVarEnv LiftCoEnv
env CoVar
v
(Role -> Coercion -> Coercion -> Coercion -> Coercion
mkProofIrrelCo Role
Nominal Coercion
kco Coercion
co (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
(Coercion -> Coercion
mkSymCo Coercion
lift_s1) Coercion -> Coercion -> Coercion
`mkTransCo` Coercion
co Coercion -> Coercion -> Coercion
`mkTransCo` Coercion
lift_s2))
in LiftingContext -> [(CoVar, Type)] -> LiftingContext
extendLiftingContextEx LiftingContext
lc' [(CoVar, Type)]
rest
| Bool
otherwise
= String -> SDoc -> LiftingContext
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"extendLiftingContextEx" (CoVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoVar
v SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"|->" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty)
zapLiftingContext :: LiftingContext -> LiftingContext
zapLiftingContext :: LiftingContext -> LiftingContext
zapLiftingContext (LC Subst
subst LiftCoEnv
_) = Subst -> LiftCoEnv -> LiftingContext
LC (Subst -> Subst
zapSubst Subst
subst) LiftCoEnv
forall a. VarEnv a
emptyVarEnv
substForAllCoBndrUsingLC :: Bool
-> (Coercion -> Coercion)
-> LiftingContext -> TyCoVar -> Coercion
-> (LiftingContext, TyCoVar, Coercion)
substForAllCoBndrUsingLC :: Bool
-> (Coercion -> Coercion)
-> LiftingContext
-> CoVar
-> Coercion
-> (LiftingContext, CoVar, Coercion)
substForAllCoBndrUsingLC Bool
sym Coercion -> Coercion
sco (LC Subst
subst LiftCoEnv
lc_env) CoVar
tv Coercion
co
= (Subst -> LiftCoEnv -> LiftingContext
LC Subst
subst' LiftCoEnv
lc_env, CoVar
tv', Coercion
co')
where
(Subst
subst', CoVar
tv', Coercion
co') = Bool
-> (Coercion -> Coercion)
-> Subst
-> CoVar
-> Coercion
-> (Subst, CoVar, Coercion)
substForAllCoBndrUsing Bool
sym Coercion -> Coercion
sco Subst
subst CoVar
tv Coercion
co
ty_co_subst :: LiftingContext -> Role -> Type -> Coercion
ty_co_subst :: LiftingContext -> Role -> Type -> Coercion
ty_co_subst !LiftingContext
lc Role
role Type
ty
= Role -> Type -> Coercion
go Role
role Type
ty
where
go :: Role -> Type -> Coercion
go :: Role -> Type -> Coercion
go Role
r Type
ty | Just Type
ty' <- Type -> Maybe Type
coreView Type
ty
= Role -> Type -> Coercion
go Role
r Type
ty'
go Role
Phantom Type
ty = Type -> Coercion
lift_phantom Type
ty
go Role
r (TyVarTy CoVar
tv) = String -> Maybe Coercion -> Coercion
forall a. HasCallStack => String -> Maybe a -> a
expectJust String
"ty_co_subst bad roles" (Maybe Coercion -> Coercion) -> Maybe Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
LiftingContext -> Role -> CoVar -> Maybe Coercion
liftCoSubstTyVar LiftingContext
lc Role
r CoVar
tv
go Role
r (AppTy Type
ty1 Type
ty2) = Coercion -> Coercion -> Coercion
mkAppCo (Role -> Type -> Coercion
go Role
r Type
ty1) (Role -> Type -> Coercion
go Role
Nominal Type
ty2)
go Role
r (TyConApp TyCon
tc [Type]
tys) = (() :: Constraint) => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
r TyCon
tc ((Role -> Type -> Coercion) -> [Role] -> [Type] -> [Coercion]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Role -> Type -> Coercion
go (Role -> TyCon -> [Role]
tyConRoleListX Role
r TyCon
tc) [Type]
tys)
go Role
r (FunTy FunTyFlag
af Type
w Type
t1 Type
t2) = (() :: Constraint) =>
Role -> FunTyFlag -> Coercion -> Coercion -> Coercion -> Coercion
Role -> FunTyFlag -> Coercion -> Coercion -> Coercion -> Coercion
mkFunCo1 Role
r FunTyFlag
af (Role -> Type -> Coercion
go Role
Nominal Type
w) (Role -> Type -> Coercion
go Role
r Type
t1) (Role -> Type -> Coercion
go Role
r Type
t2)
go Role
r t :: Type
t@(ForAllTy (Bndr CoVar
v ForAllTyFlag
_) Type
ty)
= let (LiftingContext
lc', CoVar
v', Coercion
h) = LiftingContext -> CoVar -> (LiftingContext, CoVar, Coercion)
liftCoSubstVarBndr LiftingContext
lc CoVar
v
body_co :: Coercion
body_co = LiftingContext -> Role -> Type -> Coercion
ty_co_subst LiftingContext
lc' Role
r Type
ty in
if CoVar -> Bool
isTyVar CoVar
v' Bool -> Bool -> Bool
|| CoVar -> Coercion -> Bool
almostDevoidCoVarOfCo CoVar
v' Coercion
body_co
then CoVar -> Coercion -> Coercion -> Coercion
mkForAllCo CoVar
v' Coercion
h Coercion
body_co
else String -> SDoc -> Coercion
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"ty_co_subst: covar is not almost devoid" (Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
t)
go Role
r ty :: Type
ty@(LitTy {}) = Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (Role
r Role -> Role -> Bool
forall a. Eq a => a -> a -> Bool
== Role
Nominal) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Type -> Coercion
mkNomReflCo Type
ty
go Role
r (CastTy Type
ty Coercion
co) = Coercion -> Coercion -> Coercion -> Coercion
castCoercionKind (Role -> Type -> Coercion
go Role
r Type
ty) (LiftingContext -> Coercion -> Coercion
substLeftCo LiftingContext
lc Coercion
co)
(LiftingContext -> Coercion -> Coercion
substRightCo LiftingContext
lc Coercion
co)
go Role
r (CoercionTy Coercion
co) = Role -> Coercion -> Coercion -> Coercion -> Coercion
mkProofIrrelCo Role
r Coercion
kco (LiftingContext -> Coercion -> Coercion
substLeftCo LiftingContext
lc Coercion
co)
(LiftingContext -> Coercion -> Coercion
substRightCo LiftingContext
lc Coercion
co)
where kco :: Coercion
kco = Role -> Type -> Coercion
go Role
Nominal (Coercion -> Type
coercionType Coercion
co)
lift_phantom :: Type -> Coercion
lift_phantom Type
ty = Coercion -> Type -> Type -> Coercion
mkPhantomCo (Role -> Type -> Coercion
go Role
Nominal ((() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty))
((() :: Constraint) => Subst -> Type -> Type
Subst -> Type -> Type
substTy (LiftingContext -> Subst
lcSubstLeft LiftingContext
lc) Type
ty)
((() :: Constraint) => Subst -> Type -> Type
Subst -> Type -> Type
substTy (LiftingContext -> Subst
lcSubstRight LiftingContext
lc) Type
ty)
liftCoSubstTyVar :: LiftingContext -> Role -> TyVar -> Maybe Coercion
liftCoSubstTyVar :: LiftingContext -> Role -> CoVar -> Maybe Coercion
liftCoSubstTyVar (LC Subst
subst LiftCoEnv
env) Role
r CoVar
v
| Just Coercion
co_arg <- LiftCoEnv -> CoVar -> Maybe Coercion
forall a. VarEnv a -> CoVar -> Maybe a
lookupVarEnv LiftCoEnv
env CoVar
v
= Role -> Role -> Coercion -> Maybe Coercion
downgradeRole_maybe Role
r (Coercion -> Role
coercionRole Coercion
co_arg) Coercion
co_arg
| Bool
otherwise
= Coercion -> Maybe Coercion
forall a. a -> Maybe a
Just (Coercion -> Maybe Coercion) -> Coercion -> Maybe Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Type -> Coercion
mkReflCo Role
r (Subst -> CoVar -> Type
substTyVar Subst
subst CoVar
v)
liftCoSubstVarBndr :: LiftingContext -> TyCoVar
-> (LiftingContext, TyCoVar, Coercion)
liftCoSubstVarBndr :: LiftingContext -> CoVar -> (LiftingContext, CoVar, Coercion)
liftCoSubstVarBndr LiftingContext
lc CoVar
tv
= (Coercion -> Coercion)
-> (LiftingContext -> Type -> Coercion)
-> LiftingContext
-> CoVar
-> (LiftingContext, CoVar, Coercion)
forall r.
