{-
(c) The University of Glasgow 2006-2012
(c) The GRASP Project, Glasgow University, 1992-2002

-}

{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}

module GHC.Tc.Gen.Sig(
       TcSigInfo(..),
       TcIdSigInfo(..), TcIdSigInst,
       TcPatSynInfo(..),
       TcSigFun,

       isPartialSig, hasCompleteSig, tcIdSigName, tcSigInfoName,
       completeSigPolyId_maybe, isCompleteHsSig,

       tcTySigs, tcUserTypeSig, completeSigFromId,
       tcInstSig,

       TcPragEnv, emptyPragEnv, lookupPragEnv, extendPragEnv,
       mkPragEnv, tcSpecPrags, tcSpecWrapper, tcImpPrags,
       addInlinePrags, addInlinePragArity
   ) where

#include "HsVersions.h"

import GHC.Prelude

import GHC.Hs
import GHC.Tc.Gen.HsType
import GHC.Tc.Types
import GHC.Tc.Solver( pushLevelAndSolveEqualitiesX, reportUnsolvedEqualities )
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Zonk
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.TcType
import GHC.Tc.Utils.TcMType
import GHC.Tc.Validity ( checkValidType )
import GHC.Tc.Utils.Unify( tcTopSkolemise, unifyType )
import GHC.Tc.Utils.Instantiate( topInstantiate, tcInstTypeBndrs )
import GHC.Tc.Utils.Env( tcLookupId )
import GHC.Tc.Types.Evidence( HsWrapper, (<.>) )
import GHC.Core( hasSomeUnfolding )
import GHC.Core.Type ( mkTyVarBinders )
import GHC.Core.Multiplicity

import GHC.Driver.Session
import GHC.Driver.Backend
import GHC.Types.Var ( TyVar, Specificity(..), tyVarKind, binderVars )
import GHC.Types.Id  ( Id, idName, idType, setInlinePragma
                     , mkLocalId, realIdUnfolding )
import GHC.Builtin.Names( mkUnboundName )
import GHC.Types.Basic
import GHC.Unit.Module( getModule )
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Types.SrcLoc
import GHC.Utils.Misc as Utils ( singleton )
import GHC.Data.Maybe( orElse )
import Data.Maybe( mapMaybe )
import Control.Monad( unless )


{- -------------------------------------------------------------
          Note [Overview of type signatures]
----------------------------------------------------------------
Type signatures, including partial signatures, are jolly tricky,
especially on value bindings.  Here's an overview.

    f :: forall a. [a] -> [a]
    g :: forall b. _ -> b

    f = ...g...
    g = ...f...

* HsSyn: a signature in a binding starts off as a TypeSig, in
  type HsBinds.Sig

* When starting a mutually recursive group, like f/g above, we
  call tcTySig on each signature in the group.

* tcTySig: Sig -> TcIdSigInfo
  - For a /complete/ signature, like 'f' above, tcTySig kind-checks
    the HsType, producing a Type, and wraps it in a CompleteSig, and
    extend the type environment with this polymorphic 'f'.

  - For a /partial/signature, like 'g' above, tcTySig does nothing
    Instead it just wraps the pieces in a PartialSig, to be handled
    later.

* tcInstSig: TcIdSigInfo -> TcIdSigInst
  In tcMonoBinds, when looking at an individual binding, we use
  tcInstSig to instantiate the signature forall's in the signature,
  and attribute that instantiated (monomorphic) type to the
  binder.  You can see this in GHC.Tc.Gen.Bind.tcLhsId.

  The instantiation does the obvious thing for complete signatures,
  but for /partial/ signatures it starts from the HsSyn, so it
  has to kind-check it etc: tcHsPartialSigType.  It's convenient
  to do this at the same time as instantiation, because we can
  make the wildcards into unification variables right away, raather
  than somehow quantifying over them.  And the "TcLevel" of those
  unification variables is correct because we are in tcMonoBinds.


Note [Binding scoped type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The type variables *brought into lexical scope* by a type signature
may be a subset of the *quantified type variables* of the signatures,
for two reasons:

* With kind polymorphism a signature like
    f :: forall f a. f a -> f a
  may actually give rise to
    f :: forall k. forall (f::k -> *) (a:k). f a -> f a
  So the sig_tvs will be [k,f,a], but only f,a are scoped.
  NB: the scoped ones are not necessarily the *initial* ones!

* Even aside from kind polymorphism, there may be more instantiated
  type variables than lexically-scoped ones.  For example:
        type T a = forall b. b -> (a,b)
        f :: forall c. T c
  Here, the signature for f will have one scoped type variable, c,
  but two instantiated type variables, c' and b'.

However, all of this only applies to the renamer.  The typechecker
just puts all of them into the type environment; any lexical-scope
errors were dealt with by the renamer.

-}


{- *********************************************************************
*                                                                      *
             Utility functions for TcSigInfo
*                                                                      *
********************************************************************* -}

tcIdSigName :: TcIdSigInfo -> Name
tcIdSigName :: TcIdSigInfo -> Name
tcIdSigName (CompleteSig { sig_bndr :: TcIdSigInfo -> TcId
sig_bndr = TcId
id }) = TcId -> Name
idName TcId
id
tcIdSigName (PartialSig { psig_name :: TcIdSigInfo -> Name
psig_name = Name
n })  = Name
n

tcSigInfoName :: TcSigInfo -> Name
tcSigInfoName :: TcSigInfo -> Name
tcSigInfoName (TcIdSig     TcIdSigInfo
idsi) = TcIdSigInfo -> Name
tcIdSigName TcIdSigInfo
idsi
tcSigInfoName (TcPatSynSig TcPatSynInfo
tpsi) = TcPatSynInfo -> Name
patsig_name TcPatSynInfo
tpsi

completeSigPolyId_maybe :: TcSigInfo -> Maybe TcId
completeSigPolyId_maybe :: TcSigInfo -> Maybe TcId
completeSigPolyId_maybe TcSigInfo
sig
  | TcIdSig TcIdSigInfo
sig_info <- TcSigInfo
sig
  , CompleteSig { sig_bndr :: TcIdSigInfo -> TcId
sig_bndr = TcId
id } <- TcIdSigInfo
sig_info = forall a. a -> Maybe a
Just TcId
id
  | Bool
otherwise                                 = forall a. Maybe a
Nothing


{- *********************************************************************
*                                                                      *
               Typechecking user signatures
*                                                                      *
********************************************************************* -}

tcTySigs :: [LSig GhcRn] -> TcM ([TcId], TcSigFun)
tcTySigs :: [LSig GhcRn] -> TcM ([TcId], TcSigFun)
tcTySigs [LSig GhcRn]
hs_sigs
  = forall r. TcM r -> TcM r
checkNoErrs forall a b. (a -> b) -> a -> b
$
    do { -- Fail if any of the signatures is duff
         -- Hence mapAndReportM
         -- See Note [Fail eagerly on bad signatures]
         [[TcSigInfo]]
ty_sigs_s <- forall a b. (a -> TcRn b) -> [a] -> TcRn [b]
mapAndReportM LSig GhcRn -> TcM [TcSigInfo]
tcTySig [LSig GhcRn]
hs_sigs

       ; let ty_sigs :: [TcSigInfo]
ty_sigs = forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [[TcSigInfo]]
ty_sigs_s
             poly_ids :: [TcId]
poly_ids = forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe TcSigInfo -> Maybe TcId
completeSigPolyId_maybe [TcSigInfo]
ty_sigs
                        -- The returned [TcId] are the ones for which we have
                        -- a complete type signature.
                        -- See Note [Complete and partial type signatures]
             env :: NameEnv TcSigInfo
env = forall a. [(Name, a)] -> NameEnv a
mkNameEnv [(TcSigInfo -> Name
tcSigInfoName TcSigInfo
sig, TcSigInfo
sig) | TcSigInfo
sig <- [TcSigInfo]
ty_sigs]

       ; forall (m :: * -> *) a. Monad m => a -> m a
return ([TcId]
poly_ids, forall a. NameEnv a -> Name -> Maybe a
lookupNameEnv NameEnv TcSigInfo
env) }

tcTySig :: LSig GhcRn -> TcM [TcSigInfo]
tcTySig :: LSig GhcRn -> TcM [TcSigInfo]
tcTySig (L SrcSpanAnnA
_ (IdSig XIdSig GhcRn
_ TcId
id))
  = do { let ctxt :: UserTypeCtxt
ctxt = Name -> Bool -> UserTypeCtxt
FunSigCtxt (TcId -> Name
idName TcId
id) Bool
False
                    -- False: do not report redundant constraints
                    -- The user has no control over the signature!
             sig :: TcIdSigInfo
sig = UserTypeCtxt -> TcId -> TcIdSigInfo
completeSigFromId UserTypeCtxt
ctxt TcId
id
       ; forall (m :: * -> *) a. Monad m => a -> m a
return [TcIdSigInfo -> TcSigInfo
TcIdSig TcIdSigInfo
sig] }

