{-
    %
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

-}

{-# LANGUAGE CPP, ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

-- | Generating derived instance declarations
--
-- This module is nominally ``subordinate'' to "GHC.Tc.Deriv", which is the
-- ``official'' interface to deriving-related things.
--
-- This is where we do all the grimy bindings' generation.
module GHC.Tc.Deriv.Generate (
        BagDerivStuff, DerivStuff(..),

        gen_Eq_binds,
        gen_Ord_binds,
        gen_Enum_binds,
        gen_Bounded_binds,
        gen_Ix_binds,
        gen_Show_binds,
        gen_Read_binds,
        gen_Data_binds,
        gen_Lift_binds,
        gen_Newtype_binds,
        mkCoerceClassMethEqn,
        genAuxBinds,
        ordOpTbl, boxConTbl, litConTbl,
        mkRdrFunBind, mkRdrFunBindEC, mkRdrFunBindSE, error_Expr,

        getPossibleDataCons, tyConInstArgTys
    ) where

#include "HsVersions.h"

import GHC.Prelude

import GHC.Tc.Utils.Monad
import GHC.Hs
import GHC.Types.Name.Reader
import GHC.Types.Basic
import GHC.Types.Fixity
import GHC.Core.DataCon
import GHC.Types.Name
import GHC.Types.SourceText

import GHC.Driver.Session
import GHC.Builtin.Utils
import GHC.Tc.Instance.Family
import GHC.Core.FamInstEnv
import GHC.Builtin.Names
import GHC.Builtin.Names.TH
import GHC.Types.Id.Make ( coerceId )
import GHC.Builtin.PrimOps
import GHC.Types.SrcLoc
import GHC.Core.TyCon
import GHC.Tc.Utils.Env
import GHC.Tc.Utils.TcType
import GHC.Tc.Validity ( checkValidCoAxBranch )
import GHC.Core.Coercion.Axiom ( coAxiomSingleBranch )
import GHC.Builtin.Types.Prim
import GHC.Builtin.Types
import GHC.Core.Type
import GHC.Core.Multiplicity
import GHC.Core.Class
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Utils.Misc
import GHC.Types.Var
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Lexeme
import GHC.Data.FastString
import GHC.Data.Pair
import GHC.Data.Bag

import Data.List  ( find, partition, intersperse )

type BagDerivStuff = Bag DerivStuff

-- | A declarative description of an auxiliary binding that should be
-- generated. See @Note [Auxiliary binders]@ for a more detailed description
-- of how these are used.
data AuxBindSpec
  -- DerivTag2Con, and DerivMaxTag are used in derived Eq, Ord,
  -- Enum, and Ix instances.
  -- All these generate ZERO-BASED tag operations
  -- I.e first constructor has tag 0

    -- | @$tag2con@: Given a tag, computes the corresponding data constructor
  = DerivTag2Con
      TyCon   -- The type constructor of the data type to which the
              -- constructors belong
      RdrName -- The to-be-generated $tag2con binding's RdrName

    -- | @$maxtag@: The maximum possible tag value among a data type's
    -- constructors
  | DerivMaxTag
      TyCon   -- The type constructor of the data type to which the
              -- constructors belong
      RdrName -- The to-be-generated $maxtag binding's RdrName

  -- DerivDataDataType and DerivDataConstr are only used in derived Data
  -- instances

    -- | @$t@: The @DataType@ representation for a @Data@ instance
  | DerivDataDataType
      TyCon     -- The type constructor of the data type to be represented
      RdrName   -- The to-be-generated $t binding's RdrName
      [RdrName] -- The RdrNames of the to-be-generated $c bindings for each
                -- data constructor. These are only used on the RHS of the
                -- to-be-generated $t binding.

    -- | @$c@: The @Constr@ representation for a @Data@ instance
  | DerivDataConstr
      DataCon -- The data constructor to be represented
      RdrName -- The to-be-generated $c binding's RdrName
      RdrName -- The RdrName of the to-be-generated $t binding for the parent
              -- data type. This is only used on the RHS of the
              -- to-be-generated $c binding.

-- | Retrieve the 'RdrName' of the binding that the supplied 'AuxBindSpec'
-- describes.
auxBindSpecRdrName :: AuxBindSpec -> RdrName
auxBindSpecRdrName :: AuxBindSpec -> RdrName
auxBindSpecRdrName (DerivTag2Con      TyCon
_ RdrName
tag2con_RDR) = RdrName
tag2con_RDR
auxBindSpecRdrName (DerivMaxTag       TyCon
_ RdrName
maxtag_RDR)  = RdrName
maxtag_RDR
auxBindSpecRdrName (DerivDataDataType TyCon
_ RdrName
dataT_RDR [RdrName]
_) = RdrName
dataT_RDR
auxBindSpecRdrName (DerivDataConstr   DataCon
_ RdrName
dataC_RDR RdrName
_) = RdrName
dataC_RDR

data DerivStuff     -- Please add this auxiliary stuff
  = DerivAuxBind AuxBindSpec
    -- ^ A new, top-level auxiliary binding. Used for deriving 'Eq', 'Ord',
    --   'Enum', 'Ix', and 'Data'. See Note [Auxiliary binders].