(r -> Coercion)
-> (LiftingContext -> Type -> r)
-> LiftingContext
-> CoVar
-> (LiftingContext, CoVar, r)
liftCoSubstVarBndrUsing Coercion -> Coercion
forall a. a -> a
id LiftingContext -> Type -> Coercion
callback LiftingContext
lc CoVar
tv
where
callback :: LiftingContext -> Type -> Coercion
callback LiftingContext
lc' Type
ty' = LiftingContext -> Role -> Type -> Coercion
ty_co_subst LiftingContext
lc' Role
Nominal Type
ty'
liftCoSubstVarBndrUsing :: (r -> CoercionN)
-> (LiftingContext -> Type -> r)
-> LiftingContext -> TyCoVar
-> (LiftingContext, TyCoVar, r)
liftCoSubstVarBndrUsing :: forall r.
(r -> Coercion)
-> (LiftingContext -> Type -> r)
-> LiftingContext
-> CoVar
-> (LiftingContext, CoVar, r)
liftCoSubstVarBndrUsing r -> Coercion
view_co LiftingContext -> Type -> r
fun LiftingContext
lc CoVar
old_var
| CoVar -> Bool
isTyVar CoVar
old_var
= (r -> Coercion)
-> (LiftingContext -> Type -> r)
-> LiftingContext
-> CoVar
-> (LiftingContext, CoVar, r)
forall r.
(r -> Coercion)
-> (LiftingContext -> Type -> r)
-> LiftingContext
-> CoVar
-> (LiftingContext, CoVar, r)
liftCoSubstTyVarBndrUsing r -> Coercion
view_co LiftingContext -> Type -> r
fun LiftingContext
lc CoVar
old_var
| Bool
otherwise
= (r -> Coercion)
-> (LiftingContext -> Type -> r)
-> LiftingContext
-> CoVar
-> (LiftingContext, CoVar, r)
forall r.
(r -> Coercion)
-> (LiftingContext -> Type -> r)
-> LiftingContext
-> CoVar
-> (LiftingContext, CoVar, r)
liftCoSubstCoVarBndrUsing r -> Coercion
view_co LiftingContext -> Type -> r
fun LiftingContext
lc CoVar
old_var
liftCoSubstTyVarBndrUsing :: (r -> CoercionN)
-> (LiftingContext -> Type -> r)
-> LiftingContext -> TyVar
-> (LiftingContext, TyVar, r)
liftCoSubstTyVarBndrUsing :: forall r.
(r -> Coercion)
-> (LiftingContext -> Type -> r)
-> LiftingContext
-> CoVar
-> (LiftingContext, CoVar, r)
liftCoSubstTyVarBndrUsing r -> Coercion
view_co LiftingContext -> Type -> r
fun lc :: LiftingContext
lc@(LC Subst
subst LiftCoEnv
cenv) CoVar
old_var
= Bool -> (LiftingContext, CoVar, r) -> (LiftingContext, CoVar, r)
forall a. HasCallStack => Bool -> a -> a
assert (CoVar -> Bool
isTyVar CoVar
old_var) ((LiftingContext, CoVar, r) -> (LiftingContext, CoVar, r))
-> (LiftingContext, CoVar, r) -> (LiftingContext, CoVar, r)
forall a b. (a -> b) -> a -> b
$
( Subst -> LiftCoEnv -> LiftingContext
LC (Subst
subst Subst -> CoVar -> Subst
`extendSubstInScope` CoVar
new_var) LiftCoEnv
new_cenv
, CoVar
new_var, r
stuff )
where
old_kind :: Type
old_kind = CoVar -> Type
tyVarKind CoVar
old_var
stuff :: r
stuff = LiftingContext -> Type -> r
fun LiftingContext
lc Type
old_kind
eta :: Coercion
eta = r -> Coercion
view_co r
stuff
k1 :: Type
k1 = Coercion -> Type
coercionLKind Coercion
eta
new_var :: CoVar
new_var = InScopeSet -> CoVar -> CoVar
uniqAway (Subst -> InScopeSet
getSubstInScope Subst
subst) (CoVar -> Type -> CoVar
setVarType CoVar
old_var Type
k1)
lifted :: Coercion
lifted = Role -> Type -> Coercion -> Coercion
mkGReflRightCo Role
Nominal (CoVar -> Type
TyVarTy CoVar
new_var) Coercion
eta
new_cenv :: LiftCoEnv
new_cenv = LiftCoEnv -> CoVar -> Coercion -> LiftCoEnv
forall a. VarEnv a -> CoVar -> a -> VarEnv a
extendVarEnv LiftCoEnv
cenv CoVar
old_var Coercion
lifted
liftCoSubstCoVarBndrUsing :: (r -> CoercionN)
-> (LiftingContext -> Type -> r)
-> LiftingContext -> CoVar
-> (LiftingContext, CoVar, r)
liftCoSubstCoVarBndrUsing :: forall r.
(r -> Coercion)
-> (LiftingContext -> Type -> r)
-> LiftingContext
-> CoVar
-> (LiftingContext, CoVar, r)
liftCoSubstCoVarBndrUsing r -> Coercion
view_co LiftingContext -> Type -> r
fun lc :: LiftingContext
lc@(LC Subst
subst LiftCoEnv
cenv) CoVar
old_var
= Bool -> (LiftingContext, CoVar, r) -> (LiftingContext, CoVar, r)
forall a. HasCallStack => Bool -> a -> a
assert (CoVar -> Bool
isCoVar CoVar
old_var) ((LiftingContext, CoVar, r) -> (LiftingContext, CoVar, r))
-> (LiftingContext, CoVar, r) -> (LiftingContext, CoVar, r)
forall a b. (a -> b) -> a -> b
$
( Subst -> LiftCoEnv -> LiftingContext
LC (Subst
subst Subst -> CoVar -> Subst
`extendSubstInScope` CoVar
new_var) LiftCoEnv
new_cenv
, CoVar
new_var, r
stuff )
where
old_kind :: Type
old_kind = CoVar -> Type
coVarKind CoVar
old_var
stuff :: r
stuff = LiftingContext -> Type -> r
fun LiftingContext
lc Type
old_kind
eta :: Coercion
eta = r -> Coercion
view_co r
stuff
k1 :: Type
k1 = Coercion -> Type
coercionLKind Coercion
eta
new_var :: CoVar
new_var = InScopeSet -> CoVar -> CoVar
uniqAway (Subst -> InScopeSet
getSubstInScope Subst
subst) (CoVar -> Type -> CoVar
setVarType CoVar
old_var Type
k1)
role :: Role
role = CoVar -> Role
coVarRole CoVar
old_var
eta' :: Coercion
eta' = Role -> Role -> Coercion -> Coercion
downgradeRole Role
role Role
Nominal Coercion
eta
eta1 :: Coercion
eta1 = (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (Arity -> Role -> CoSel
SelTyCon Arity
2 Role
role) Coercion
eta'
eta2 :: Coercion
eta2 = (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (Arity -> Role -> CoSel
SelTyCon Arity
3 Role
role) Coercion
eta'
co1 :: Coercion
co1 = CoVar -> Coercion
mkCoVarCo CoVar
new_var
co2 :: Coercion
co2 = Coercion -> Coercion
mkSymCo Coercion
eta1 Coercion -> Coercion -> Coercion
`mkTransCo` Coercion
co1 Coercion -> Coercion -> Coercion
`mkTransCo` Coercion
eta2
lifted :: Coercion
lifted = Role -> Coercion -> Coercion -> Coercion -> Coercion
mkProofIrrelCo Role
Nominal Coercion
eta Coercion
co1 Coercion
co2
new_cenv :: LiftCoEnv
new_cenv = LiftCoEnv -> CoVar -> Coercion -> LiftCoEnv
forall a. VarEnv a -> CoVar -> a -> VarEnv a
extendVarEnv LiftCoEnv
cenv CoVar
old_var Coercion
lifted
isMappedByLC :: TyCoVar -> LiftingContext -> Bool
isMappedByLC :: CoVar -> LiftingContext -> Bool
isMappedByLC CoVar
tv (LC Subst
_ LiftCoEnv
env) = CoVar
tv CoVar -> LiftCoEnv -> Bool
forall a. CoVar -> VarEnv a -> Bool
`elemVarEnv` LiftCoEnv
env
substLeftCo :: LiftingContext -> Coercion -> Coercion
substLeftCo :: LiftingContext -> Coercion -> Coercion
substLeftCo LiftingContext
lc Coercion
co
= (() :: Constraint) => Subst -> Coercion -> Coercion
Subst -> Coercion -> Coercion
substCo (LiftingContext -> Subst
lcSubstLeft LiftingContext
lc) Coercion
co
substRightCo :: LiftingContext -> Coercion -> Coercion
substRightCo :: LiftingContext -> Coercion -> Coercion
substRightCo LiftingContext
lc Coercion
co
= (() :: Constraint) => Subst -> Coercion -> Coercion
Subst -> Coercion -> Coercion