tcTySig (L SrcSpanAnnA
loc (TypeSig XTypeSig GhcRn
_ [LIdP GhcRn]
names LHsSigWcType GhcRn
sig_ty))
  = forall ann a. SrcSpanAnn' ann -> TcRn a -> TcRn a
setSrcSpanA SrcSpanAnnA
loc forall a b. (a -> b) -> a -> b
$
    do { [TcIdSigInfo]
sigs <- forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence [ SrcSpan
-> LHsSigWcType GhcRn
-> Maybe Name
-> IOEnv (Env TcGblEnv TcLclEnv) TcIdSigInfo
tcUserTypeSig (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) LHsSigWcType GhcRn
sig_ty (forall a. a -> Maybe a
Just Name
name)
                          | L SrcSpanAnnN
_ Name
name <- [LIdP GhcRn]
names ]
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall a b. (a -> b) -> [a] -> [b]
map TcIdSigInfo -> TcSigInfo
TcIdSig [TcIdSigInfo]
sigs) }

tcTySig (L SrcSpanAnnA
loc (PatSynSig XPatSynSig GhcRn
_ [LIdP GhcRn]
names LHsSigType GhcRn
sig_ty))
  = forall ann a. SrcSpanAnn' ann -> TcRn a -> TcRn a
setSrcSpanA SrcSpanAnnA
loc forall a b. (a -> b) -> a -> b
$
    do { [TcPatSynInfo]
tpsigs <- forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence [ Name
-> LHsSigType GhcRn -> IOEnv (Env TcGblEnv TcLclEnv) TcPatSynInfo
tcPatSynSig Name
name LHsSigType GhcRn
sig_ty
                            | L SrcSpanAnnN
_ Name
name <- [LIdP GhcRn]
names ]
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall a b. (a -> b) -> [a] -> [b]
map TcPatSynInfo -> TcSigInfo
TcPatSynSig [TcPatSynInfo]
tpsigs) }

tcTySig LSig GhcRn
_ = forall (m :: * -> *) a. Monad m => a -> m a
return []


tcUserTypeSig :: SrcSpan -> LHsSigWcType GhcRn -> Maybe Name
              -> TcM TcIdSigInfo
-- A function or expression type signature
-- Returns a fully quantified type signature; even the wildcards
-- are quantified with ordinary skolems that should be instantiated
--
-- The SrcSpan is what to declare as the binding site of the
-- any skolems in the signature. For function signatures we
-- use the whole `f :: ty' signature; for expression signatures
-- just the type part.
--
-- Just n  => Function type signature       name :: type
-- Nothing => Expression type signature   <expr> :: type
tcUserTypeSig :: SrcSpan
-> LHsSigWcType GhcRn
-> Maybe Name
-> IOEnv (Env TcGblEnv TcLclEnv) TcIdSigInfo
tcUserTypeSig SrcSpan
loc LHsSigWcType GhcRn
hs_sig_ty Maybe Name
mb_name
  | LHsSigWcType GhcRn -> Bool
isCompleteHsSig LHsSigWcType GhcRn
hs_sig_ty
  = do { Kind
sigma_ty <- UserTypeCtxt -> LHsSigWcType GhcRn -> TcM Kind
tcHsSigWcType UserTypeCtxt
ctxt_F LHsSigWcType GhcRn
hs_sig_ty
       ; String -> SDoc -> TcRn ()
traceTc String
"tcuser" (forall a. Outputable a => a -> SDoc
ppr Kind
sigma_ty)
       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$
         CompleteSig { sig_bndr :: TcId
sig_bndr  = HasDebugCallStack => Name -> Kind -> Kind -> TcId
mkLocalId Name
name Kind
Many Kind
sigma_ty
                                   -- We use `Many' as the multiplicity here,
                                   -- as if this identifier corresponds to
                                   -- anything, it is a top-level
                                   -- definition. Which are all unrestricted in
                                   -- the current implementation.
                     , sig_ctxt :: UserTypeCtxt
sig_ctxt  = UserTypeCtxt
ctxt_T
                     , sig_loc :: SrcSpan
sig_loc   = SrcSpan
loc } }
                       -- Location of the <type> in   f :: <type>

  -- Partial sig with wildcards
  | Bool
otherwise
  = forall (m :: * -> *) a. Monad m => a -> m a
return (PartialSig { psig_name :: Name
psig_name = Name
name, psig_hs_ty :: LHsSigWcType GhcRn
psig_hs_ty = LHsSigWcType GhcRn
hs_sig_ty
                       , sig_ctxt :: UserTypeCtxt
sig_ctxt = UserTypeCtxt
ctxt_F, sig_loc :: SrcSpan
sig_loc = SrcSpan
loc })
  where
    name :: Name
name   = case Maybe Name
mb_name of
               Just Name
n  -> Name
n
               Maybe Name
Nothing -> OccName -> Name
mkUnboundName (String -> OccName
mkVarOcc String
"<expression>")
    ctxt_F :: UserTypeCtxt
ctxt_F = case Maybe Name
mb_name of
               Just Name
n  -> Name -> Bool -> UserTypeCtxt
FunSigCtxt Name
n Bool
False
               Maybe Name
Nothing -> UserTypeCtxt
ExprSigCtxt
    ctxt_T :: UserTypeCtxt
ctxt_T = case Maybe Name
mb_name of
               Just Name
n  -> Name -> Bool -> UserTypeCtxt
FunSigCtxt Name
n Bool
True
               Maybe Name
Nothing -> UserTypeCtxt
ExprSigCtxt



completeSigFromId :: UserTypeCtxt -> Id -> TcIdSigInfo
-- Used for instance methods and record selectors
completeSigFromId :: UserTypeCtxt -> TcId -> TcIdSigInfo
completeSigFromId UserTypeCtxt
ctxt TcId
id
  = CompleteSig { sig_bndr :: TcId
sig_bndr = TcId
id
                , sig_ctxt :: UserTypeCtxt
sig_ctxt = UserTypeCtxt
ctxt
                , sig_loc :: SrcSpan
sig_loc  = forall a. NamedThing a => a -> SrcSpan
getSrcSpan TcId
id }

isCompleteHsSig :: LHsSigWcType GhcRn -> Bool
-- ^ If there are no wildcards, return a LHsSigWcType
isCompleteHsSig :: LHsSigWcType GhcRn -> Bool
isCompleteHsSig (HsWC { hswc_ext :: forall pass thing. HsWildCardBndrs pass thing -> XHsWC pass thing
hswc_ext = XHsWC GhcRn (LHsSigType GhcRn)
wcs, hswc_body :: forall pass thing. HsWildCardBndrs pass thing -> thing
hswc_body = LHsSigType GhcRn
hs_sig_ty })
   = forall (t :: * -> *) a. Foldable t => t a -> Bool
null XHsWC GhcRn (LHsSigType GhcRn)
wcs Bool -> Bool -> Bool
&& LHsSigType GhcRn -> Bool
no_anon_wc_sig_ty LHsSigType GhcRn
hs_sig_ty

no_anon_wc_sig_ty :: LHsSigType GhcRn -> Bool
no_anon_wc_sig_ty :: LHsSigType GhcRn -> Bool
no_anon_wc_sig_ty (L SrcSpanAnnA
_ (HsSig{sig_bndrs :: forall pass. HsSigType pass -> HsOuterSigTyVarBndrs pass
sig_bndrs = HsOuterSigTyVarBndrs GhcRn
outer_bndrs, sig_body :: forall pass. HsSigType pass -> LHsType pass
sig_body = LHsType GhcRn
body}))
  =  forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all forall flag. LHsTyVarBndr flag GhcRn -> Bool
no_anon_wc_tvb (forall flag (p :: Pass).
HsOuterTyVarBndrs flag (GhcPass p)
-> [LHsTyVarBndr flag (NoGhcTc (GhcPass p))]
hsOuterExplicitBndrs HsOuterSigTyVarBndrs GhcRn
outer_bndrs)
  Bool -> Bool -> Bool
&& LHsType GhcRn -> Bool
no_anon_wc_ty LHsType GhcRn
body