  -- Generics and DeriveAnyClass
  | DerivFamInst FamInst               -- New type family instances
    -- ^ A new type family instance. Used for:
    --
    -- * @DeriveGeneric@, which generates instances of @Rep(1)@
    --
    -- * @DeriveAnyClass@, which can fill in associated type family defaults
    --
    -- * @GeneralizedNewtypeDeriving@, which generates instances of associated
    --   type families for newtypes


{-
************************************************************************
*                                                                      *
                Eq instances
*                                                                      *
************************************************************************

Here are the heuristics for the code we generate for @Eq@. Let's
assume we have a data type with some (possibly zero) nullary data
constructors and some ordinary, non-nullary ones (the rest, also
possibly zero of them).  Here's an example, with both \tr{N}ullary and
\tr{O}rdinary data cons.

  data Foo ... = N1 | N2 ... | Nn | O1 a b | O2 Int | O3 Double b b | ...

* For the ordinary constructors (if any), we emit clauses to do The
  Usual Thing, e.g.,:

    (==) (O1 a1 b1)    (O1 a2 b2)    = a1 == a2 && b1 == b2
    (==) (O2 a1)       (O2 a2)       = a1 == a2
    (==) (O3 a1 b1 c1) (O3 a2 b2 c2) = a1 == a2 && b1 == b2 && c1 == c2

  Note: if we're comparing unlifted things, e.g., if 'a1' and
  'a2' are Float#s, then we have to generate
       case (a1 `eqFloat#` a2) of r -> r
  for that particular test.

* For nullary constructors, we emit a
  catch-all clause of the form:

      (==) a b  = case (dataToTag# a) of { a# ->
                  case (dataToTag# b) of { b# ->
                  case (a# ==# b#)     of {
                    r -> r }}}

  An older approach preferred regular pattern matches in some cases
  but with dataToTag# forcing it's argument, and work on improving
  join points, this seems no longer necessary.

* If there aren't any nullary constructors, we emit a simpler
  catch-all:

     (==) a b  = False

* For the @(/=)@ method, we normally just use the default method.
  If the type is an enumeration type, we could/may/should? generate
  special code that calls @dataToTag#@, much like for @(==)@ shown
  above.

We thought about doing this: If we're also deriving 'Ord' for this
tycon, we generate:
  instance ... Eq (Foo ...) where
    (==) a b  = case (compare a b) of { _LT -> False; _EQ -> True ; _GT -> False}
    (/=) a b  = case (compare a b) of { _LT -> True ; _EQ -> False; _GT -> True }
However, that requires that (Ord <whatever>) was put in the context
for the instance decl, which it probably wasn't, so the decls
produced don't get through the typechecker.
-}

gen_Eq_binds :: SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff)
gen_Eq_binds :: SrcSpan
-> TyCon
-> [Type]
-> TcM (LHsBinds (GhcPass 'Parsed), BagDerivStuff)
gen_Eq_binds SrcSpan
loc TyCon
tycon [Type]
tycon_args = do
    forall (m :: * -> *) a. Monad m => a -> m a
return (Bag
  (GenLocated
     SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
method_binds, forall a. Bag a
emptyBag)
  where
    all_cons :: [DataCon]
all_cons = TyCon -> [Type] -> [DataCon]
getPossibleDataCons TyCon
tycon [Type]
tycon_args
    ([DataCon]
nullary_cons, [DataCon]
non_nullary_cons) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition DataCon -> Bool
isNullarySrcDataCon [DataCon]
all_cons

    -- For nullary constructors, use the getTag stuff.
    ([DataCon]
tag_match_cons, [DataCon]
pat_match_cons) = ([DataCon]
nullary_cons, [DataCon]
non_nullary_cons)
    no_tag_match_cons :: Bool
no_tag_match_cons = forall (t :: * -> *) a. Foldable t => t a -> Bool
null [DataCon]
tag_match_cons

    -- (LHS patterns, result)
    fall_through_eqn :: [([LPat (GhcPass 'Parsed)] , LHsExpr GhcPs)]
    fall_through_eqn :: [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
fall_through_eqn
      | Bool
no_tag_match_cons   -- All constructors have arguments
      = case [DataCon]
pat_match_cons of
          []  -> []   -- No constructors; no fall-though case
          [DataCon
_] -> []   -- One constructor; no fall-though case
          [DataCon]
_   ->      -- Two or more constructors; add fall-through of
                      --       (==) _ _ = False
                 [([LPat (GhcPass 'Parsed)
nlWildPat, LPat (GhcPass 'Parsed)
nlWildPat], LHsExpr (GhcPass 'Parsed)
false_Expr)]