substCo (LiftingContext -> Subst
lcSubstRight LiftingContext
lc) Coercion
co
swapLiftCoEnv :: LiftCoEnv -> LiftCoEnv
swapLiftCoEnv :: LiftCoEnv -> LiftCoEnv
swapLiftCoEnv = (Coercion -> Coercion) -> LiftCoEnv -> LiftCoEnv
forall a b. (a -> b) -> VarEnv a -> VarEnv b
mapVarEnv Coercion -> Coercion
mkSymCo
lcSubstLeft :: LiftingContext -> Subst
lcSubstLeft :: LiftingContext -> Subst
lcSubstLeft (LC Subst
subst LiftCoEnv
lc_env) = Subst -> LiftCoEnv -> Subst
liftEnvSubstLeft Subst
subst LiftCoEnv
lc_env
lcSubstRight :: LiftingContext -> Subst
lcSubstRight :: LiftingContext -> Subst
lcSubstRight (LC Subst
subst LiftCoEnv
lc_env) = Subst -> LiftCoEnv -> Subst
liftEnvSubstRight Subst
subst LiftCoEnv
lc_env
liftEnvSubstLeft :: Subst -> LiftCoEnv -> Subst
liftEnvSubstLeft :: Subst -> LiftCoEnv -> Subst
liftEnvSubstLeft = (forall a. Pair a -> a) -> Subst -> LiftCoEnv -> Subst
liftEnvSubst Pair a -> a
forall a. Pair a -> a
pFst
liftEnvSubstRight :: Subst -> LiftCoEnv -> Subst
liftEnvSubstRight :: Subst -> LiftCoEnv -> Subst
liftEnvSubstRight = (forall a. Pair a -> a) -> Subst -> LiftCoEnv -> Subst
liftEnvSubst Pair a -> a
forall a. Pair a -> a
pSnd
liftEnvSubst :: (forall a. Pair a -> a) -> Subst -> LiftCoEnv -> Subst
liftEnvSubst :: (forall a. Pair a -> a) -> Subst -> LiftCoEnv -> Subst
liftEnvSubst forall a. Pair a -> a
selector Subst
subst LiftCoEnv
lc_env
= Subst -> Subst -> Subst
composeTCvSubst (InScopeSet -> IdSubstEnv -> TvSubstEnv -> LiftCoEnv -> Subst
Subst InScopeSet
in_scope IdSubstEnv
emptyIdSubstEnv TvSubstEnv
tenv LiftCoEnv
cenv) Subst
subst
where
pairs :: [(Unique, Coercion)]
pairs = LiftCoEnv -> [(Unique, Coercion)]
forall key elt. UniqFM key elt -> [(Unique, elt)]
nonDetUFMToList LiftCoEnv
lc_env
([(Unique, Type)]
tpairs, [(Unique, Coercion)]
cpairs) = ((Unique, Coercion) -> Either (Unique, Type) (Unique, Coercion))
-> [(Unique, Coercion)] -> ([(Unique, Type)], [(Unique, Coercion)])
forall a b c. (a -> Either b c) -> [a] -> ([b], [c])
partitionWith (Unique, Coercion) -> Either (Unique, Type) (Unique, Coercion)
ty_or_co [(Unique, Coercion)]
pairs
in_scope :: InScopeSet
in_scope = VarSet -> InScopeSet
mkInScopeSet (VarSet -> InScopeSet) -> VarSet -> InScopeSet
forall a b. (a -> b) -> a -> b
$
[Type] -> VarSet
tyCoVarsOfTypes (((Unique, Type) -> Type) -> [(Unique, Type)] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map (Unique, Type) -> Type
forall a b. (a, b) -> b
snd [(Unique, Type)]
tpairs) VarSet -> VarSet -> VarSet
`unionVarSet`
[Coercion] -> VarSet
tyCoVarsOfCos (((Unique, Coercion) -> Coercion)
-> [(Unique, Coercion)] -> [Coercion]
forall a b. (a -> b) -> [a] -> [b]
map (Unique, Coercion) -> Coercion
forall a b. (a, b) -> b
snd [(Unique, Coercion)]
cpairs)
tenv :: TvSubstEnv
tenv = [(Unique, Type)] -> TvSubstEnv
forall a. [(Unique, a)] -> VarEnv a
mkVarEnv_Directly [(Unique, Type)]
tpairs
cenv :: LiftCoEnv
cenv = [(Unique, Coercion)] -> LiftCoEnv
forall a. [(Unique, a)] -> VarEnv a
mkVarEnv_Directly [(Unique, Coercion)]
cpairs
ty_or_co :: (Unique, Coercion) -> Either (Unique, Type) (Unique, Coercion)
ty_or_co :: (Unique, Coercion) -> Either (Unique, Type) (Unique, Coercion)
ty_or_co (Unique
u, Coercion
co)
| Just Coercion
equality_co <- Type -> Maybe Coercion
isCoercionTy_maybe Type
equality_ty
= (Unique, Coercion) -> Either (Unique, Type) (Unique, Coercion)
forall a b. b -> Either a b
Right (Unique
u, Coercion
equality_co)
| Bool
otherwise
= (Unique, Type) -> Either (Unique, Type) (Unique, Coercion)
forall a b. a -> Either a b
Left (Unique
u, Type
equality_ty)
where
equality_ty :: Type
equality_ty = Pair Type -> Type
forall a. Pair a -> a
selector (Coercion -> Pair Type
coercionKind Coercion
co)
lcSubst :: LiftingContext -> Subst
lcSubst :: LiftingContext -> Subst
lcSubst (LC Subst
subst LiftCoEnv
_) = Subst
subst
lcInScopeSet :: LiftingContext -> InScopeSet
lcInScopeSet :: LiftingContext -> InScopeSet
lcInScopeSet (LC Subst
subst LiftCoEnv
_) = Subst -> InScopeSet
getSubstInScope Subst
subst
seqMCo :: MCoercion -> ()
seqMCo :: MCoercion -> ()
seqMCo MCoercion
MRefl = ()
seqMCo (MCo Coercion
co) = Coercion -> ()
seqCo Coercion
co
seqCo :: Coercion -> ()
seqCo :: Coercion -> ()
seqCo (Refl Type
ty) = Type -> ()
seqType Type
ty
seqCo (GRefl Role
r Type
ty MCoercion
mco) = Role
r Role -> () -> ()
forall a b. a -> b -> b
`seq` Type -> ()
seqType Type
ty () -> () -> ()
forall a b. a -> b -> b
`seq` MCoercion -> ()
seqMCo MCoercion
mco
seqCo (TyConAppCo Role
r TyCon
tc [Coercion]
cos) = Role
r Role -> () -> ()
forall a b. a -> b -> b
`seq` TyCon
tc TyCon -> () -> ()
forall a b. a -> b -> b
`seq` [Coercion] -> ()
seqCos [Coercion]
cos
seqCo (AppCo Coercion
co1 Coercion
co2) = Coercion -> ()
seqCo Coercion
co1 () -> () -> ()
forall a b. a -> b -> b
`seq` Coercion -> ()
seqCo Coercion
co2
seqCo (ForAllCo CoVar
tv Coercion
k Coercion
co) = Type -> ()
seqType (CoVar -> Type
varType CoVar
tv) () -> () -> ()
forall a b. a -> b -> b
`seq` Coercion -> ()
seqCo Coercion
k
() -> () -> ()
forall a b. a -> b -> b
`seq` Coercion -> ()
seqCo Coercion
co
seqCo (FunCo Role
r FunTyFlag
af1 FunTyFlag
af2 Coercion
w Coercion
co1 Coercion
co2) = Role
r Role -> () -> ()
forall a b. a -> b -> b
`seq` FunTyFlag
af1 FunTyFlag -> () -> ()
forall a b. a -> b -> b
`seq` FunTyFlag
af2 FunTyFlag -> () -> ()
forall a b. a -> b -> b
`seq`
Coercion -> ()
seqCo Coercion
w () -> () -> ()
forall a b. a -> b -> b
`seq` Coercion -> ()
seqCo Coercion
co1 () -> () -> ()
forall a b. a -> b -> b
`seq` Coercion -> ()
seqCo Coercion
co2
seqCo (CoVarCo CoVar
cv) = CoVar
cv CoVar -> () -> ()
forall a b. a -> b -> b
`seq` ()
seqCo (HoleCo CoercionHole
h) = CoercionHole -> CoVar
coHoleCoVar CoercionHole
h CoVar -> () -> ()
forall a b. a -> b -> b
`seq` ()
seqCo (AxiomInstCo CoAxiom Branched
con Arity
ind [Coercion]
cos) = CoAxiom Branched
con CoAxiom Branched -> () -> ()
forall a b. a -> b -> b
`seq` Arity
ind Arity -> () -> ()
forall a b. a -> b -> b
`seq` [Coercion] -> ()
seqCos [Coercion]
cos
seqCo (UnivCo UnivCoProvenance
p Role
r Type
t1 Type
t2)
= UnivCoProvenance -> ()
seqProv UnivCoProvenance
p () -> () -> ()
forall a b. a -> b -> b
`seq` Role
r Role -> () -> ()
forall a b. a -> b -> b
`seq` Type -> ()
seqType Type
t1 () -> () -> ()
forall a b. a -> b -> b
`seq` Type -> ()
seqType Type
t2
seqCo (SymCo Coercion
co) = Coercion -> ()
seqCo Coercion
co
seqCo (TransCo Coercion