no_anon_wc_ty :: LHsType GhcRn -> Bool
no_anon_wc_ty :: LHsType GhcRn -> Bool
no_anon_wc_ty LHsType GhcRn
lty = GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
lty
  where
    go :: GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go (L SrcSpanAnnA
_ HsType GhcRn
ty) = case HsType GhcRn
ty of
      HsWildCardTy XWildCardTy GhcRn
_                 -> Bool
False
      HsAppTy XAppTy GhcRn
_ LHsType GhcRn
ty1 LHsType GhcRn
ty2              -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty1 Bool -> Bool -> Bool
&& GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty2
      HsAppKindTy XAppKindTy GhcRn
_ LHsType GhcRn
ty LHsType GhcRn
ki            -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty Bool -> Bool -> Bool
&& GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ki
      HsFunTy XFunTy GhcRn
_ HsArrow GhcRn
w LHsType GhcRn
ty1 LHsType GhcRn
ty2            -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty1 Bool -> Bool -> Bool
&& GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty2 Bool -> Bool -> Bool
&& GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go (HsArrow GhcRn -> LHsType GhcRn
arrowToHsType HsArrow GhcRn
w)
      HsListTy XListTy GhcRn
_ LHsType GhcRn
ty                  -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty
      HsTupleTy XTupleTy GhcRn
_ HsTupleSort
_ [LHsType GhcRn]
tys              -> [GenLocated SrcSpanAnnA (HsType GhcRn)] -> Bool
gos [LHsType GhcRn]
tys
      HsSumTy XSumTy GhcRn
_ [LHsType GhcRn]
tys                  -> [GenLocated SrcSpanAnnA (HsType GhcRn)] -> Bool
gos [LHsType GhcRn]
tys
      HsOpTy XOpTy GhcRn
_ LHsType GhcRn
ty1 LIdP GhcRn
_ LHsType GhcRn
ty2             -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty1 Bool -> Bool -> Bool
&& GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty2
      HsParTy XParTy GhcRn
_ LHsType GhcRn
ty                   -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty
      HsIParamTy XIParamTy GhcRn
_ XRec GhcRn HsIPName
_ LHsType GhcRn
ty              -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty
      HsKindSig XKindSig GhcRn
_ LHsType GhcRn
ty LHsType GhcRn
kind            -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty Bool -> Bool -> Bool
&& GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
kind
      HsDocTy XDocTy GhcRn
_ LHsType GhcRn
ty LHsDocString
_                 -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty
      HsBangTy XBangTy GhcRn
_ HsSrcBang
_ LHsType GhcRn
ty                -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty
      HsRecTy XRecTy GhcRn
_ [LConDeclField GhcRn]
flds                 -> [GenLocated SrcSpanAnnA (HsType GhcRn)] -> Bool
gos forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall pass. ConDeclField pass -> LBangType pass
cd_fld_type forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall l e. GenLocated l e -> e
unLoc) [LConDeclField GhcRn]
flds
      HsExplicitListTy XExplicitListTy GhcRn
_ PromotionFlag
_ [LHsType GhcRn]
tys       -> [GenLocated SrcSpanAnnA (HsType GhcRn)] -> Bool
gos [LHsType GhcRn]
tys
      HsExplicitTupleTy XExplicitTupleTy GhcRn
_ [LHsType GhcRn]
tys        -> [GenLocated SrcSpanAnnA (HsType GhcRn)] -> Bool
gos [LHsType GhcRn]
tys
      HsForAllTy { hst_tele :: forall pass. HsType pass -> HsForAllTelescope pass
hst_tele = HsForAllTelescope GhcRn
tele
                 , hst_body :: forall pass. HsType pass -> LHsType pass
hst_body = LHsType GhcRn
ty } -> HsForAllTelescope GhcRn -> Bool
no_anon_wc_tele HsForAllTelescope GhcRn
tele
                                        Bool -> Bool -> Bool
&& GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty
      HsQualTy { hst_ctxt :: forall pass. HsType pass -> Maybe (LHsContext pass)
hst_ctxt = Maybe (LHsContext GhcRn)
ctxt
               , hst_body :: forall pass. HsType pass -> LHsType pass
hst_body = LHsType GhcRn
ty }  -> [GenLocated SrcSpanAnnA (HsType GhcRn)] -> Bool
gos (forall (p :: Pass).
Maybe (LHsContext (GhcPass p)) -> HsContext (GhcPass p)
fromMaybeContext Maybe (LHsContext GhcRn)
ctxt) Bool -> Bool -> Bool
&& GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go LHsType GhcRn
ty
      HsSpliceTy XSpliceTy GhcRn
_ (HsSpliced XSpliced GhcRn
_ ThModFinalizers
_ (HsSplicedTy HsType GhcRn
ty)) -> GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L forall ann. SrcAnn ann
noSrcSpanA HsType GhcRn
ty
      HsSpliceTy{} -> Bool
True
      HsTyLit{} -> Bool
True
      HsTyVar{} -> Bool
True
      HsStarTy{} -> Bool
True
      XHsType{} -> Bool
True       -- HsCoreTy, which does not have any wildcard

    gos :: [GenLocated SrcSpanAnnA (HsType GhcRn)] -> Bool
gos = forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all GenLocated SrcSpanAnnA (HsType GhcRn) -> Bool
go

no_anon_wc_tele :: HsForAllTelescope GhcRn -> Bool
no_anon_wc_tele :: HsForAllTelescope GhcRn -> Bool
no_anon_wc_tele HsForAllTelescope GhcRn
tele = case HsForAllTelescope GhcRn
tele of
  HsForAllVis   { hsf_vis_bndrs :: forall pass. HsForAllTelescope pass -> [LHsTyVarBndr () pass]
hsf_vis_bndrs   = [LHsTyVarBndr () GhcRn]
ltvs } -> forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all forall flag. LHsTyVarBndr flag GhcRn -> Bool
no_anon_wc_tvb [LHsTyVarBndr () GhcRn]
ltvs
  HsForAllInvis { hsf_invis_bndrs :: forall pass.
HsForAllTelescope pass -> [LHsTyVarBndr Specificity pass]
hsf_invis_bndrs = [LHsTyVarBndr Specificity GhcRn]
ltvs } -> forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all forall flag. LHsTyVarBndr flag GhcRn -> Bool
no_anon_wc_tvb [LHsTyVarBndr Specificity GhcRn]
ltvs

no_anon_wc_tvb :: LHsTyVarBndr flag GhcRn -> Bool
no_anon_wc_tvb :: forall flag. LHsTyVarBndr flag GhcRn -> Bool
no_anon_wc_tvb (L SrcSpanAnnA
_ HsTyVarBndr flag GhcRn
tvb) = case HsTyVarBndr flag GhcRn
tvb of
  UserTyVar XUserTyVar GhcRn
_ flag
_ LIdP GhcRn
_      -> Bool
True
  KindedTyVar XKindedTyVar GhcRn
_ flag
_ LIdP GhcRn
_ LHsType GhcRn
ki -> LHsType GhcRn -> Bool
no_anon_wc_ty LHsType GhcRn
ki

{- Note [Fail eagerly on bad signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If a type signature is wrong, fail immediately:

 * the type sigs may bind type variables, so proceeding without them
   can lead to a cascade of errors

 * the type signature might be ambiguous, in which case checking
   the code against the signature will give a very similar error
   to the ambiguity error.

ToDo: this means we fall over if any top-level type signature in the
module is wrong, because we typecheck all the signatures together
(see GHC.Tc.Gen.Bind.tcValBinds).  Moreover, because of top-level
captureTopConstraints, only insoluble constraints will be reported.
We typecheck all signatures at the same time because a signature
like   f,g :: blah   might have f and g from different SCCs.

So it's a bit awkward to get better error recovery, and no one
has complained!
-}

{- *********************************************************************
*                                                                      *
        Type checking a pattern synonym signature
*                                                                      *
************************************************************************

Note [Pattern synonym signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pattern synonym signatures are surprisingly tricky (see #11224 for example).
In general they look like this:

   pattern P :: forall univ_tvs. req_theta
             => forall ex_tvs. prov_theta
             => arg1 -> .. -> argn -> res_ty

For parsing and renaming we treat the signature as an ordinary LHsSigType.

Once we get to type checking, we decompose it into its parts, in tcPatSynSig.

* Note that 'forall univ_tvs' and 'req_theta =>'
        and 'forall ex_tvs'   and 'prov_theta =>'
  are all optional.  We gather the pieces at the top of tcPatSynSig

* Initially the implicitly-bound tyvars (added by the renamer) include both
  universal and existential vars.

* After we kind-check the pieces and convert to Types, we do kind generalisation.

Note [Report unsolved equalities in tcPatSynSig]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important that we solve /all/ the equalities in a pattern
synonym signature, because we are going to zonk the signature to
a Type (not a TcType), in GHC.Tc.TyCl.PatSyn.tc_patsyn_finish, and that
fails if there are un-filled-in coercion variables mentioned
in the type (#15694).

So we solve all the equalities we can, and report any unsolved ones,
rather than leaving them in the ambient constraints to be solved
later.  Pattern synonyms are top-level, so there's no problem with
completely solving them.
-}

tcPatSynSig :: Name -> LHsSigType GhcRn -> TcM TcPatSynInfo
-- See Note [Pattern synonym signatures]
-- See Note [Recipe for checking a signature] in GHC.Tc.Gen.HsType
tcPatSynSig :: Name
-> LHsSigType GhcRn -> IOEnv (Env TcGblEnv TcLclEnv) TcPatSynInfo
tcPatSynSig Name
name sig_ty :: LHsSigType GhcRn
sig_ty@(L SrcSpanAnnA
_ (HsSig{sig_bndrs :: forall pass. HsSigType pass -> HsOuterSigTyVarBndrs pass
sig_bndrs = HsOuterSigTyVarBndrs GhcRn
hs_outer_bndrs, sig_body :: forall pass. HsSigType pass -> LHsType pass
sig_body = LHsType GhcRn
hs_ty}))
  | (Maybe (LHsContext GhcRn)
hs_req, LHsType GhcRn
hs_ty1) <- forall (pass :: Pass).
LHsType (GhcPass pass)
-> (Maybe (LHsContext (GhcPass pass)), LHsType (GhcPass pass))
splitLHsQualTy LHsType GhcRn
hs_ty
  , ([LHsTyVarBndr Specificity GhcRn]
ex_hs_tvbndrs, Maybe (LHsContext GhcRn)
hs_prov, LHsType GhcRn
hs_body_ty) <- forall (p :: Pass).
LHsType (GhcPass p)
-> ([LHsTyVarBndr Specificity (GhcPass p)],
    Maybe (LHsContext (GhcPass p)), LHsType (GhcPass p))
splitLHsSigmaTyInvis LHsType GhcRn
hs_ty1
  = do { String -> SDoc -> TcRn ()
traceTc String
"tcPatSynSig 1" (forall a. Outputable a => a -> SDoc
ppr LHsSigType GhcRn
sig_ty)