      | Bool
otherwise -- One or more tag_match cons; add fall-through of
                  -- extract tags compare for equality,
                  -- The case `(C1 x) == (C1 y)` can no longer happen
                  -- at this point as it's matched earlier.
      = [([LPat (GhcPass 'Parsed)
a_Pat, LPat (GhcPass 'Parsed)
b_Pat],
         [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
a_RDR,RdrName
ah_RDR), (RdrName
b_RDR,RdrName
bh_RDR)]
                    (LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genPrimOpApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
ah_RDR) RdrName
eqInt_RDR (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
bh_RDR)))]

    method_binds :: Bag
  (GenLocated
     SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
method_binds = forall a. a -> Bag a
unitBag LHsBind (GhcPass 'Parsed)
eq_bind
    eq_bind :: LHsBind (GhcPass 'Parsed)
eq_bind
      = Int
-> SrcSpan
-> RdrName
-> (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))
-> [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkFunBindEC Int
2 SrcSpan
loc RdrName
eq_RDR (forall a b. a -> b -> a
const LHsExpr (GhcPass 'Parsed)
true_Expr)
                    (forall a b. (a -> b) -> [a] -> [b]
map DataCon
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    LocatedA (HsExpr (GhcPass 'Parsed)))
pats_etc [DataCon]
pat_match_cons
                      forall a. [a] -> [a] -> [a]
++ [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
fall_through_eqn)

    ------------------------------------------------------------------
    pats_etc :: DataCon
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    LocatedA (HsExpr (GhcPass 'Parsed)))
pats_etc DataCon
data_con
      = let
            con1_pat :: LPat (GhcPass 'Parsed)
con1_pat = forall (name :: Pass). LPat (GhcPass name) -> LPat (GhcPass name)
nlParPat forall a b. (a -> b) -> a -> b
$ RdrName -> [RdrName] -> LPat (GhcPass 'Parsed)
nlConVarPat RdrName
data_con_RDR [RdrName]
as_needed
            con2_pat :: LPat (GhcPass 'Parsed)
con2_pat = forall (name :: Pass). LPat (GhcPass name) -> LPat (GhcPass name)
nlParPat forall a b. (a -> b) -> a -> b
$ RdrName -> [RdrName] -> LPat (GhcPass 'Parsed)
nlConVarPat RdrName
data_con_RDR [RdrName]
bs_needed

            data_con_RDR :: RdrName
data_con_RDR = forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
data_con
            con_arity :: Int
con_arity   = forall (t :: * -> *) a. Foldable t => t a -> Int
length [Scaled Type]
tys_needed
            as_needed :: [RdrName]
as_needed   = forall a. Int -> [a] -> [a]
take Int
con_arity [RdrName]
as_RDRs
            bs_needed :: [RdrName]
bs_needed   = forall a. Int -> [a] -> [a]
take Int
con_arity [RdrName]
bs_RDRs
            tys_needed :: [Scaled Type]
tys_needed  = DataCon -> [Scaled Type]
dataConOrigArgTys DataCon
data_con
        in
        ([LPat (GhcPass 'Parsed)
con1_pat, LPat (GhcPass 'Parsed)
con2_pat], [Type]
-> [RdrName] -> [RdrName] -> LocatedA (HsExpr (GhcPass 'Parsed))
nested_eq_expr (forall a b. (a -> b) -> [a] -> [b]
map forall a. Scaled a -> a
scaledThing [Scaled Type]
tys_needed) [RdrName]
as_needed [RdrName]
bs_needed)
      where
        nested_eq_expr :: [Type] -> [RdrName] -> [RdrName] -> LHsExpr (GhcPass 'Parsed)
nested_eq_expr []  [] [] = LHsExpr (GhcPass 'Parsed)
true_Expr
        nested_eq_expr [Type]
tys [RdrName]
as [RdrName]
bs
          = forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
and_Expr (forall a b c d.
String -> (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
zipWith3Equal String
"nested_eq" Type -> RdrName -> RdrName -> LocatedA (HsExpr (GhcPass 'Parsed))
nested_eq [Type]
tys [RdrName]
as [RdrName]
bs)
          -- Using 'foldr1' here ensures that the derived code is correctly
          -- associated. See #10859.
          where
            nested_eq :: Type -> RdrName -> RdrName -> LHsExpr (GhcPass 'Parsed)
nested_eq Type
ty RdrName
a RdrName
b = forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar (Type
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
eq_Expr Type
ty (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
a) (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b))

{-
************************************************************************
*                                                                      *
        Ord instances
*                                                                      *
************************************************************************

Note [Generating Ord instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose constructors are K1..Kn, and some are nullary.
The general form we generate is:

* Do case on first argument
        case a of
          K1 ... -> rhs_1
          K2 ... -> rhs_2
          ...
          Kn ... -> rhs_n
          _ -> nullary_rhs

* To make rhs_i
     If i = 1, 2, n-1, n, generate a single case.
        rhs_2    case b of
                   K1 {}  -> LT
                   K2 ... -> ...eq_rhs(K2)...
                   _      -> GT