co1 Coercion
co2) = Coercion -> ()
seqCo Coercion
co1 () -> () -> ()
forall a b. a -> b -> b
`seq` Coercion -> ()
seqCo Coercion
co2
seqCo (SelCo CoSel
n Coercion
co) = CoSel
n CoSel -> () -> ()
forall a b. a -> b -> b
`seq` Coercion -> ()
seqCo Coercion
co
seqCo (LRCo LeftOrRight
lr Coercion
co) = LeftOrRight
lr LeftOrRight -> () -> ()
forall a b. a -> b -> b
`seq` Coercion -> ()
seqCo Coercion
co
seqCo (InstCo Coercion
co Coercion
arg) = Coercion -> ()
seqCo Coercion
co () -> () -> ()
forall a b. a -> b -> b
`seq` Coercion -> ()
seqCo Coercion
arg
seqCo (KindCo Coercion
co) = Coercion -> ()
seqCo Coercion
co
seqCo (SubCo Coercion
co) = Coercion -> ()
seqCo Coercion
co
seqCo (AxiomRuleCo CoAxiomRule
_ [Coercion]
cs) = [Coercion] -> ()
seqCos [Coercion]
cs
seqProv :: UnivCoProvenance -> ()
seqProv :: UnivCoProvenance -> ()
seqProv (PhantomProv Coercion
co) = Coercion -> ()
seqCo Coercion
co
seqProv (ProofIrrelProv Coercion
co) = Coercion -> ()
seqCo Coercion
co
seqProv (PluginProv String
_) = ()
seqProv (CorePrepProv Bool
_) = ()
seqCos :: [Coercion] -> ()
seqCos :: [Coercion] -> ()
seqCos [] = ()
seqCos (Coercion
co:[Coercion]
cos) = Coercion -> ()
seqCo Coercion
co () -> () -> ()
forall a b. a -> b -> b
`seq` [Coercion] -> ()
seqCos [Coercion]
cos
coercionKinds :: [Coercion] -> Pair [Type]
coercionKinds :: [Coercion] -> Pair [Type]
coercionKinds [Coercion]
tys = [Pair Type] -> Pair [Type]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: * -> *) a. Applicative f => [f a] -> f [a]
sequenceA ([Pair Type] -> Pair [Type]) -> [Pair Type] -> Pair [Type]
forall a b. (a -> b) -> a -> b
$ (Coercion -> Pair Type) -> [Coercion] -> [Pair Type]
forall a b. (a -> b) -> [a] -> [b]
map Coercion -> Pair Type
coercionKind [Coercion]
tys
coercionKindRole :: Coercion -> (Pair Type, Role)
coercionKindRole :: Coercion -> (Pair Type, Role)
coercionKindRole Coercion
co = (Coercion -> Pair Type
coercionKind Coercion
co, Coercion -> Role
coercionRole Coercion
co)
coercionType :: Coercion -> Type
coercionType :: Coercion -> Type
coercionType Coercion
co = case Coercion -> (Pair Type, Role)
coercionKindRole Coercion
co of
(Pair Type
ty1 Type
ty2, Role
r) -> Role -> Type -> Type -> Type
mkCoercionType Role
r Type
ty1 Type
ty2
coercionKind :: Coercion -> Pair Type
coercionKind :: Coercion -> Pair Type
coercionKind Coercion
co = Type -> Type -> Pair Type
forall a. a -> a -> Pair a
Pair (Coercion -> Type
coercionLKind Coercion
co) (Coercion -> Type
coercionRKind Coercion
co)
coercionLKind :: Coercion -> Type
coercionLKind :: Coercion -> Type
coercionLKind Coercion
co
= Coercion -> Type
go Coercion
co
where
go :: Coercion -> Type
go (Refl Type
ty) = Type
ty
go (GRefl Role
_ Type
ty MCoercion
_) = Type
ty
go (TyConAppCo Role
_ TyCon
tc [Coercion]
cos) = TyCon -> [Type] -> Type
mkTyConApp TyCon
tc ((Coercion -> Type) -> [Coercion] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map Coercion -> Type
go [Coercion]
cos)
go (AppCo Coercion
co1 Coercion
co2) = Type -> Type -> Type
mkAppTy (Coercion -> Type
go Coercion
co1) (Coercion -> Type
go Coercion
co2)
go (ForAllCo CoVar
tv1 Coercion
_ Coercion
co1) = CoVar -> Type -> Type
mkTyCoInvForAllTy CoVar
tv1 (Coercion -> Type
go Coercion
co1)
go (FunCo { fco_afl :: Coercion -> FunTyFlag
fco_afl = FunTyFlag
af, fco_mult :: Coercion -> Coercion
fco_mult = Coercion
mult, fco_arg :: Coercion -> Coercion
fco_arg = Coercion
arg, fco_res :: Coercion -> Coercion
fco_res = Coercion
res})
= FunTy { ft_af :: FunTyFlag
ft_af = FunTyFlag
af, ft_mult :: Type
ft_mult = Coercion -> Type
go Coercion
mult
, ft_arg :: Type
ft_arg = Coercion -> Type
go Coercion
arg, ft_res :: Type
ft_res = Coercion -> Type
go Coercion
res }
go (CoVarCo CoVar
cv) = (() :: Constraint) => CoVar -> Type
CoVar -> Type
coVarLType CoVar
cv
go (HoleCo CoercionHole
h) = (() :: Constraint) => CoVar -> Type
CoVar -> Type
coVarLType (CoercionHole -> CoVar
coHoleCoVar CoercionHole
h)
go (UnivCo UnivCoProvenance
_ Role
_ Type
ty1 Type
_) = Type
ty1
go (SymCo Coercion
co) = Coercion -> Type
coercionRKind Coercion
co
go (TransCo Coercion
co1 Coercion
_) = Coercion -> Type
go Coercion
co1
go (LRCo LeftOrRight
lr Coercion
co) = LeftOrRight -> (Type, Type) -> Type
forall a. LeftOrRight -> (a, a) -> a
pickLR LeftOrRight
lr (Type -> (Type, Type)
splitAppTy (Coercion -> Type
go Coercion
co))
go (InstCo Coercion
aco Coercion
arg) = Coercion -> [Type] -> Type
go_app Coercion
aco [Coercion -> Type
go Coercion
arg]
go (KindCo Coercion
co) = (() :: Constraint) => Type -> Type
Type -> Type
typeKind (Coercion -> Type
go Coercion
co)
go (SubCo Coercion
co) = Coercion -> Type
go Coercion
co
go (SelCo CoSel
d Coercion
co) = (() :: Constraint) => CoSel -> Type -> Type
CoSel -> Type -> Type
getNthFromType CoSel
d (Coercion -> Type
go Coercion
co)
go (AxiomInstCo CoAxiom Branched
ax Arity
ind [Coercion]
cos) = CoAxiom Branched -> Arity -> [Type] -> Type
forall {br :: BranchFlag}. CoAxiom br -> Arity -> [Type] -> Type
go_ax_inst CoAxiom Branched
ax Arity
ind ((Coercion -> Type) -> [Coercion] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map Coercion -> Type
go [Coercion]
cos)
go (AxiomRuleCo CoAxiomRule
ax [Coercion]
cos) = Pair Type -> Type
forall a. Pair a -> a
pFst (Pair Type -> Type) -> Pair Type -> Type
forall a b. (a -> b) -> a -> b
$ String -> Maybe (Pair Type) -> Pair Type
forall a. HasCallStack => String -> Maybe a -> a
expectJust String
"coercionKind" (Maybe (Pair Type) -> Pair Type) -> Maybe (Pair Type) -> Pair Type
forall a b. (a -> b) -> a -> b
$
CoAxiomRule -> [Pair Type] -> Maybe (Pair Type)
coaxrProves CoAxiomRule
ax ([Pair Type] -> Maybe (Pair Type))
-> [Pair Type] -> Maybe (Pair Type)
forall a b. (a -> b) -> a -> b
$ (Coercion -> Pair Type) -> [Coercion] -> [Pair Type]
forall a b. (a -> b) -> [a] -> [b]
map Coercion -> Pair Type
coercionKind [Coercion]
cos
go_ax_inst :: CoAxiom br -> Arity -> [Type] -> Type
go_ax_inst CoAxiom br
ax Arity
ind [Type]
tys
| CoAxBranch { cab_tvs :: CoAxBranch -> [CoVar]
cab_tvs = [CoVar]
tvs, cab_cvs :: CoAxBranch -> [CoVar]
cab_cvs = [CoVar]
cvs
, cab_lhs :: CoAxBranch -> [Type]
cab_lhs = [Type]
lhs } <- CoAxiom br -> Arity -> CoAxBranch
forall (br :: BranchFlag). CoAxiom br -> Arity -> CoAxBranch
coAxiomNthBranch CoAxiom br
ax Arity
ind
, let ([Type]
tys1, [Type]
cotys1) = [CoVar] -> [Type] -> ([Type], [Type])
forall b a. [b] -> [a] -> ([a], [a])