       ; let skol_info :: SkolemInfo
skol_info = Name -> SkolemInfo
DataConSkol Name
name
       ; (TcLevel
tclvl, WantedConstraints
wanted, (HsOuterTyVarBndrs Specificity GhcTc
outer_bndrs, ([VarBndr TcId Specificity]
ex_bndrs, ([Kind]
req, [Kind]
prov, Kind
body_ty))))
           <- forall a. String -> TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndSolveEqualitiesX String
"tcPatSynSig"           forall a b. (a -> b) -> a -> b
$
                     -- See Note [solveEqualities in tcPatSynSig]
              forall flag a.
OutputableBndrFlag flag 'Renamed =>
SkolemInfo
-> HsOuterTyVarBndrs flag GhcRn
-> TcM a
-> TcM (HsOuterTyVarBndrs flag GhcTc, a)
tcOuterTKBndrs SkolemInfo
skol_info HsOuterSigTyVarBndrs GhcRn
hs_outer_bndrs forall a b. (a -> b) -> a -> b
$
              forall flag a.
OutputableBndrFlag flag 'Renamed =>
[LHsTyVarBndr flag GhcRn] -> TcM a -> TcM ([VarBndr TcId flag], a)
tcExplicitTKBndrs [LHsTyVarBndr Specificity GhcRn]
ex_hs_tvbndrs         forall a b. (a -> b) -> a -> b
$
              do { [Kind]
req     <- Maybe (LHsContext GhcRn) -> TcM [Kind]
tcHsContext Maybe (LHsContext GhcRn)
hs_req
                 ; [Kind]
prov    <- Maybe (LHsContext GhcRn) -> TcM [Kind]
tcHsContext Maybe (LHsContext GhcRn)
hs_prov
                 ; Kind
body_ty <- LHsType GhcRn -> TcM Kind
tcHsOpenType LHsType GhcRn
hs_body_ty
                     -- A (literal) pattern can be unlifted;
                     -- e.g. pattern Zero <- 0#   (#12094)
                 ; forall (m :: * -> *) a. Monad m => a -> m a
return ([Kind]
req, [Kind]
prov, Kind
body_ty) }

       ; let implicit_tvs :: [TcTyVar]
             univ_bndrs   :: [TcInvisTVBinder]
             ([TcId]
implicit_tvs, [VarBndr TcId Specificity]
univ_bndrs) = case HsOuterTyVarBndrs Specificity GhcTc
outer_bndrs of
               HsOuterImplicit{hso_ximplicit :: forall flag pass.
HsOuterTyVarBndrs flag pass -> XHsOuterImplicit pass
hso_ximplicit = XHsOuterImplicit GhcTc
implicit_tvs} -> (XHsOuterImplicit GhcTc
implicit_tvs, [])
               HsOuterExplicit{hso_xexplicit :: forall flag pass.
HsOuterTyVarBndrs flag pass -> XHsOuterExplicit pass flag
hso_xexplicit = XHsOuterExplicit GhcTc Specificity
univ_bndrs}   -> ([], XHsOuterExplicit GhcTc Specificity
univ_bndrs)

       ; [TcId]
implicit_tvs <- [TcId] -> TcM [TcId]
zonkAndScopedSort [TcId]
implicit_tvs
       ; let implicit_bndrs :: [VarBndr TcId Specificity]
implicit_bndrs = forall vis. vis -> [TcId] -> [VarBndr TcId vis]
mkTyVarBinders Specificity
SpecifiedSpec [TcId]
implicit_tvs

       -- Kind generalisation
       ; let ungen_patsyn_ty :: Kind
ungen_patsyn_ty = [VarBndr TcId Specificity]
-> [VarBndr TcId Specificity]
-> [Kind]
-> [VarBndr TcId Specificity]
-> [Kind]
-> Kind
-> Kind
build_patsyn_type [VarBndr TcId Specificity]
implicit_bndrs [VarBndr TcId Specificity]
univ_bndrs
                                                 [Kind]
req [VarBndr TcId Specificity]
ex_bndrs [Kind]
prov Kind
body_ty
       ; String -> SDoc -> TcRn ()
traceTc String
"tcPatSynSig" (forall a. Outputable a => a -> SDoc
ppr Kind
ungen_patsyn_ty)
       ; [TcId]
kvs <- Kind -> TcM [TcId]
kindGeneralizeAll Kind
ungen_patsyn_ty
       ; SkolemInfo -> [TcId] -> TcLevel -> WantedConstraints -> TcRn ()
reportUnsolvedEqualities SkolemInfo
skol_info [TcId]
kvs TcLevel
tclvl WantedConstraints
wanted
               -- See Note [Report unsolved equalities in tcPatSynSig]

       -- These are /signatures/ so we zonk to squeeze out any kind
       -- unification variables.  Do this after kindGeneralizeAll which may
       -- default kind variables to *.
       ; ZonkEnv
ze                   <- ZonkFlexi -> TcM ZonkEnv
mkEmptyZonkEnv ZonkFlexi
NoFlexi
       ; (ZonkEnv
ze, [VarBndr TcId Specificity]
kv_bndrs)       <- forall vis.
ZonkEnv -> [VarBndr TcId vis] -> TcM (ZonkEnv, [VarBndr TcId vis])
zonkTyVarBindersX   ZonkEnv
ze (forall vis. vis -> [TcId] -> [VarBndr TcId vis]
mkTyVarBinders Specificity
InferredSpec [TcId]
kvs)
       ; (ZonkEnv
ze, [VarBndr TcId Specificity]
implicit_bndrs) <- forall vis.
ZonkEnv -> [VarBndr TcId vis] -> TcM (ZonkEnv, [VarBndr TcId vis])
zonkTyVarBindersX   ZonkEnv
ze [VarBndr TcId Specificity]
implicit_bndrs
       ; (ZonkEnv
ze, [VarBndr TcId Specificity]
univ_bndrs)     <- forall vis.
ZonkEnv -> [VarBndr TcId vis] -> TcM (ZonkEnv, [VarBndr TcId vis])
zonkTyVarBindersX   ZonkEnv
ze [VarBndr TcId Specificity]
univ_bndrs
       ; (ZonkEnv
ze, [VarBndr TcId Specificity]
ex_bndrs)       <- forall vis.
ZonkEnv -> [VarBndr TcId vis] -> TcM (ZonkEnv, [VarBndr TcId vis])
zonkTyVarBindersX   ZonkEnv
ze [VarBndr TcId Specificity]
ex_bndrs
       ; [Kind]
req                  <- ZonkEnv -> [Kind] -> TcM [Kind]
zonkTcTypesToTypesX ZonkEnv
ze [Kind]
req
       ; [Kind]
prov                 <- ZonkEnv -> [Kind] -> TcM [Kind]
zonkTcTypesToTypesX ZonkEnv
ze [Kind]
prov
       ; Kind
body_ty              <- ZonkEnv -> Kind -> TcM Kind
zonkTcTypeToTypeX   ZonkEnv
ze Kind
body_ty

       -- Now do validity checking
       ; UserTypeCtxt -> Kind -> TcRn ()
checkValidType UserTypeCtxt
ctxt forall a b. (a -> b) -> a -> b
$
         [VarBndr TcId Specificity]
-> [VarBndr TcId Specificity]
-> [Kind]
-> [VarBndr TcId Specificity]
-> [Kind]
-> Kind
-> Kind
build_patsyn_type [VarBndr TcId Specificity]
implicit_bndrs [VarBndr TcId Specificity]
univ_bndrs [Kind]
req [VarBndr TcId Specificity]
ex_bndrs [Kind]
prov Kind
body_ty

       -- arguments become the types of binders. We thus cannot allow
       -- levity polymorphism here
       ; let ([Scaled Kind]
arg_tys, Kind
_) = Kind -> ([Scaled Kind], Kind)
tcSplitFunTys Kind
body_ty
       ; forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (SDoc -> Kind -> TcRn ()
checkForLevPoly SDoc
empty forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Scaled a -> a
scaledThing) [Scaled Kind]
arg_tys

       ; String -> SDoc -> TcRn ()
traceTc String
"tcTySig }" forall a b. (a -> b) -> a -> b
$
         [SDoc] -> SDoc
vcat [ String -> SDoc
text String
"kvs"          SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
ppr_tvs (forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [VarBndr TcId Specificity]
kv_bndrs)
              , String -> SDoc
text String
"implicit_tvs" SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
ppr_tvs (forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [VarBndr TcId Specificity]
implicit_bndrs)
              , String -> SDoc
text String
"univ_tvs"     SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
ppr_tvs (forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [VarBndr TcId Specificity]
univ_bndrs)
              , String -> SDoc
text String
"req" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr [Kind]
req
              , String -> SDoc
text String
"ex_tvs" SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
ppr_tvs (forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [VarBndr TcId Specificity]
ex_bndrs)
              , String -> SDoc
text String
"prov" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr [Kind]
prov
              , String -> SDoc
text String
"body_ty" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Kind
body_ty ]
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (TPSI { patsig_name :: Name
patsig_name = Name
name
                      , patsig_implicit_bndrs :: [VarBndr TcId Specificity]
patsig_implicit_bndrs = [VarBndr TcId Specificity]
kv_bndrs forall a. [a] -> [a] -> [a]
++ [VarBndr TcId Specificity]
implicit_bndrs
                      , patsig_univ_bndrs :: [VarBndr TcId Specificity]
patsig_univ_bndrs     = [VarBndr TcId Specificity]
univ_bndrs
                      , patsig_req :: [Kind]
patsig_req            = [Kind]
req
                      , patsig_ex_bndrs :: [VarBndr TcId Specificity]
patsig_ex_bndrs       = [VarBndr TcId Specificity]
ex_bndrs
                      , patsig_prov :: [Kind]
patsig_prov           = [Kind]
prov
                      , patsig_body_ty :: Kind
patsig_body_ty        = Kind
body_ty }) }
  where
    ctxt :: UserTypeCtxt
ctxt = Name -> UserTypeCtxt
PatSynCtxt Name
name