     Otherwise do a tag compare against the bigger range
     (because this is the one most likely to succeed)
        rhs_3    case tag b of tb ->
                 if 3 <# tg then GT
                 else case b of
                         K3 ... -> ...eq_rhs(K3)....
                         _      -> LT

* To make eq_rhs(K), which knows that
    a = K a1 .. av
    b = K b1 .. bv
  we just want to compare (a1,b1) then (a2,b2) etc.
  Take care on the last field to tail-call into comparing av,bv

* To make nullary_rhs generate this
     case dataToTag# a of a# ->
     case dataToTag# b of ->
     a# `compare` b#

Several special cases:

* Two or fewer nullary constructors: don't generate nullary_rhs

* Be careful about unlifted comparisons.  When comparing unboxed
  values we can't call the overloaded functions.
  See function unliftedOrdOp

Note [Game plan for deriving Ord]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's a bad idea to define only 'compare', and build the other binary
comparisons on top of it; see #2130, #4019.  Reason: we don't
want to laboriously make a three-way comparison, only to extract a
binary result, something like this:
     (>) (I# x) (I# y) = case <# x y of
                            True -> False
                            False -> case ==# x y of
                                       True  -> False
                                       False -> True

This being said, we can get away with generating full code only for
'compare' and '<' thus saving us generation of other three operators.
Other operators can be cheaply expressed through '<':
a <= b = not $ b < a
a > b = b < a
a >= b = not $ a < b

So for sufficiently small types (few constructors, or all nullary)
we generate all methods; for large ones we just use 'compare'.

-}

data OrdOp = OrdCompare | OrdLT | OrdLE | OrdGE | OrdGT

------------
ordMethRdr :: OrdOp -> RdrName
ordMethRdr :: OrdOp -> RdrName
ordMethRdr OrdOp
op
  = case OrdOp
op of
       OrdOp
OrdCompare -> RdrName
compare_RDR
       OrdOp
OrdLT      -> RdrName
lt_RDR
       OrdOp
OrdLE      -> RdrName
le_RDR
       OrdOp
OrdGE      -> RdrName
ge_RDR
       OrdOp
OrdGT      -> RdrName
gt_RDR

------------
ltResult :: OrdOp -> LHsExpr GhcPs
-- Knowing a<b, what is the result for a `op` b?
ltResult :: OrdOp -> LHsExpr (GhcPass 'Parsed)
ltResult OrdOp
OrdCompare = LHsExpr (GhcPass 'Parsed)
ltTag_Expr
ltResult OrdOp
OrdLT      = LHsExpr (GhcPass 'Parsed)
true_Expr
ltResult OrdOp
OrdLE      = LHsExpr (GhcPass 'Parsed)
true_Expr
ltResult OrdOp
OrdGE      = LHsExpr (GhcPass 'Parsed)
false_Expr
ltResult OrdOp
OrdGT      = LHsExpr (GhcPass 'Parsed)
false_Expr

------------
eqResult :: OrdOp -> LHsExpr GhcPs
-- Knowing a=b, what is the result for a `op` b?
eqResult :: OrdOp -> LHsExpr (GhcPass 'Parsed)
eqResult OrdOp
OrdCompare = LHsExpr (GhcPass 'Parsed)
eqTag_Expr
eqResult OrdOp
OrdLT      = LHsExpr (GhcPass 'Parsed)
false_Expr
eqResult OrdOp
OrdLE      = LHsExpr (GhcPass 'Parsed)
true_Expr
eqResult OrdOp
OrdGE      = LHsExpr (GhcPass 'Parsed)
true_Expr
eqResult OrdOp
OrdGT      = LHsExpr (GhcPass 'Parsed)
false_Expr

------------
gtResult :: OrdOp -> LHsExpr GhcPs
-- Knowing a>b, what is the result for a `op` b?
gtResult :: OrdOp -> LHsExpr (GhcPass 'Parsed)
gtResult OrdOp
OrdCompare = LHsExpr (GhcPass 'Parsed)
gtTag_Expr
gtResult OrdOp
OrdLT      = LHsExpr (GhcPass 'Parsed)
false_Expr
gtResult OrdOp
OrdLE      = LHsExpr (GhcPass 'Parsed)
false_Expr
gtResult OrdOp
OrdGE      = LHsExpr (GhcPass 'Parsed)
true_Expr
gtResult OrdOp
OrdGT      = LHsExpr (GhcPass 'Parsed)
true_Expr