splitAtList [CoVar]
tvs [Type]
tys
cos1 :: [Coercion]
cos1 = (Type -> Coercion) -> [Type] -> [Coercion]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Coercion
stripCoercionTy [Type]
cotys1
= Bool -> Type -> Type
forall a. HasCallStack => Bool -> a -> a
assert ([Type]
tys [Type] -> [CoVar] -> Bool
forall a b. [a] -> [b] -> Bool
`equalLength` ([CoVar]
tvs [CoVar] -> [CoVar] -> [CoVar]
forall a. [a] -> [a] -> [a]
++ [CoVar]
cvs)) (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$
[CoVar] -> [Type] -> Type -> Type
(() :: Constraint) => [CoVar] -> [Type] -> Type -> Type
substTyWith [CoVar]
tvs [Type]
tys1 (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$
[CoVar] -> [Coercion] -> Type -> Type
substTyWithCoVars [CoVar]
cvs [Coercion]
cos1 (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$
TyCon -> [Type] -> Type
mkTyConApp (CoAxiom br -> TyCon
forall (br :: BranchFlag). CoAxiom br -> TyCon
coAxiomTyCon CoAxiom br
ax) [Type]
lhs
go_app :: Coercion -> [Type] -> Type
go_app :: Coercion -> [Type] -> Type
go_app (InstCo Coercion
co Coercion
arg) [Type]
args = Coercion -> [Type] -> Type
go_app Coercion
co (Coercion -> Type
go Coercion
argType -> [Type] -> [Type]
forall a. a -> [a] -> [a]
:[Type]
args)
go_app Coercion
co [Type]
args = (() :: Constraint) => Type -> [Type] -> Type
Type -> [Type] -> Type
piResultTys (Coercion -> Type
go Coercion
co) [Type]
args
getNthFromType :: HasDebugCallStack => CoSel -> Type -> Type
getNthFromType :: (() :: Constraint) => CoSel -> Type -> Type
getNthFromType (SelFun FunSel
fs) Type
ty
| Just (FunTyFlag
_af, Type
mult, Type
arg, Type
res) <- Type -> Maybe (FunTyFlag, Type, Type, Type)
splitFunTy_maybe Type
ty
= FunSel -> Type -> Type -> Type -> Type
forall a. FunSel -> a -> a -> a -> a
getNthFun FunSel
fs Type
mult Type
arg Type
res
getNthFromType (SelTyCon Arity
n Role
_) Type
ty
| Just [Type]
args <- Type -> Maybe [Type]
tyConAppArgs_maybe Type
ty
= Bool -> SDoc -> Type -> Type
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr ([Type]
args [Type] -> Arity -> Bool
forall a. [a] -> Arity -> Bool
`lengthExceeds` Arity
n) (Arity -> SDoc
forall a. Outputable a => a -> SDoc
ppr Arity
n SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty) (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$
[Type]
args [Type] -> Arity -> Type
forall a. Outputable a => [a] -> Arity -> a
`getNth` Arity
n
getNthFromType CoSel
SelForAll Type
ty
| Just (CoVar
tv,Type
_) <- Type -> Maybe (CoVar, Type)
splitForAllTyCoVar_maybe Type
ty
= CoVar -> Type
tyVarKind CoVar
tv
getNthFromType CoSel
cs Type
ty
= String -> SDoc -> Type
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"getNthFromType" (CoSel -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoSel
cs SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty)
coercionRKind :: Coercion -> Type
coercionRKind :: Coercion -> Type
coercionRKind Coercion
co
= Coercion -> Type
go Coercion
co
where
go :: Coercion -> Type
go (Refl Type
ty) = Type
ty
go (GRefl Role
_ Type
ty MCoercion
MRefl) = Type
ty
go (GRefl Role
_ Type
ty (MCo Coercion
co1)) = Type -> Coercion -> Type
mkCastTy Type
ty Coercion
co1
go (TyConAppCo Role
_ TyCon
tc [Coercion]
cos) = TyCon -> [Type] -> Type
mkTyConApp TyCon
tc ((Coercion -> Type) -> [Coercion] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map Coercion -> Type
go [Coercion]
cos)
go (AppCo Coercion
co1 Coercion
co2) = Type -> Type -> Type
mkAppTy (Coercion -> Type
go Coercion
co1) (Coercion -> Type
go Coercion
co2)
go (CoVarCo CoVar
cv) = (() :: Constraint) => CoVar -> Type
CoVar -> Type
coVarRType CoVar
cv
go (HoleCo CoercionHole
h) = (() :: Constraint) => CoVar -> Type
CoVar -> Type
coVarRType (CoercionHole -> CoVar
coHoleCoVar CoercionHole
h)
go (FunCo { fco_afr :: Coercion -> FunTyFlag
fco_afr = FunTyFlag
af, fco_mult :: Coercion -> Coercion
fco_mult = Coercion
mult, fco_arg :: Coercion -> Coercion
fco_arg = Coercion
arg, fco_res :: Coercion -> Coercion
fco_res = Coercion
res})
= FunTy { ft_af :: FunTyFlag
ft_af = FunTyFlag
af, ft_mult :: Type
ft_mult = Coercion -> Type
go Coercion
mult
, ft_arg :: Type
ft_arg = Coercion -> Type
go Coercion
arg, ft_res :: Type
ft_res = Coercion -> Type
go Coercion
res }
go (UnivCo UnivCoProvenance
_ Role
_ Type
_ Type
ty2) = Type
ty2
go (SymCo Coercion
co) = Coercion -> Type
coercionLKind Coercion
co
go (TransCo Coercion
_ Coercion
co2) = Coercion -> Type
go Coercion
co2
go (LRCo LeftOrRight
lr Coercion
co) = LeftOrRight -> (Type, Type) -> Type
forall a. LeftOrRight -> (a, a) -> a
pickLR LeftOrRight
lr (Type -> (Type, Type)
splitAppTy (Coercion -> Type
go Coercion
co))
go (InstCo Coercion
aco Coercion
arg) = Coercion -> [Type] -> Type
go_app Coercion
aco [Coercion -> Type
go Coercion
arg]
go (KindCo Coercion
co) = (() :: Constraint) => Type -> Type
Type -> Type
typeKind (Coercion -> Type
go Coercion
co)
go (SubCo Coercion
co) = Coercion -> Type
go Coercion
co
go (SelCo CoSel
d Coercion
co) = (() :: Constraint) => CoSel -> Type -> Type
CoSel -> Type -> Type
getNthFromType CoSel
d (Coercion -> Type
go Coercion
co)
go (AxiomInstCo CoAxiom Branched
ax Arity
ind [Coercion]
cos) = CoAxiom Branched -> Arity -> [Type] -> Type
forall {br :: BranchFlag}. CoAxiom br -> Arity -> [Type] -> Type
go_ax_inst CoAxiom Branched
ax Arity
ind ((Coercion -> Type) -> [Coercion] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map Coercion -> Type
go [Coercion]
cos)
go (AxiomRuleCo CoAxiomRule
ax [Coercion]
cos) = Pair Type -> Type
forall a. Pair a -> a
pSnd (Pair Type -> Type) -> Pair Type -> Type
forall a b. (a -> b) -> a -> b
$ String -> Maybe (Pair Type) -> Pair Type
forall a. HasCallStack => String -> Maybe a -> a
expectJust String
"coercionKind" (Maybe (Pair Type) -> Pair Type) -> Maybe (Pair Type) -> Pair Type
forall a b. (a -> b) -> a -> b
$
CoAxiomRule -> [Pair Type] -> Maybe (Pair Type)
coaxrProves CoAxiomRule
ax ([Pair Type] -> Maybe (Pair Type))
-> [Pair Type] -> Maybe (Pair Type)
forall a b. (a -> b) -> a -> b
$ (Coercion -> Pair Type) -> [Coercion] -> [Pair Type]
forall a b. (a -> b) -> [a] -> [b]
map Coercion -> Pair Type
coercionKind [Coercion]
cos
go co :: Coercion
co@(ForAllCo CoVar
tv1 Coercion
k_co Coercion
co1)
| Coercion -> Bool
isGReflCo Coercion
k_co = CoVar -> Type -> Type
mkTyCoInvForAllTy CoVar
tv1 (Coercion -> Type
go Coercion
co1)
| Bool
otherwise = Subst -> Coercion -> Type