    build_patsyn_type :: [VarBndr TcId Specificity]
-> [VarBndr TcId Specificity]
-> [Kind]
-> [VarBndr TcId Specificity]
-> [Kind]
-> Kind
-> Kind
build_patsyn_type [VarBndr TcId Specificity]
implicit_bndrs [VarBndr TcId Specificity]
univ_bndrs [Kind]
req [VarBndr TcId Specificity]
ex_bndrs [Kind]
prov Kind
body
      = [VarBndr TcId Specificity] -> Kind -> Kind
mkInvisForAllTys [VarBndr TcId Specificity]
implicit_bndrs forall a b. (a -> b) -> a -> b
$
        [VarBndr TcId Specificity] -> Kind -> Kind
mkInvisForAllTys [VarBndr TcId Specificity]
univ_bndrs forall a b. (a -> b) -> a -> b
$
        [Kind] -> Kind -> Kind
mkPhiTy [Kind]
req forall a b. (a -> b) -> a -> b
$
        [VarBndr TcId Specificity] -> Kind -> Kind
mkInvisForAllTys [VarBndr TcId Specificity]
ex_bndrs forall a b. (a -> b) -> a -> b
$
        [Kind] -> Kind -> Kind
mkPhiTy [Kind]
prov forall a b. (a -> b) -> a -> b
$
        Kind
body

ppr_tvs :: [TyVar] -> SDoc
ppr_tvs :: [TcId] -> SDoc
ppr_tvs [TcId]
tvs = SDoc -> SDoc
braces ([SDoc] -> SDoc
vcat [ forall a. Outputable a => a -> SDoc
ppr TcId
tv SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (TcId -> Kind
tyVarKind TcId
tv)
                           | TcId
tv <- [TcId]
tvs])


{- *********************************************************************
*                                                                      *
               Instantiating user signatures
*                                                                      *
********************************************************************* -}


tcInstSig :: TcIdSigInfo -> TcM TcIdSigInst
-- Instantiate a type signature; only used with plan InferGen
tcInstSig :: TcIdSigInfo -> TcM TcIdSigInst
tcInstSig sig :: TcIdSigInfo
sig@(CompleteSig { sig_bndr :: TcIdSigInfo -> TcId
sig_bndr = TcId
poly_id, sig_loc :: TcIdSigInfo -> SrcSpan
sig_loc = SrcSpan
loc })
  = forall a. SrcSpan -> TcRn a -> TcRn a
setSrcSpan SrcSpan
loc forall a b. (a -> b) -> a -> b
$  -- Set the binding site of the tyvars
    do { ([(Name, VarBndr TcId Specificity)]
tv_prs, [Kind]
theta, Kind
tau) <- TcId -> TcM ([(Name, VarBndr TcId Specificity)], [Kind], Kind)
tcInstTypeBndrs TcId
poly_id
              -- See Note [Pattern bindings and complete signatures]

       ; forall (m :: * -> *) a. Monad m => a -> m a
return (TISI { sig_inst_sig :: TcIdSigInfo
sig_inst_sig   = TcIdSigInfo
sig
                      , sig_inst_skols :: [(Name, VarBndr TcId Specificity)]
sig_inst_skols = [(Name, VarBndr TcId Specificity)]
tv_prs
                      , sig_inst_wcs :: [(Name, TcId)]
sig_inst_wcs   = []
                      , sig_inst_wcx :: Maybe Kind
sig_inst_wcx   = forall a. Maybe a
Nothing
                      , sig_inst_theta :: [Kind]
sig_inst_theta = [Kind]
theta
                      , sig_inst_tau :: Kind
sig_inst_tau   = Kind
tau }) }

tcInstSig hs_sig :: TcIdSigInfo
hs_sig@(PartialSig { psig_hs_ty :: TcIdSigInfo -> LHsSigWcType GhcRn
psig_hs_ty = LHsSigWcType GhcRn
hs_ty
                             , sig_ctxt :: TcIdSigInfo -> UserTypeCtxt
sig_ctxt = UserTypeCtxt
ctxt
                             , sig_loc :: TcIdSigInfo -> SrcSpan
sig_loc = SrcSpan
loc })
  = forall a. SrcSpan -> TcRn a -> TcRn a
setSrcSpan SrcSpan
loc forall a b. (a -> b) -> a -> b
$  -- Set the binding site of the tyvars
    do { String -> SDoc -> TcRn ()
traceTc String
"Staring partial sig {" (forall a. Outputable a => a -> SDoc
ppr TcIdSigInfo
hs_sig)
       ; ([(Name, TcId)]
wcs, Maybe Kind
wcx, [(Name, VarBndr TcId Specificity)]
tv_prs, [Kind]
theta, Kind
tau) <- UserTypeCtxt
-> LHsSigWcType GhcRn
-> TcM
     ([(Name, TcId)], Maybe Kind, [(Name, VarBndr TcId Specificity)],
      [Kind], Kind)
tcHsPartialSigType UserTypeCtxt
ctxt LHsSigWcType GhcRn
hs_ty
         -- See Note [Checking partial type signatures] in GHC.Tc.Gen.HsType
       ; let inst_sig :: TcIdSigInst
inst_sig = TISI { sig_inst_sig :: TcIdSigInfo
sig_inst_sig   = TcIdSigInfo
hs_sig
                             , sig_inst_skols :: [(Name, VarBndr TcId Specificity)]
sig_inst_skols = [(Name, VarBndr TcId Specificity)]
tv_prs
                             , sig_inst_wcs :: [(Name, TcId)]
sig_inst_wcs   = [(Name, TcId)]
wcs
                             , sig_inst_wcx :: Maybe Kind
sig_inst_wcx   = Maybe Kind
wcx
                             , sig_inst_theta :: [Kind]
sig_inst_theta = [Kind]
theta
                             , sig_inst_tau :: Kind
sig_inst_tau   = Kind
tau }
       ; String -> SDoc -> TcRn ()
traceTc String
"End partial sig }" (forall a. Outputable a => a -> SDoc
ppr TcIdSigInst
inst_sig)
       ; forall (m :: * -> *) a. Monad m => a -> m a
return TcIdSigInst
inst_sig }


{- Note [Pattern bindings and complete signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
      data T a = MkT a a
      f :: forall a. a->a
      g :: forall b. b->b
      MkT f g = MkT (\x->x) (\y->y)
Here we'll infer a type from the pattern of 'T a', but if we feed in
the signature types for f and g, we'll end up unifying 'a' and 'b'

So we instantiate f and g's signature with TyVarTv skolems
(newMetaTyVarTyVars) that can unify with each other.  If too much
unification takes place, we'll find out when we do the final
impedance-matching check in GHC.Tc.Gen.Bind.mkExport

See Note [TyVarTv] in GHC.Tc.Utils.TcMType

None of this applies to a function binding with a complete
signature, which doesn't use tcInstSig.  See GHC.Tc.Gen.Bind.tcPolyCheck.
-}

{- *********************************************************************
*                                                                      *
                   Pragmas and PragEnv
*                                                                      *
********************************************************************* -}

type TcPragEnv = NameEnv [LSig GhcRn]

emptyPragEnv :: TcPragEnv
emptyPragEnv :: TcPragEnv
emptyPragEnv = forall a. NameEnv a
emptyNameEnv

lookupPragEnv :: TcPragEnv -> Name -> [LSig GhcRn]
lookupPragEnv :: TcPragEnv -> Name -> [LSig GhcRn]
lookupPragEnv TcPragEnv
prag_fn Name
n = forall a. NameEnv a -> Name -> Maybe a
lookupNameEnv TcPragEnv
prag_fn Name
n forall a. Maybe a -> a -> a
`orElse` []

extendPragEnv :: TcPragEnv -> (Name, LSig GhcRn) -> TcPragEnv
extendPragEnv :: TcPragEnv -> (Name, LSig GhcRn) -> TcPragEnv
extendPragEnv TcPragEnv
prag_fn (Name
n, LSig GhcRn
sig) = forall a b.
(a -> b -> b) -> (a -> b) -> NameEnv b -> Name -> a -> NameEnv b
extendNameEnv_Acc (:) forall a. a -> [a]
Utils.singleton TcPragEnv
prag_fn Name
n LSig GhcRn
sig