------------
gen_Ord_binds :: SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff)
gen_Ord_binds :: SrcSpan
-> TyCon
-> [Type]
-> TcM (LHsBinds (GhcPass 'Parsed), BagDerivStuff)
gen_Ord_binds SrcSpan
loc TyCon
tycon [Type]
tycon_args = do
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ if forall (t :: * -> *) a. Foldable t => t a -> Bool
null [DataCon]
tycon_data_cons -- No data-cons => invoke bale-out case
      then ( forall a. a -> Bag a
unitBag forall a b. (a -> b) -> a -> b
$ Int
-> SrcSpan
-> RdrName
-> (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))
-> [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkFunBindEC Int
2 SrcSpan
loc RdrName
compare_RDR (forall a b. a -> b -> a
const LHsExpr (GhcPass 'Parsed)
eqTag_Expr) []
           , forall a. Bag a
emptyBag)
      else ( forall a. a -> Bag a
unitBag (OrdOp -> LHsBind (GhcPass 'Parsed)
mkOrdOp OrdOp
OrdCompare)
             forall a. Bag a -> Bag a -> Bag a
`unionBags` Bag
  (GenLocated
     SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
other_ops
           , forall a. Bag a
aux_binds)
  where
    aux_binds :: Bag a
aux_binds = forall a. Bag a
emptyBag

        -- Note [Game plan for deriving Ord]
    other_ops :: Bag
  (GenLocated
     SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
other_ops
      | (Int
last_tag forall a. Num a => a -> a -> a
- Int
first_tag) forall a. Ord a => a -> a -> Bool
<= Int
2     -- 1-3 constructors
        Bool -> Bool -> Bool
|| forall (t :: * -> *) a. Foldable t => t a -> Bool
null [DataCon]
non_nullary_cons        -- Or it's an enumeration
      = forall a. [a] -> Bag a
listToBag [OrdOp -> LHsBind (GhcPass 'Parsed)
mkOrdOp OrdOp
OrdLT, LHsBind (GhcPass 'Parsed)
lE, LHsBind (GhcPass 'Parsed)
gT, LHsBind (GhcPass 'Parsed)
gE]
      | Bool
otherwise
      = forall a. Bag a
emptyBag

    negate_expr :: LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
negate_expr = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
not_RDR)
    lE :: LHsBind (GhcPass 'Parsed)
lE = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
le_RDR [LPat (GhcPass 'Parsed)
a_Pat, LPat (GhcPass 'Parsed)
b_Pat] forall a b. (a -> b) -> a -> b
$
        LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
negate_expr (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
lt_RDR) LHsExpr (GhcPass 'Parsed)
b_Expr) LHsExpr (GhcPass 'Parsed)
a_Expr)
    gT :: LHsBind (GhcPass 'Parsed)
gT = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
gt_RDR [LPat (GhcPass 'Parsed)
a_Pat, LPat (GhcPass 'Parsed)
b_Pat] forall a b. (a -> b) -> a -> b
$
        forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
lt_RDR) LHsExpr (GhcPass 'Parsed)
b_Expr) LHsExpr (GhcPass 'Parsed)
a_Expr
    gE :: LHsBind (GhcPass 'Parsed)
gE = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
ge_RDR [LPat (GhcPass 'Parsed)
a_Pat, LPat (GhcPass 'Parsed)
b_Pat] forall a b. (a -> b) -> a -> b
$
        LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
negate_expr (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
lt_RDR) LHsExpr (GhcPass 'Parsed)
a_Expr) LHsExpr (GhcPass 'Parsed)
b_Expr)

    get_tag :: DataCon -> Int
get_tag DataCon
con = DataCon -> Int
dataConTag DataCon
con forall a. Num a => a -> a -> a
- Int
fIRST_TAG
        -- We want *zero-based* tags, because that's what
        -- con2Tag returns (generated by untag_Expr)!

    tycon_data_cons :: [DataCon]
tycon_data_cons = TyCon -> [Type] -> [DataCon]
getPossibleDataCons TyCon
tycon [Type]
tycon_args
    single_con_type :: Bool
single_con_type = forall a. [a] -> Bool
isSingleton [DataCon]
tycon_data_cons
    (DataCon
first_con : [DataCon]
_) = [DataCon]
tycon_data_cons
    (DataCon
last_con : [DataCon]
_)  = forall a. [a] -> [a]
reverse [DataCon]
tycon_data_cons
    first_tag :: Int
first_tag       = DataCon -> Int
get_tag DataCon
first_con
    last_tag :: Int
last_tag        = DataCon -> Int
get_tag DataCon
last_con

    ([DataCon]
nullary_cons, [DataCon]
non_nullary_cons) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition DataCon -> Bool
isNullarySrcDataCon [DataCon]
tycon_data_cons


    mkOrdOp :: OrdOp -> LHsBind GhcPs
    -- Returns a binding   op a b = ... compares a and b according to op ....
    mkOrdOp :: OrdOp -> LHsBind (GhcPass 'Parsed)
mkOrdOp OrdOp
op
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc (OrdOp -> RdrName
ordMethRdr OrdOp
op) [LPat (GhcPass 'Parsed)
a_Pat, LPat (GhcPass 'Parsed)
b_Pat]
                        (OrdOp -> LHsExpr (GhcPass 'Parsed)
mkOrdOpRhs OrdOp
op)