go_forall Subst
empty_subst Coercion
co
where
empty_subst :: Subst
empty_subst = InScopeSet -> Subst
mkEmptySubst (VarSet -> InScopeSet
mkInScopeSet (VarSet -> InScopeSet) -> VarSet -> InScopeSet
forall a b. (a -> b) -> a -> b
$ Coercion -> VarSet
tyCoVarsOfCo Coercion
co)
go_ax_inst :: CoAxiom br -> Arity -> [Type] -> Type
go_ax_inst CoAxiom br
ax Arity
ind [Type]
tys
| CoAxBranch { cab_tvs :: CoAxBranch -> [CoVar]
cab_tvs = [CoVar]
tvs, cab_cvs :: CoAxBranch -> [CoVar]
cab_cvs = [CoVar]
cvs
, cab_rhs :: CoAxBranch -> Type
cab_rhs = Type
rhs } <- CoAxiom br -> Arity -> CoAxBranch
forall (br :: BranchFlag). CoAxiom br -> Arity -> CoAxBranch
coAxiomNthBranch CoAxiom br
ax Arity
ind
, let ([Type]
tys2, [Type]
cotys2) = [CoVar] -> [Type] -> ([Type], [Type])
forall b a. [b] -> [a] -> ([a], [a])
splitAtList [CoVar]
tvs [Type]
tys
cos2 :: [Coercion]
cos2 = (Type -> Coercion) -> [Type] -> [Coercion]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Coercion
stripCoercionTy [Type]
cotys2
= Bool -> Type -> Type
forall a. HasCallStack => Bool -> a -> a
assert ([Type]
tys [Type] -> [CoVar] -> Bool
forall a b. [a] -> [b] -> Bool
`equalLength` ([CoVar]
tvs [CoVar] -> [CoVar] -> [CoVar]
forall a. [a] -> [a] -> [a]
++ [CoVar]
cvs)) (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$
[CoVar] -> [Type] -> Type -> Type
(() :: Constraint) => [CoVar] -> [Type] -> Type -> Type
substTyWith [CoVar]
tvs [Type]
tys2 (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$
[CoVar] -> [Coercion] -> Type -> Type
substTyWithCoVars [CoVar]
cvs [Coercion]
cos2 Type
rhs
go_app :: Coercion -> [Type] -> Type
go_app :: Coercion -> [Type] -> Type
go_app (InstCo Coercion
co Coercion
arg) [Type]
args = Coercion -> [Type] -> Type
go_app Coercion
co (Coercion -> Type
go Coercion
argType -> [Type] -> [Type]
forall a. a -> [a] -> [a]
:[Type]
args)
go_app Coercion
co [Type]
args = (() :: Constraint) => Type -> [Type] -> Type
Type -> [Type] -> Type
piResultTys (Coercion -> Type
go Coercion
co) [Type]
args
go_forall :: Subst -> Coercion -> Type
go_forall Subst
subst (ForAllCo CoVar
tv1 Coercion
k_co Coercion
co)
| CoVar -> Bool
isTyVar CoVar
tv1
= CoVar -> Type -> Type
mkInfForAllTy CoVar
tv2 (Subst -> Coercion -> Type
go_forall Subst
subst' Coercion
co)
where
k2 :: Type
k2 = Coercion -> Type
coercionRKind Coercion
k_co
tv2 :: CoVar
tv2 = CoVar -> Type -> CoVar
setTyVarKind CoVar
tv1 ((() :: Constraint) => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
k2)
subst' :: Subst
subst' | Coercion -> Bool
isGReflCo Coercion
k_co = Subst -> CoVar -> Subst
extendSubstInScope Subst
subst CoVar
tv1
| Bool
otherwise = Subst -> CoVar -> Type -> Subst
extendTvSubst (Subst -> CoVar -> Subst
extendSubstInScope Subst
subst CoVar
tv2) CoVar
tv1 (Type -> Subst) -> Type -> Subst
forall a b. (a -> b) -> a -> b
$
CoVar -> Type
TyVarTy CoVar
tv2 Type -> Coercion -> Type
`mkCastTy` Coercion -> Coercion
mkSymCo Coercion
k_co
go_forall Subst
subst (ForAllCo CoVar
cv1 Coercion
k_co Coercion
co)
| CoVar -> Bool
isCoVar CoVar
cv1
= CoVar -> Type -> Type
mkTyCoInvForAllTy CoVar
cv2 (Subst -> Coercion -> Type
go_forall Subst
subst' Coercion
co)
where
k2 :: Type
k2 = Coercion -> Type
coercionRKind Coercion
k_co
r :: Role
r = CoVar -> Role
coVarRole CoVar
cv1
k_co' :: Coercion
k_co' = Role -> Role -> Coercion -> Coercion
downgradeRole Role
r Role
Nominal Coercion
k_co
eta1 :: Coercion
eta1 = (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (Arity -> Role -> CoSel
SelTyCon Arity
2 Role
r) Coercion
k_co'
eta2 :: Coercion
eta2 = (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (Arity -> Role -> CoSel
SelTyCon Arity
3 Role
r) Coercion
k_co'
cv2 :: CoVar
cv2 = CoVar -> Type -> CoVar
setVarType CoVar
cv1 ((() :: Constraint) => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
k2)
n_subst :: Coercion
n_subst = Coercion
eta1 Coercion -> Coercion -> Coercion
`mkTransCo` (CoVar -> Coercion
mkCoVarCo CoVar
cv2) Coercion -> Coercion -> Coercion
`mkTransCo` (Coercion -> Coercion
mkSymCo Coercion
eta2)
subst' :: Subst
subst' | Coercion -> Bool
isReflCo Coercion
k_co = Subst -> CoVar -> Subst
extendSubstInScope Subst
subst CoVar
cv1
| Bool
otherwise = Subst -> CoVar -> Coercion -> Subst
extendCvSubst (Subst -> CoVar -> Subst
extendSubstInScope Subst
subst CoVar
cv2)
CoVar
cv1 Coercion
n_subst
go_forall Subst
subst Coercion
other_co
= (() :: Constraint) => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst (Coercion -> Type
go Coercion
other_co)
coercionRole :: Coercion -> Role
coercionRole :: Coercion -> Role
coercionRole = Coercion -> Role
go
where
go :: Coercion -> Role
go (Refl Type
_) = Role
Nominal
go (GRefl Role
r Type
_ MCoercion
_) = Role
r
go (TyConAppCo Role
r TyCon
_ [Coercion]
_) = Role
r
go (AppCo Coercion
co1 Coercion
_) = Coercion -> Role
go Coercion
co1
go (ForAllCo CoVar
_ Coercion
_ Coercion
co) = Coercion -> Role
go Coercion
co
go (FunCo { fco_role :: Coercion -> Role
fco_role = Role
r }) = Role
r
go (CoVarCo CoVar
cv) = CoVar -> Role
coVarRole CoVar
cv
go (HoleCo CoercionHole
h) = CoVar -> Role
coVarRole (CoercionHole -> CoVar
coHoleCoVar CoercionHole
h)
go (AxiomInstCo CoAxiom Branched
ax Arity
_ [Coercion]
_) = CoAxiom Branched -> Role
forall (br :: BranchFlag). CoAxiom br -> Role
coAxiomRole CoAxiom Branched
ax
go (UnivCo UnivCoProvenance
_ Role
r Type
_ Type
_) = Role
r
go (SymCo Coercion
co) = Coercion -> Role
go Coercion
co
go (TransCo Coercion
co1 Coercion
_co2) = Coercion -> Role
go Coercion
co1
go (SelCo CoSel
SelForAll Coercion
_co) = Role
Nominal
go (SelCo (SelTyCon Arity
_ Role
r) Coercion
_co) = Role
r
go (SelCo (SelFun FunSel
fs) Coercion
co) = Role -> FunSel -> Role
funRole (Coercion -> Role
coercionRole Coercion
co) FunSel
fs
go (LRCo {}) = Role
Nominal
go (InstCo Coercion
co Coercion
_) = Coercion -> Role
go Coercion
co
go (KindCo {}) = Role
Nominal
go (SubCo Coercion
_) = Role
Representational
go (AxiomRuleCo CoAxiomRule
ax [Coercion]
_) = CoAxiomRule -> Role
coaxrRole CoAxiomRule
ax
mkCoercionType :: Role -> Type -> Type -> Type
mkCoercionType :: Role -> Type -> Type -> Type
mkCoercionType Role
Nominal = Type -> Type -> Type
mkPrimEqPred
mkCoercionType Role
Representational = Type -> Type -> Type
mkReprPrimEqPred
mkCoercionType Role
Phantom = \Type
ty1 Type
ty2 ->
let ki1 :: Type
ki1 = (() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty1
ki2 :: Type