---------------
mkPragEnv :: [LSig GhcRn] -> LHsBinds GhcRn -> TcPragEnv
mkPragEnv :: [LSig GhcRn] -> LHsBinds GhcRn -> TcPragEnv
mkPragEnv [LSig GhcRn]
sigs LHsBinds GhcRn
binds
  = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' TcPragEnv -> (Name, LSig GhcRn) -> TcPragEnv
extendPragEnv forall a. NameEnv a
emptyNameEnv [(Name, GenLocated SrcSpanAnnA (Sig GhcRn))]
prs
  where
    prs :: [(Name, GenLocated SrcSpanAnnA (Sig GhcRn))]
prs = forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe LSig GhcRn -> Maybe (Name, LSig GhcRn)
get_sig [LSig GhcRn]
sigs

    get_sig :: LSig GhcRn -> Maybe (Name, LSig GhcRn)
    get_sig :: LSig GhcRn -> Maybe (Name, LSig GhcRn)
get_sig sig :: LSig GhcRn
sig@(L SrcSpanAnnA
_ (SpecSig XSpecSig GhcRn
_ (L SrcSpanAnnN
_ Name
nm) [LHsSigType GhcRn]
_ InlinePragma
_))   = forall a. a -> Maybe a
Just (Name
nm, Name
-> GenLocated SrcSpanAnnA (Sig GhcRn)
-> GenLocated SrcSpanAnnA (Sig GhcRn)
add_arity Name
nm LSig GhcRn
sig)
    get_sig sig :: LSig GhcRn
sig@(L SrcSpanAnnA
_ (InlineSig XInlineSig GhcRn
_ (L SrcSpanAnnN
_ Name
nm) InlinePragma
_))   = forall a. a -> Maybe a
Just (Name
nm, Name
-> GenLocated SrcSpanAnnA (Sig GhcRn)
-> GenLocated SrcSpanAnnA (Sig GhcRn)
add_arity Name
nm LSig GhcRn
sig)
    get_sig sig :: LSig GhcRn
sig@(L SrcSpanAnnA
_ (SCCFunSig XSCCFunSig GhcRn
_ SourceText
_ (L SrcSpanAnnN
_ Name
nm) Maybe (XRec GhcRn StringLiteral)
_)) = forall a. a -> Maybe a
Just (Name
nm, LSig GhcRn
sig)
    get_sig LSig GhcRn
_ = forall a. Maybe a
Nothing

    add_arity :: Name -> GenLocated SrcSpanAnnA (Sig GhcRn) -> LSig GhcRn
add_arity Name
n GenLocated SrcSpanAnnA (Sig GhcRn)
sig  -- Adjust inl_sat field to match visible arity of function
      = case forall a. NameEnv a -> Name -> Maybe a
lookupNameEnv NameEnv Arity
ar_env Name
n of
          Just Arity
ar -> Arity -> LSig GhcRn -> LSig GhcRn
addInlinePragArity Arity
ar GenLocated SrcSpanAnnA (Sig GhcRn)
sig
          Maybe Arity
Nothing -> GenLocated SrcSpanAnnA (Sig GhcRn)
sig -- See Note [Pattern synonym inline arity]

    -- ar_env maps a local to the arity of its definition
    ar_env :: NameEnv Arity
    ar_env :: NameEnv Arity
ar_env = forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr LHsBind GhcRn -> NameEnv Arity -> NameEnv Arity
lhsBindArity forall a. NameEnv a
emptyNameEnv LHsBinds GhcRn
binds

addInlinePragArity :: Arity -> LSig GhcRn -> LSig GhcRn
addInlinePragArity :: Arity -> LSig GhcRn -> LSig GhcRn
addInlinePragArity Arity
ar (L SrcSpanAnnA
l (InlineSig XInlineSig GhcRn
x LIdP GhcRn
nm InlinePragma
inl))  = forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall pass.
XInlineSig pass -> LIdP pass -> InlinePragma -> Sig pass
InlineSig XInlineSig GhcRn
x LIdP GhcRn
nm (Arity -> InlinePragma -> InlinePragma
add_inl_arity Arity
ar InlinePragma
inl))
addInlinePragArity Arity
ar (L SrcSpanAnnA
l (SpecSig XSpecSig GhcRn
x LIdP GhcRn
nm [LHsSigType GhcRn]
ty InlinePragma
inl)) = forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
l (forall pass.
XSpecSig pass
-> LIdP pass -> [LHsSigType pass] -> InlinePragma -> Sig pass
SpecSig XSpecSig GhcRn
x LIdP GhcRn
nm [LHsSigType GhcRn]
ty (Arity -> InlinePragma -> InlinePragma
add_inl_arity Arity
ar InlinePragma
inl))
addInlinePragArity Arity
_ LSig GhcRn
sig = LSig GhcRn
sig

add_inl_arity :: Arity -> InlinePragma -> InlinePragma
add_inl_arity :: Arity -> InlinePragma -> InlinePragma
add_inl_arity Arity
ar prag :: InlinePragma
prag@(InlinePragma { inl_inline :: InlinePragma -> InlineSpec
inl_inline = InlineSpec
inl_spec })
  | Inline {} <- InlineSpec
inl_spec  -- Add arity only for real INLINE pragmas, not INLINABLE
  = InlinePragma
prag { inl_sat :: Maybe Arity
inl_sat = forall a. a -> Maybe a
Just Arity
ar }
  | Bool
otherwise
  = InlinePragma
prag

lhsBindArity :: LHsBind GhcRn -> NameEnv Arity -> NameEnv Arity
lhsBindArity :: LHsBind GhcRn -> NameEnv Arity -> NameEnv Arity
lhsBindArity (L SrcSpanAnnA
_ (FunBind { fun_id :: forall idL idR. HsBindLR idL idR -> LIdP idL
fun_id = LIdP GhcRn
id, fun_matches :: forall idL idR. HsBindLR idL idR -> MatchGroup idR (LHsExpr idR)
fun_matches = MatchGroup GhcRn (LHsExpr GhcRn)
ms })) NameEnv Arity
env
  = forall a. NameEnv a -> Name -> a -> NameEnv a
extendNameEnv NameEnv Arity
env (forall l e. GenLocated l e -> e
unLoc LIdP GhcRn
id) (forall (id :: Pass) body. MatchGroup (GhcPass id) body -> Arity
matchGroupArity MatchGroup GhcRn (LHsExpr GhcRn)
ms)
lhsBindArity LHsBind GhcRn
_ NameEnv Arity
env = NameEnv Arity
env        -- PatBind/VarBind


-----------------
addInlinePrags :: TcId -> [LSig GhcRn] -> TcM TcId
addInlinePrags :: TcId -> [LSig GhcRn] -> TcM TcId
addInlinePrags TcId
poly_id [LSig GhcRn]
prags_for_me
  | inl :: GenLocated SrcSpanAnnA InlinePragma
inl@(L SrcSpanAnnA
_ InlinePragma
prag) : [GenLocated SrcSpanAnnA InlinePragma]
inls <- [GenLocated SrcSpanAnnA InlinePragma]
inl_prags
  = do { String -> SDoc -> TcRn ()
traceTc String
"addInlinePrag" (forall a. Outputable a => a -> SDoc
ppr TcId
poly_id SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr InlinePragma
prag)
       ; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated SrcSpanAnnA InlinePragma]
inls) (GenLocated SrcSpanAnnA InlinePragma
-> [GenLocated SrcSpanAnnA InlinePragma] -> TcRn ()
warn_multiple_inlines GenLocated SrcSpanAnnA InlinePragma
inl [GenLocated SrcSpanAnnA InlinePragma]
inls)
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (TcId
poly_id TcId -> InlinePragma -> TcId
`setInlinePragma` InlinePragma
prag) }
  | Bool
otherwise
  = forall (m :: * -> *) a. Monad m => a -> m a
return TcId
poly_id
  where
    inl_prags :: [GenLocated SrcSpanAnnA InlinePragma]
inl_prags = [forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc InlinePragma
prag | L SrcSpanAnnA
loc (InlineSig XInlineSig GhcRn
_ LIdP GhcRn
_ InlinePragma
prag) <- [LSig GhcRn]
prags_for_me]

    warn_multiple_inlines :: GenLocated SrcSpanAnnA InlinePragma
-> [GenLocated SrcSpanAnnA InlinePragma] -> TcRn ()
warn_multiple_inlines GenLocated SrcSpanAnnA InlinePragma
_ [] = forall (m :: * -> *) a. Monad m => a -> m a
return ()

    warn_multiple_inlines inl1 :: GenLocated SrcSpanAnnA InlinePragma
inl1@(L SrcSpanAnnA
loc InlinePragma
prag1) (inl2 :: GenLocated SrcSpanAnnA InlinePragma
inl2@(L SrcSpanAnnA
_ InlinePragma
prag2) : [GenLocated SrcSpanAnnA InlinePragma]
inls)
       | InlinePragma -> Activation
inlinePragmaActivation InlinePragma
prag1 forall a. Eq a => a -> a -> Bool
== InlinePragma -> Activation
inlinePragmaActivation InlinePragma
prag2
       , InlineSpec -> Bool
noUserInlineSpec (InlinePragma -> InlineSpec
inlinePragmaSpec InlinePragma
prag1)
       =    -- Tiresome: inl1 is put there by virtue of being in a hs-boot loop
            -- and inl2 is a user NOINLINE pragma; we don't want to complain
         GenLocated SrcSpanAnnA InlinePragma
-> [GenLocated SrcSpanAnnA InlinePragma] -> TcRn ()
warn_multiple_inlines GenLocated SrcSpanAnnA InlinePragma
inl2 [GenLocated SrcSpanAnnA InlinePragma]
inls
       | Bool
otherwise
       = forall ann a. SrcSpanAnn' ann -> TcRn a -> TcRn a
setSrcSpanA SrcSpanAnnA
loc forall a b. (a -> b) -> a -> b
$
         WarnReason -> SDoc -> TcRn ()
addWarnTc WarnReason
NoReason
                     (SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
text String
"Multiple INLINE pragmas for" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr TcId
poly_id)
                       Arity
2 ([SDoc] -> SDoc
vcat (String -> SDoc
text String
"Ignoring all but the first"
                                forall a. a -> [a] -> [a]
: forall a b. (a -> b) -> [a] -> [b]
map forall {a} {a}.
(Outputable a, Outputable a) =>
GenLocated a a -> SDoc
pp_inl (GenLocated SrcSpanAnnA InlinePragma
inl1forall a. a -> [a] -> [a]
:GenLocated SrcSpanAnnA InlinePragma
inl2forall a. a -> [a] -> [a]
:[GenLocated SrcSpanAnnA InlinePragma]
inls))))

    pp_inl :: GenLocated a a -> SDoc
pp_inl (L a
loc a
prag) = forall a. Outputable a => a -> SDoc
ppr a
prag SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
parens (forall a. Outputable a => a -> SDoc
ppr a
loc)