    mkOrdOpRhs :: OrdOp -> LHsExpr GhcPs
    mkOrdOpRhs :: OrdOp -> LHsExpr (GhcPass 'Parsed)
mkOrdOpRhs OrdOp
op -- RHS for comparing 'a' and 'b' according to op
      | [DataCon]
nullary_cons forall a. [a] -> Int -> Bool
`lengthAtMost` Int
2 -- Two nullary or fewer, so use cases
      = LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
a_RDR) forall a b. (a -> b) -> a -> b
$
        forall a b. (a -> b) -> [a] -> [b]
map (OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkOrdOpAlt OrdOp
op) [DataCon]
tycon_data_cons
        -- i.e.  case a of { C1 x y -> case b of C1 x y -> ....compare x,y...
        --                   C2 x   -> case b of C2 x -> ....comopare x.... }

      | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [DataCon]
non_nullary_cons    -- All nullary, so go straight to comparing tags
      = OrdOp -> LHsExpr (GhcPass 'Parsed)
mkTagCmp OrdOp
op

      | Bool
otherwise                -- Mixed nullary and non-nullary
      = LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
a_RDR) forall a b. (a -> b) -> a -> b
$
        (forall a b. (a -> b) -> [a] -> [b]
map (OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkOrdOpAlt OrdOp
op) [DataCon]
non_nullary_cons
         forall a. [a] -> [a] -> [a]
++ [forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt LPat (GhcPass 'Parsed)
nlWildPat (OrdOp -> LHsExpr (GhcPass 'Parsed)
mkTagCmp OrdOp
op)])


    mkOrdOpAlt :: OrdOp -> DataCon
               -> LMatch GhcPs (LHsExpr GhcPs)
    -- Make the alternative  (Ki a1 a2 .. av ->
    mkOrdOpAlt :: OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkOrdOpAlt OrdOp
op DataCon
data_con
      = forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt (RdrName -> [RdrName] -> LPat (GhcPass 'Parsed)
nlConVarPat RdrName
data_con_RDR [RdrName]
as_needed)
                    (OrdOp -> DataCon -> LHsExpr (GhcPass 'Parsed)
mkInnerRhs OrdOp
op DataCon
data_con)
      where
        as_needed :: [RdrName]
as_needed    = forall a. Int -> [a] -> [a]
take (DataCon -> Int
dataConSourceArity DataCon
data_con) [RdrName]
as_RDRs
        data_con_RDR :: RdrName
data_con_RDR = forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
data_con

    mkInnerRhs :: OrdOp -> DataCon -> LHsExpr (GhcPass 'Parsed)
mkInnerRhs OrdOp
op DataCon
data_con
      | Bool
single_con_type
      = LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b_RDR) [ OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkInnerEqAlt OrdOp
op DataCon
data_con ]

      | Int
tag forall a. Eq a => a -> a -> Bool
== Int
first_tag
      = LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b_RDR) [ OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkInnerEqAlt OrdOp
op DataCon
data_con
                                 , forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt LPat (GhcPass 'Parsed)
nlWildPat (OrdOp -> LHsExpr (GhcPass 'Parsed)
ltResult OrdOp
op) ]
      | Int
tag forall a. Eq a => a -> a -> Bool
== Int
last_tag
      = LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b_RDR) [ OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkInnerEqAlt OrdOp
op DataCon
data_con
                                 , forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt LPat (GhcPass 'Parsed)
nlWildPat (OrdOp -> LHsExpr (GhcPass 'Parsed)
gtResult OrdOp
op) ]

      | Int
tag forall a. Eq a => a -> a -> Bool
== Int
first_tag forall a. Num a => a -> a -> a
+ Int
1
      = LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b_RDR) [ forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt (DataCon -> LPat (GhcPass 'Parsed)
nlConWildPat DataCon
first_con)
                                             (OrdOp -> LHsExpr (GhcPass 'Parsed)
gtResult OrdOp
op)
                                 , OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkInnerEqAlt OrdOp
op DataCon
data_con
                                 , forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt LPat (GhcPass 'Parsed)
nlWildPat (OrdOp -> LHsExpr (GhcPass 'Parsed)
ltResult OrdOp
op) ]
      | Int
tag forall a. Eq a => a -> a -> Bool
== Int
last_tag forall a. Num a => a -> a -> a
- Int
1
      = LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b_RDR) [ forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt (DataCon -> LPat (GhcPass 'Parsed)
nlConWildPat DataCon
last_con)
                                             (OrdOp -> LHsExpr (GhcPass 'Parsed)
ltResult OrdOp
op)
                                 , OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkInnerEqAlt OrdOp
op DataCon
data_con
                                 , forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt LPat (GhcPass 'Parsed)
nlWildPat (OrdOp -> LHsExpr (GhcPass 'Parsed)
gtResult OrdOp
op) ]