ki2 = (() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty2
in
TyCon -> [Type] -> Type
TyConApp TyCon
eqPhantPrimTyCon [Type
ki1, Type
ki2, Type
ty1, Type
ty2]
mkPrimEqPred :: Type -> Type -> Type
mkPrimEqPred :: Type -> Type -> Type
mkPrimEqPred Type
ty1 Type
ty2
= TyCon -> [Type] -> Type
mkTyConApp TyCon
eqPrimTyCon [Type
k1, Type
k2, Type
ty1, Type
ty2]
where
k1 :: Type
k1 = (() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty1
k2 :: Type
k2 = (() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty2
mkPrimEqPredRole :: Role -> Type -> Type -> PredType
mkPrimEqPredRole :: Role -> Type -> Type -> Type
mkPrimEqPredRole Role
Nominal = Type -> Type -> Type
mkPrimEqPred
mkPrimEqPredRole Role
Representational = Type -> Type -> Type
mkReprPrimEqPred
mkPrimEqPredRole Role
Phantom = String -> Type -> Type -> Type
forall a. HasCallStack => String -> a
panic String
"mkPrimEqPredRole phantom"
mkHeteroPrimEqPred :: Kind -> Kind -> Type -> Type -> Type
mkHeteroPrimEqPred :: Type -> Type -> Type -> Type -> Type
mkHeteroPrimEqPred Type
k1 Type
k2 Type
ty1 Type
ty2 = TyCon -> [Type] -> Type
mkTyConApp TyCon
eqPrimTyCon [Type
k1, Type
k2, Type
ty1, Type
ty2]
mkHeteroReprPrimEqPred :: Kind -> Kind -> Type -> Type -> Type
mkHeteroReprPrimEqPred :: Type -> Type -> Type -> Type -> Type
mkHeteroReprPrimEqPred Type
k1 Type
k2 Type
ty1 Type
ty2
= TyCon -> [Type] -> Type
mkTyConApp TyCon
eqReprPrimTyCon [Type
k1, Type
k2, Type
ty1, Type
ty2]
mkReprPrimEqPred :: Type -> Type -> Type
mkReprPrimEqPred :: Type -> Type -> Type
mkReprPrimEqPred Type
ty1 Type
ty2
= TyCon -> [Type] -> Type
mkTyConApp TyCon
eqReprPrimTyCon [Type
k1, Type
k2, Type
ty1, Type
ty2]
where
k1 :: Type
k1 = (() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty1
k2 :: Type
k2 = (() :: Constraint) => Type -> Type
Type -> Type
typeKind Type
ty2
buildCoercion :: Type -> Type -> CoercionN
buildCoercion :: Type -> Type -> Coercion
buildCoercion Type
orig_ty1 Type
orig_ty2 = Type -> Type -> Coercion
go Type
orig_ty1 Type
orig_ty2
where
go :: Type -> Type -> Coercion
go Type
ty1 Type
ty2 | Just Type
ty1' <- Type -> Maybe Type
coreView Type
ty1 = Type -> Type -> Coercion
go Type
ty1' Type
ty2
| Just Type
ty2' <- Type -> Maybe Type
coreView Type
ty2 = Type -> Type -> Coercion
go Type
ty1 Type
ty2'
go (CastTy Type
ty1 Coercion
co) Type
ty2
= let co' :: Coercion
co' = Type -> Type -> Coercion
go Type
ty1 Type
ty2
r :: Role
r = Coercion -> Role
coercionRole Coercion
co'
in Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceLeftCo Role
r Type
ty1 Coercion
co Coercion
co'
go Type
ty1 (CastTy Type
ty2 Coercion
co)
= let co' :: Coercion
co' = Type -> Type -> Coercion
go Type
ty1 Type
ty2
r :: Role
r = Coercion -> Role
coercionRole Coercion
co'
in Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceRightCo Role
r Type
ty2 Coercion
co Coercion
co'
go ty1 :: Type
ty1@(TyVarTy CoVar
tv1) Type
_tyvarty
= Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (case Type
_tyvarty of
{ TyVarTy CoVar
tv2 -> CoVar
tv1 CoVar -> CoVar -> Bool
forall a. Eq a => a -> a -> Bool
== CoVar
tv2
; Type
_ -> Bool
False }) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Type -> Coercion
mkNomReflCo Type
ty1
go (FunTy { ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af1, ft_mult :: Type -> Type
ft_mult = Type
w1, ft_arg :: Type -> Type
ft_arg = Type
arg1, ft_res :: Type -> Type
ft_res = Type
res1 })
(FunTy { ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af2, ft_mult :: Type -> Type
ft_mult = Type
w2, ft_arg :: Type -> Type
ft_arg = Type
arg2, ft_res :: Type -> Type
ft_res = Type
res2 })
= Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (FunTyFlag
af1 FunTyFlag -> FunTyFlag -> Bool
forall a. Eq a => a -> a -> Bool
== FunTyFlag
af2) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
(() :: Constraint) =>
Role -> FunTyFlag -> Coercion -> Coercion -> Coercion -> Coercion
Role -> FunTyFlag -> Coercion -> Coercion -> Coercion -> Coercion
mkFunCo1 Role
Nominal FunTyFlag
af1 (Type -> Type -> Coercion
go Type
w1 Type
w2) (Type -> Type -> Coercion
go Type
arg1 Type
arg2) (Type -> Type -> Coercion
go Type
res1 Type
res2)
go (TyConApp TyCon
tc1 [Type]
args1) (TyConApp TyCon
tc2 [Type]
args2)
= Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (TyCon
tc1 TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tc2) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
(() :: Constraint) => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
Nominal TyCon
tc1 ((Type -> Type -> Coercion) -> [Type] -> [Type] -> [Coercion]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Type -> Type -> Coercion
go [Type]
args1 [Type]
args2)
go (AppTy Type
ty1a Type
ty1b) Type
ty2
| Just (Type
ty2a, Type
ty2b) <- (() :: Constraint) => Type -> Maybe (Type, Type)
Type -> Maybe (Type, Type)
splitAppTyNoView_maybe Type
ty2
= Coercion -> Coercion -> Coercion
mkAppCo (Type -> Type -> Coercion
go Type
ty1a Type
ty2a) (Type -> Type -> Coercion
go Type
ty1b Type
ty2b)
go Type
ty1 (AppTy Type
ty2a Type
ty2b)
| Just (Type
ty1a, Type
ty1b) <- (() :: Constraint) => Type -> Maybe (Type, Type)
Type -> Maybe (Type, Type)
splitAppTyNoView_maybe Type
ty1
= Coercion -> Coercion -> Coercion
mkAppCo (Type -> Type -> Coercion
go Type
ty1a Type
ty2a) (Type -> Type -> Coercion
go Type
ty1b Type
ty2b)
go (ForAllTy (Bndr CoVar
tv1 ForAllTyFlag
_flag1) Type
ty1) (ForAllTy (Bndr CoVar
tv2 ForAllTyFlag
_flag2) Type
ty2)
| CoVar -> Bool
isTyVar CoVar
tv1
= Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (CoVar -> Bool
isTyVar CoVar
tv2) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
CoVar -> Coercion -> Coercion -> Coercion
mkForAllCo CoVar
tv1 Coercion
kind_co (Type -> Type -> Coercion
go Type
ty1 Type
ty2')
where kind_co :: Coercion
kind_co = Type -> Type -> Coercion
go (CoVar -> Type
tyVarKind CoVar
tv1) (CoVar -> Type
tyVarKind CoVar
tv2)
in_scope :: InScopeSet
in_scope = VarSet -> InScopeSet
mkInScopeSet (VarSet -> InScopeSet) -> VarSet -> InScopeSet
forall a b. (a -> b) -> a -> b
$ Type -> VarSet
tyCoVarsOfType Type
ty2 VarSet -> VarSet -> VarSet
`unionVarSet` Coercion -> VarSet
tyCoVarsOfCo Coercion
kind_co
ty2' :: Type
ty2' = InScopeSet -> [CoVar] -> [Type] -> Type -> Type
substTyWithInScope InScopeSet
in_scope [CoVar
tv2]
[CoVar -> Type
mkTyVarTy CoVar
tv1 Type -> Coercion -> Type
`mkCastTy` Coercion
kind_co]
Type
ty2
go (ForAllTy (Bndr CoVar
cv1 ForAllTyFlag