{- Note [Pattern synonym inline arity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
    {-# INLINE P #-}
    pattern P x = (x, True)

The INLINE pragma attaches to both the /matcher/ and the /builder/ for
the pattern synonym; see Note [Pragmas for pattern synonyms] in
GHC.Tc.TyCl.PatSyn.  But they have different inline arities (i.e. number
of binders to which we apply the function before inlining), and we don't
know what those arities are yet.  So for pattern synonyms we don't set
the inl_sat field yet; instead we do so (via addInlinePragArity) in
GHC.Tc.TyCl.PatSyn.tcPatSynMatcher and tcPatSynBuilderBind.

It's a bit messy that we set the arities in different ways.  Perhaps we
should add the arity later for all binders.  But it works fine like this.
-}


{- *********************************************************************
*                                                                      *
                   SPECIALISE pragmas
*                                                                      *
************************************************************************

Note [Handling SPECIALISE pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The basic idea is this:

   foo :: Num a => a -> b -> a
   {-# SPECIALISE foo :: Int -> b -> Int #-}

We check that
   (forall a b. Num a => a -> b -> a)
      is more polymorphic than
   forall b. Int -> b -> Int
(for which we could use tcSubType, but see below), generating a HsWrapper
to connect the two, something like
      wrap = /\b. <hole> Int b dNumInt
This wrapper is put in the TcSpecPrag, in the ABExport record of
the AbsBinds.


        f :: (Eq a, Ix b) => a -> b -> Bool
        {-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-}
        f = <poly_rhs>

From this the typechecker generates

    AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds

    SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX
                      -> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ])

From these we generate:

    Rule:       forall p, q, (dp:Ix p), (dq:Ix q).
                    f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq

    Spec bind:  f_spec = wrap_fn <poly_rhs>

Note that

  * The LHS of the rule may mention dictionary *expressions* (eg
    $dfIxPair dp dq), and that is essential because the dp, dq are
    needed on the RHS.

  * The RHS of f_spec, <poly_rhs> has a *copy* of 'binds', so that it
    can fully specialise it.

From the TcSpecPrag, in GHC.HsToCore.Binds we generate a binding for f_spec and a RULE:

   f_spec :: Int -> b -> Int
   f_spec = wrap<f rhs>

   RULE: forall b (d:Num b). f b d = f_spec b

The RULE is generated by taking apart the HsWrapper, which is a little
delicate, but works.

Some wrinkles

1. In tcSpecWrapper, rather than calling tcSubType, we directly call
   skolemise/instantiate.  That is mainly because of wrinkle (2).

   Historical note: in the past, tcSubType did co/contra stuff, which
   could generate too complex a LHS for the RULE, which was another
   reason for not using tcSubType.  But that reason has gone away
   with simple subsumption (#17775).

2. We need to take care with type families (#5821).  Consider
      type instance F Int = Bool
      f :: Num a => a -> F a
      {-# SPECIALISE foo :: Int -> Bool #-}

  We *could* try to generate an f_spec with precisely the declared type:
      f_spec :: Int -> Bool
      f_spec = <f rhs> Int dNumInt |> co

      RULE: forall d. f Int d = f_spec |> sym co

  but the 'co' and 'sym co' are (a) playing no useful role, and (b) are
  hard to generate.  At all costs we must avoid this:
      RULE: forall d. f Int d |> co = f_spec
  because the LHS will never match (indeed it's rejected in
  decomposeRuleLhs).

  So we simply do this:
    - Generate a constraint to check that the specialised type (after
      skolemisation) is equal to the instantiated function type.
    - But *discard* the evidence (coercion) for that constraint,
      so that we ultimately generate the simpler code
          f_spec :: Int -> F Int
          f_spec = <f rhs> Int dNumInt

          RULE: forall d. f Int d = f_spec
      You can see this discarding happening in tcSpecPrag

3. Note that the HsWrapper can transform *any* function with the right
   type prefix
       forall ab. (Eq a, Ix b) => XXX
   regardless of XXX.  It's sort of polymorphic in XXX.  This is
   useful: we use the same wrapper to transform each of the class ops, as
   well as the dict.  That's what goes on in GHC.Tc.TyCl.Instance.mk_meth_spec_prags
-}

tcSpecPrags :: Id -> [LSig GhcRn]
            -> TcM [LTcSpecPrag]
-- Add INLINE and SPECIALSE pragmas
--    INLINE prags are added to the (polymorphic) Id directly
--    SPECIALISE prags are passed to the desugarer via TcSpecPrags
-- Pre-condition: the poly_id is zonked
-- Reason: required by tcSubExp
tcSpecPrags :: TcId -> [LSig GhcRn] -> TcM [LTcSpecPrag]
tcSpecPrags TcId
poly_id [LSig GhcRn]
prag_sigs
  = do { String -> SDoc -> TcRn ()
traceTc String
"tcSpecPrags" (forall a. Outputable a => a -> SDoc
ppr TcId
poly_id SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr [GenLocated SrcSpanAnnA (Sig GhcRn)]
spec_sigs)
       ; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated SrcSpanAnnA (Sig GhcRn)]
bad_sigs) TcRn ()
warn_discarded_sigs
       ; [GenLocated SrcSpanAnnA [TcSpecPrag]]
pss <- forall a b. (a -> TcRn b) -> [a] -> TcRn [b]
mapAndRecoverM (forall a b ann.
(a -> TcM b)
-> GenLocated (SrcSpanAnn' ann) a
-> TcRn (GenLocated (SrcSpanAnn' ann) b)
wrapLocMA (TcId -> Sig GhcRn -> TcM [TcSpecPrag]
tcSpecPrag TcId
poly_id)) [GenLocated SrcSpanAnnA (Sig GhcRn)]
spec_sigs
       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\(L SrcSpanAnnA
l [TcSpecPrag]
ps) -> forall a b. (a -> b) -> [a] -> [b]
map (forall l e. l -> e -> GenLocated l e
L (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)) [TcSpecPrag]
ps) [GenLocated SrcSpanAnnA [TcSpecPrag]]
pss }
  where
    spec_sigs :: [GenLocated SrcSpanAnnA (Sig GhcRn)]
spec_sigs = forall a. (a -> Bool) -> [a] -> [a]
filter forall p. UnXRec p => LSig p -> Bool
isSpecLSig [LSig GhcRn]
prag_sigs
    bad_sigs :: [GenLocated SrcSpanAnnA (Sig GhcRn)]
bad_sigs  = forall a. (a -> Bool) -> [a] -> [a]
filter forall p. UnXRec p => LSig p -> Bool
is_bad_sig [LSig GhcRn]
prag_sigs
    is_bad_sig :: XRec p (Sig p) -> Bool
is_bad_sig XRec p (Sig p)
s = Bool -> Bool
not (forall p. UnXRec p => LSig p -> Bool
isSpecLSig XRec p (Sig p)
s Bool -> Bool -> Bool
|| forall p. UnXRec p => LSig p -> Bool
isInlineLSig XRec p (Sig p)
s Bool -> Bool -> Bool
|| forall p. UnXRec p => LSig p -> Bool
isSCCFunSig XRec p (Sig p)
s)

    warn_discarded_sigs :: TcRn ()
warn_discarded_sigs
      = WarnReason -> SDoc -> TcRn ()
addWarnTc WarnReason
NoReason
                  (SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
text String
"Discarding unexpected pragmas for" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr TcId
poly_id)
                      Arity
2 ([SDoc] -> SDoc
vcat (forall a b. (a -> b) -> [a] -> [b]
map (forall a. Outputable a => a -> SDoc
ppr forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall l e. GenLocated l e -> l
getLoc) [GenLocated SrcSpanAnnA (Sig GhcRn)]
bad_sigs)))