      | Int
tag forall a. Ord a => a -> a -> Bool
> Int
last_tag forall a. Integral a => a -> a -> a
`div` Int
2  -- lower range is larger
      = [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
b_RDR, RdrName
bh_RDR)] forall a b. (a -> b) -> a -> b
$
        LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsIf (LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genPrimOpApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
bh_RDR) RdrName
ltInt_RDR LocatedA (HsExpr (GhcPass 'Parsed))
tag_lit)
               (OrdOp -> LHsExpr (GhcPass 'Parsed)
gtResult OrdOp
op) forall a b. (a -> b) -> a -> b
$  -- Definitely GT
        LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b_RDR) [ OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkInnerEqAlt OrdOp
op DataCon
data_con
                                 , forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt LPat (GhcPass 'Parsed)
nlWildPat (OrdOp -> LHsExpr (GhcPass 'Parsed)
ltResult OrdOp
op) ]

      | Bool
otherwise               -- upper range is larger
      = [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
b_RDR, RdrName
bh_RDR)] forall a b. (a -> b) -> a -> b
$
        LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsIf (LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genPrimOpApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
bh_RDR) RdrName
gtInt_RDR LocatedA (HsExpr (GhcPass 'Parsed))
tag_lit)
               (OrdOp -> LHsExpr (GhcPass 'Parsed)
ltResult OrdOp
op) forall a b. (a -> b) -> a -> b
$  -- Definitely LT
        LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b_RDR) [ OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkInnerEqAlt OrdOp
op DataCon
data_con
                                 , forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt LPat (GhcPass 'Parsed)
nlWildPat (OrdOp -> LHsExpr (GhcPass 'Parsed)
gtResult OrdOp
op) ]
      where
        tag :: Int
tag     = DataCon -> Int
get_tag DataCon
data_con
        tag_lit :: LocatedA (HsExpr (GhcPass 'Parsed))
tag_lit
             = forall a an. a -> LocatedAn an a
noLocA (forall p. XLitE p -> HsLit p -> HsExpr p
HsLit EpAnnCO
noComments (forall x. XHsIntPrim x -> Integer -> HsLit x
HsIntPrim SourceText
NoSourceText (forall a. Integral a => a -> Integer
toInteger Int
tag)))

    mkInnerEqAlt :: OrdOp -> DataCon -> LMatch GhcPs (LHsExpr GhcPs)
    -- First argument 'a' known to be built with K
    -- Returns a case alternative  Ki b1 b2 ... bv -> compare (a1,a2,...) with (b1,b2,...)
    mkInnerEqAlt :: OrdOp
-> DataCon -> LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))
mkInnerEqAlt OrdOp
op DataCon
data_con
      = forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt (RdrName -> [RdrName] -> LPat (GhcPass 'Parsed)
nlConVarPat RdrName
data_con_RDR [RdrName]
bs_needed) forall a b. (a -> b) -> a -> b
$
        OrdOp -> [Type] -> LHsExpr (GhcPass 'Parsed)
mkCompareFields OrdOp
op (forall a b. (a -> b) -> [a] -> [b]
map forall a. Scaled a -> a
scaledThing forall a b. (a -> b) -> a -> b
$ DataCon -> [Scaled Type]
dataConOrigArgTys DataCon
data_con)
      where
        data_con_RDR :: RdrName
data_con_RDR = forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
data_con
        bs_needed :: [RdrName]
bs_needed    = forall a. Int -> [a] -> [a]
take (DataCon -> Int
dataConSourceArity DataCon
data_con) [RdrName]
bs_RDRs

    mkTagCmp :: OrdOp -> LHsExpr GhcPs
    -- Both constructors known to be nullary
    -- generates (case data2Tag a of a# -> case data2Tag b of b# -> a# `op` b#
    mkTagCmp :: OrdOp -> LHsExpr (GhcPass 'Parsed)
mkTagCmp OrdOp
op =
      [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
a_RDR, RdrName
ah_RDR),(RdrName
b_RDR, RdrName
bh_RDR)] forall a b. (a -> b) -> a -> b
$
        Type -> OrdOp -> RdrName -> RdrName -> LHsExpr (GhcPass 'Parsed)
unliftedOrdOp Type
intPrimTy OrdOp
op RdrName
ah_RDR RdrName
bh_RDR