_flag1) Type
ty1) (ForAllTy (Bndr CoVar
cv2 ForAllTyFlag
_flag2) Type
ty2)
= Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (CoVar -> Bool
isCoVar CoVar
cv1 Bool -> Bool -> Bool
&& CoVar -> Bool
isCoVar CoVar
cv2) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
CoVar -> Coercion -> Coercion -> Coercion
mkForAllCo CoVar
cv1 Coercion
kind_co (Type -> Type -> Coercion
go Type
ty1 Type
ty2')
where s1 :: Type
s1 = CoVar -> Type
varType CoVar
cv1
s2 :: Type
s2 = CoVar -> Type
varType CoVar
cv2
kind_co :: Coercion
kind_co = Type -> Type -> Coercion
go Type
s1 Type
s2
r :: Role
r = CoVar -> Role
coVarRole CoVar
cv1
kind_co' :: Coercion
kind_co' = Role -> Role -> Coercion -> Coercion
downgradeRole Role
r Role
Nominal Coercion
kind_co
eta1 :: Coercion
eta1 = (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (Arity -> Role -> CoSel
SelTyCon Arity
2 Role
r) Coercion
kind_co'
eta2 :: Coercion
eta2 = (() :: Constraint) => CoSel -> Coercion -> Coercion
CoSel -> Coercion -> Coercion
mkSelCo (Arity -> Role -> CoSel
SelTyCon Arity
3 Role
r) Coercion
kind_co'
subst :: Subst
subst = InScopeSet -> Subst
mkEmptySubst (InScopeSet -> Subst) -> InScopeSet -> Subst
forall a b. (a -> b) -> a -> b
$ VarSet -> InScopeSet
mkInScopeSet (VarSet -> InScopeSet) -> VarSet -> InScopeSet
forall a b. (a -> b) -> a -> b
$
Type -> VarSet
tyCoVarsOfType Type
ty2 VarSet -> VarSet -> VarSet
`unionVarSet` Coercion -> VarSet
tyCoVarsOfCo Coercion
kind_co
ty2' :: Type
ty2' = (() :: Constraint) => Subst -> Type -> Type
Subst -> Type -> Type
substTy (Subst -> CoVar -> Coercion -> Subst
extendCvSubst Subst
subst CoVar
cv2 (Coercion -> Subst) -> Coercion -> Subst
forall a b. (a -> b) -> a -> b
$ Coercion -> Coercion
mkSymCo Coercion
eta1 Coercion -> Coercion -> Coercion
`mkTransCo`
CoVar -> Coercion
mkCoVarCo CoVar
cv1 Coercion -> Coercion -> Coercion
`mkTransCo`
Coercion
eta2)
Type
ty2
go ty1 :: Type
ty1@(LitTy TyLit
lit1) Type
_lit2
= Bool -> Coercion -> Coercion
forall a. HasCallStack => Bool -> a -> a
assert (case Type
_lit2 of
{ LitTy TyLit
lit2 -> TyLit
lit1 TyLit -> TyLit -> Bool
forall a. Eq a => a -> a -> Bool
== TyLit
lit2
; Type
_ -> Bool
False }) (Coercion -> Coercion) -> Coercion -> Coercion
forall a b. (a -> b) -> a -> b
$
Type -> Coercion
mkNomReflCo Type
ty1
go (CoercionTy Coercion
co1) (CoercionTy Coercion
co2)
= Role -> Coercion -> Coercion -> Coercion -> Coercion
mkProofIrrelCo Role
Nominal Coercion
kind_co Coercion
co1 Coercion
co2
where
kind_co :: Coercion
kind_co = Type -> Type -> Coercion
go (Coercion -> Type
coercionType Coercion
co1) (Coercion -> Type
coercionType Coercion
co2)
go Type
ty1 Type
ty2
= String -> SDoc -> Coercion
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"buildKindCoercion" ([SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
orig_ty1, Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
orig_ty2
, Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty1, Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty2 ])
has_co_hole_ty :: Type -> Monoid.Any
has_co_hole_co :: Coercion -> Monoid.Any
(Type -> Any
has_co_hole_ty, [Type] -> Any
_, Coercion -> Any
has_co_hole_co, [Coercion] -> Any
_)
= TyCoFolder () Any
-> ()
-> (Type -> Any, [Type] -> Any, Coercion -> Any, [Coercion] -> Any)
forall a env.
Monoid a =>
TyCoFolder env a
-> env -> (Type -> a, [Type] -> a, Coercion -> a, [Coercion] -> a)
foldTyCo TyCoFolder () Any
forall {env}. TyCoFolder env Any
folder ()
where
folder :: TyCoFolder env Any
folder = TyCoFolder { tcf_view :: Type -> Maybe Type
tcf_view = Type -> Maybe Type
noView
, tcf_tyvar :: env -> CoVar -> Any
tcf_tyvar = Any -> env -> CoVar -> Any
forall a b c. a -> b -> c -> a
const2 (Bool -> Any
Monoid.Any Bool
False)
, tcf_covar :: env -> CoVar -> Any
tcf_covar = Any -> env -> CoVar -> Any
forall a b c. a -> b -> c -> a
const2 (Bool -> Any
Monoid.Any Bool
False)
, tcf_hole :: env -> CoercionHole -> Any
tcf_hole = Any -> env -> CoercionHole -> Any
forall a b c. a -> b -> c -> a
const2 (Bool -> Any
Monoid.Any Bool
True)
, tcf_tycobinder :: env -> CoVar -> ForAllTyFlag -> env
tcf_tycobinder = env -> CoVar -> ForAllTyFlag -> env
forall a b c. a -> b -> c -> a
const2
}
hasCoercionHoleTy :: Type -> Bool
hasCoercionHoleTy :: Type -> Bool
hasCoercionHoleTy = Any -> Bool
Monoid.getAny (Any -> Bool) -> (Type -> Any) -> Type -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> Any
has_co_hole_ty
hasCoercionHoleCo :: Coercion -> Bool
hasCoercionHoleCo :: Coercion -> Bool
hasCoercionHoleCo = Any -> Bool
Monoid.getAny (Any -> Bool) -> (Coercion -> Any) -> Coercion -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coercion -> Any
has_co_hole_co
hasThisCoercionHoleTy :: Type -> CoercionHole -> Bool
hasThisCoercionHoleTy :: Type -> CoercionHole -> Bool
hasThisCoercionHoleTy Type
ty CoercionHole
hole = Any -> Bool
Monoid.getAny (Type -> Any
f Type
ty)
where
(Type -> Any
f, [Type] -> Any
_, Coercion -> Any
_, [Coercion] -> Any
_) = TyCoFolder () Any
-> ()
-> (Type -> Any, [Type] -> Any, Coercion -> Any, [Coercion] -> Any)
forall a env.
Monoid a =>
TyCoFolder env a
-> env -> (Type -> a, [Type] -> a, Coercion -> a, [Coercion] -> a)
foldTyCo TyCoFolder () Any
folder ()
folder :: TyCoFolder () Any
folder = TyCoFolder { tcf_view :: Type -> Maybe Type
tcf_view = Type -> Maybe Type
noView
, tcf_tyvar :: () -> CoVar -> Any
tcf_tyvar = Any -> () -> CoVar -> Any
forall a b c. a -> b -> c -> a
const2 (Bool -> Any
Monoid.Any Bool
False)
, tcf_covar :: () -> CoVar -> Any
tcf_covar = Any -> () -> CoVar -> Any
forall a b c. a -> b -> c -> a
const2 (Bool -> Any
Monoid.Any Bool
False)
, tcf_hole :: () -> CoercionHole -> Any
tcf_hole = \ ()
_ CoercionHole
h -> Bool -> Any
Monoid.Any (CoercionHole -> Unique
forall a. Uniquable a => a -> Unique
getUnique CoercionHole
h Unique -> Unique -> Bool
forall a. Eq a => a -> a -> Bool
== CoercionHole -> Unique
forall a. Uniquable a => a -> Unique
getUnique CoercionHole
hole)
, tcf_tycobinder :: () -> CoVar -> ForAllTyFlag -> ()
tcf_tycobinder = () -> CoVar -> ForAllTyFlag -> ()
forall a b c. a -> b -> c -> a
const2
}
setCoHoleType :: CoercionHole -> Type -> CoercionHole
setCoHoleType :: CoercionHole -> Type -> CoercionHole
setCoHoleType CoercionHole
h Type
t = CoercionHole -> CoVar -> CoercionHole
setCoHoleCoVar CoercionHole
h (CoVar -> Type -> CoVar
setVarType (CoercionHole -> CoVar
coHoleCoVar CoercionHole
h) Type
t)