--------------
tcSpecPrag :: TcId -> Sig GhcRn -> TcM [TcSpecPrag]
tcSpecPrag :: TcId -> Sig GhcRn -> TcM [TcSpecPrag]
tcSpecPrag TcId
poly_id prag :: Sig GhcRn
prag@(SpecSig XSpecSig GhcRn
_ LIdP GhcRn
fun_name [LHsSigType GhcRn]
hs_tys InlinePragma
inl)
-- See Note [Handling SPECIALISE pragmas]
--
-- The Name fun_name in the SpecSig may not be the same as that of the poly_id
-- Example: SPECIALISE for a class method: the Name in the SpecSig is
--          for the selector Id, but the poly_id is something like $cop
-- However we want to use fun_name in the error message, since that is
-- what the user wrote (#8537)
  = forall a. SDoc -> TcM a -> TcM a
addErrCtxt (forall a. Outputable a => a -> SDoc
spec_ctxt Sig GhcRn
prag) forall a b. (a -> b) -> a -> b
$
    do  { Bool -> SDoc -> TcRn ()
warnIf (Bool -> Bool
not (Kind -> Bool
isOverloadedTy Kind
poly_ty Bool -> Bool -> Bool
|| InlinePragma -> Bool
isInlinePragma InlinePragma
inl))
                 (String -> SDoc
text String
"SPECIALISE pragma for non-overloaded function"
                  SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr LIdP GhcRn
fun_name))
                  -- Note [SPECIALISE pragmas]
        ; [TcSpecPrag]
spec_prags <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM GenLocated SrcSpanAnnA (HsSigType GhcRn)
-> IOEnv (Env TcGblEnv TcLclEnv) TcSpecPrag
tc_one [LHsSigType GhcRn]
hs_tys
        ; String -> SDoc -> TcRn ()
traceTc String
"tcSpecPrag" (forall a. Outputable a => a -> SDoc
ppr TcId
poly_id SDoc -> SDoc -> SDoc
$$ Arity -> SDoc -> SDoc
nest Arity
2 ([SDoc] -> SDoc
vcat (forall a b. (a -> b) -> [a] -> [b]
map forall a. Outputable a => a -> SDoc
ppr [TcSpecPrag]
spec_prags)))
        ; forall (m :: * -> *) a. Monad m => a -> m a
return [TcSpecPrag]
spec_prags }
  where
    name :: Name
name      = TcId -> Name
idName TcId
poly_id
    poly_ty :: Kind
poly_ty   = TcId -> Kind
idType TcId
poly_id
    spec_ctxt :: a -> SDoc
spec_ctxt a
prag = SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
text String
"In the pragma:") Arity
2 (forall a. Outputable a => a -> SDoc
ppr a
prag)

    tc_one :: GenLocated SrcSpanAnnA (HsSigType GhcRn)
-> IOEnv (Env TcGblEnv TcLclEnv) TcSpecPrag
tc_one GenLocated SrcSpanAnnA (HsSigType GhcRn)
hs_ty
      = do { Kind
spec_ty <- UserTypeCtxt -> LHsSigType GhcRn -> TcM Kind
tcHsSigType   (Name -> Bool -> UserTypeCtxt
FunSigCtxt Name
name Bool
False) GenLocated SrcSpanAnnA (HsSigType GhcRn)
hs_ty
           ; HsWrapper
wrap    <- UserTypeCtxt -> Kind -> Kind -> TcM HsWrapper
tcSpecWrapper (Name -> Bool -> UserTypeCtxt
FunSigCtxt Name
name Bool
True)  Kind
poly_ty Kind
spec_ty
           ; forall (m :: * -> *) a. Monad m => a -> m a
return (TcId -> HsWrapper -> InlinePragma -> TcSpecPrag
SpecPrag TcId
poly_id HsWrapper
wrap InlinePragma
inl) }

tcSpecPrag TcId
_ Sig GhcRn
prag = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"tcSpecPrag" (forall a. Outputable a => a -> SDoc
ppr Sig GhcRn
prag)

--------------
tcSpecWrapper :: UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
-- A simpler variant of tcSubType, used for SPECIALISE pragmas
-- See Note [Handling SPECIALISE pragmas], wrinkle 1
tcSpecWrapper :: UserTypeCtxt -> Kind -> Kind -> TcM HsWrapper
tcSpecWrapper UserTypeCtxt
ctxt Kind
poly_ty Kind
spec_ty
  = do { (HsWrapper
sk_wrap, HsWrapper
inst_wrap)
               <- forall result.
UserTypeCtxt
-> Kind -> (Kind -> TcM result) -> TcM (HsWrapper, result)
tcTopSkolemise UserTypeCtxt
ctxt Kind
spec_ty forall a b. (a -> b) -> a -> b
$ \ Kind
spec_tau ->
                  do { (HsWrapper
inst_wrap, Kind
tau) <- CtOrigin -> Kind -> TcM (HsWrapper, Kind)
topInstantiate CtOrigin
orig Kind
poly_ty
                     ; TcCoercionN
_ <- Maybe SDoc -> Kind -> Kind -> TcM TcCoercionN
unifyType forall a. Maybe a
Nothing Kind
spec_tau Kind
tau
                            -- Deliberately ignore the evidence
                            -- See Note [Handling SPECIALISE pragmas],
                            --   wrinkle (2)
                     ; forall (m :: * -> *) a. Monad m => a -> m a
return HsWrapper
inst_wrap }
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
sk_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
inst_wrap) }
  where
    orig :: CtOrigin
orig = UserTypeCtxt -> CtOrigin
SpecPragOrigin UserTypeCtxt
ctxt

--------------
tcImpPrags :: [LSig GhcRn] -> TcM [LTcSpecPrag]
-- SPECIALISE pragmas for imported things
tcImpPrags :: [LSig GhcRn] -> TcM [LTcSpecPrag]
tcImpPrags [LSig GhcRn]
prags
  = do { Module
this_mod <- forall (m :: * -> *). HasModule m => m Module
getModule
       ; DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       ; if (DynFlags -> Bool
not_specialising DynFlags
dflags) then
            forall (m :: * -> *) a. Monad m => a -> m a
return []
         else do
            { [GenLocated SrcSpanAnnA [TcSpecPrag]]
pss <- forall a b. (a -> TcRn b) -> [a] -> TcRn [b]
mapAndRecoverM (forall a b ann.
(a -> TcM b)
-> GenLocated (SrcSpanAnn' ann) a
-> TcRn (GenLocated (SrcSpanAnn' ann) b)
wrapLocMA (Name, Sig GhcRn) -> TcM [TcSpecPrag]
tcImpSpec)
                     [forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loc (Name
name,Sig GhcRn
prag)
                             | (L SrcSpanAnnA
loc prag :: Sig GhcRn
prag@(SpecSig XSpecSig GhcRn
_ (L SrcSpanAnnN
_ Name
name) [LHsSigType GhcRn]
_ InlinePragma
_)) <- [LSig GhcRn]
prags
                             , Bool -> Bool
not (Module -> Name -> Bool
nameIsLocalOrFrom Module
this_mod Name
name) ]
            ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\(L SrcSpanAnnA
l [TcSpecPrag]
ps) -> forall a b. (a -> b) -> [a] -> [b]
map (forall l e. l -> e -> GenLocated l e
L (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)) [TcSpecPrag]
ps) [GenLocated SrcSpanAnnA [TcSpecPrag]]
pss } }
  where
    -- Ignore SPECIALISE pragmas for imported things
    -- when we aren't specialising, or when we aren't generating
    -- code.  The latter happens when Haddocking the base library;
    -- we don't want complaints about lack of INLINABLE pragmas
    not_specialising :: DynFlags -> Bool
not_specialising DynFlags
dflags
      | Bool -> Bool
not (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_Specialise DynFlags
dflags) = Bool
True
      | Bool
otherwise = case DynFlags -> Backend
backend DynFlags
dflags of
                      Backend
NoBackend   -> Bool
True
                      Backend
Interpreter -> Bool
True
                      Backend
_other      -> Bool
False

tcImpSpec :: (Name, Sig GhcRn) -> TcM [TcSpecPrag]
tcImpSpec :: (Name, Sig GhcRn) -> TcM [TcSpecPrag]
tcImpSpec (Name
name, Sig GhcRn
prag)
 = do { TcId
id <- Name -> TcM TcId
tcLookupId Name
name
      ; if Unfolding -> Bool
hasSomeUnfolding (TcId -> Unfolding
realIdUnfolding TcId
id)
           -- See Note [SPECIALISE pragmas for imported Ids]
        then TcId -> Sig GhcRn -> TcM [TcSpecPrag]
tcSpecPrag TcId
id Sig GhcRn
prag
        else do { WarnReason -> SDoc -> TcRn ()
addWarnTc WarnReason
NoReason (Name -> SDoc
impSpecErr Name
name)
                ; forall (m :: * -> *) a. Monad m => a -> m a
return [] } }

impSpecErr :: Name -> SDoc
impSpecErr :: Name -> SDoc
impSpecErr Name
name
  = SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
text String
"You cannot SPECIALISE" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr Name
name))
       Arity
2 ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"because its definition is not visible in this module"
               , String -> SDoc
text String
"Hint: make sure" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Module
mod SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"is compiled with -O"
               , String -> SDoc
text String
"      and that" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr Name
name)
                 SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"has an INLINABLE pragma" ])
  where
    mod :: Module
mod = HasDebugCallStack => Name -> Module
nameModule Name
name

{- Note [SPECIALISE pragmas for imported Ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An imported Id may or may not have an unfolding.  If not, we obviously
can't specialise it here; indeed the desugar falls over (#18118).

We used to test whether it had a user-specified INLINABLE pragma but,
because of Note [Worker-wrapper for INLINABLE functions] in
GHC.Core.Opt.WorkWrap, even an INLINABLE function may end up with
a wrapper that has no pragma, just an unfolding (#19246).  So now
we just test whether the function has an unfolding.

There's a risk that a pragma-free function may have an unfolding now
(because it is fairly small), and then gets a bit bigger, and no
longer has an unfolding in the future.  But then you'll get a helpful
error message suggesting an INLINABLE pragma, which you can follow.
That seems enough for now.
-}