mkCompareFields :: OrdOp -> [Type] -> LHsExpr GhcPs
-- Generates nested comparisons for (a1,a2...) against (b1,b2,...)
-- where the ai,bi have the given types
mkCompareFields :: OrdOp -> [Type] -> LHsExpr (GhcPass 'Parsed)
mkCompareFields OrdOp
op [Type]
tys
  = [Type]
-> [RdrName] -> [RdrName] -> LocatedA (HsExpr (GhcPass 'Parsed))
go [Type]
tys [RdrName]
as_RDRs [RdrName]
bs_RDRs
  where
    go :: [Type]
-> [RdrName] -> [RdrName] -> LocatedA (HsExpr (GhcPass 'Parsed))
go []   [RdrName]
_      [RdrName]
_          = OrdOp -> LHsExpr (GhcPass 'Parsed)
eqResult OrdOp
op
    go [Type
ty] (RdrName
a:[RdrName]
_)  (RdrName
b:[RdrName]
_)
      | HasDebugCallStack => Type -> Bool
isUnliftedType Type
ty     = Type -> OrdOp -> RdrName -> RdrName -> LHsExpr (GhcPass 'Parsed)
unliftedOrdOp Type
ty OrdOp
op RdrName
a RdrName
b
      | Bool
otherwise             = LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genOpApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
a) (OrdOp -> RdrName
ordMethRdr OrdOp
op) (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b)
    go (Type
ty:[Type]
tys) (RdrName
a:[RdrName]
as) (RdrName
b:[RdrName]
bs) = Type
-> RdrName
-> RdrName
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
mk_compare Type
ty RdrName
a RdrName
b
                                  (OrdOp -> LHsExpr (GhcPass 'Parsed)
ltResult OrdOp
op)
                                  ([Type]
-> [RdrName] -> [RdrName] -> LocatedA (HsExpr (GhcPass 'Parsed))
go [Type]
tys [RdrName]
as [RdrName]
bs)
                                  (OrdOp -> LHsExpr (GhcPass 'Parsed)
gtResult OrdOp
op)
    go [Type]
_ [RdrName]
_ [RdrName]
_ = forall a. String -> a
panic String
"mkCompareFields"

    -- (mk_compare ty a b) generates
    --    (case (compare a b) of { LT -> <lt>; EQ -> <eq>; GT -> <bt> })
    -- but with suitable special cases for
    mk_compare :: Type
-> IdGhcP 'Parsed
-> IdGhcP 'Parsed
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LHsExpr (GhcPass 'Parsed)
mk_compare Type
ty IdGhcP 'Parsed
a IdGhcP 'Parsed
b LocatedA (HsExpr (GhcPass 'Parsed))
lt LocatedA (HsExpr (GhcPass 'Parsed))
eq LocatedA (HsExpr (GhcPass 'Parsed))
gt
      | HasDebugCallStack => Type -> Bool
isUnliftedType Type
ty
      = RdrName
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
unliftedCompare RdrName
lt_op RdrName
eq_op LHsExpr (GhcPass 'Parsed)
a_expr LHsExpr (GhcPass 'Parsed)
b_expr LocatedA (HsExpr (GhcPass 'Parsed))
lt LocatedA (HsExpr (GhcPass 'Parsed))
eq LocatedA (HsExpr (GhcPass 'Parsed))
gt
      | Bool
otherwise
      = LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
compare_RDR) LHsExpr (GhcPass 'Parsed)
a_expr) LHsExpr (GhcPass 'Parsed)
b_expr))
          [forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt (RdrName -> LPat (GhcPass 'Parsed)
nlNullaryConPat RdrName
ltTag_RDR) LocatedA (HsExpr (GhcPass 'Parsed))
lt,
           forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt (RdrName -> LPat (GhcPass 'Parsed)
nlNullaryConPat RdrName
eqTag_RDR) LocatedA (HsExpr (GhcPass 'Parsed))
eq,
           forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt (RdrName -> LPat (GhcPass 'Parsed)
nlNullaryConPat RdrName
gtTag_RDR) LocatedA (HsExpr (GhcPass 'Parsed))
gt]
      where
        a_expr :: LHsExpr (GhcPass 'Parsed)
a_expr = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar IdGhcP 'Parsed
a
        b_expr :: LHsExpr (GhcPass 'Parsed)
b_expr = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar IdGhcP 'Parsed
b
        (RdrName
lt_op, RdrName
_, RdrName
eq_op, RdrName
_, RdrName
_) = String -> Type -> (RdrName, RdrName, RdrName, RdrName, RdrName)
primOrdOps String
"Ord" Type
ty

unliftedOrdOp :: Type -> OrdOp -> RdrName -> RdrName -> LHsExpr GhcPs
unliftedOrdOp :: Type -> OrdOp -> RdrName -> RdrName -> LHsExpr (GhcPass 'Parsed)
unliftedOrdOp Type
ty OrdOp
op RdrName
a RdrName
b
  = case OrdOp
op of
       OrdOp
OrdCompare -> RdrName
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
unliftedCompare RdrName
lt_op RdrName
eq_op LHsExpr (GhcPass 'Parsed)
a_expr LHsExpr (GhcPass 'Parsed)
b_expr
                                     LHsExpr (GhcPass 'Parsed)
ltTag_Expr LHsExpr (GhcPass 'Parsed)
eqTag_Expr LHsExpr (GhcPass 'Parsed)
gtTag_Expr
       OrdOp
OrdLT      -> RdrName -> LHsExpr (GhcPass 'Parsed)
wrap RdrName
lt_op
       OrdOp
OrdLE      -> RdrName -> LHsExpr (GhcPass 'Parsed)
wrap RdrName
le_op
       OrdOp
OrdGE      -> RdrName -> LHsExpr (GhcPass 'Parsed)
wrap RdrName
ge_op
       OrdOp
OrdGT      -> RdrName -> LHsExpr (GhcPass 'Parsed)
wrap RdrName
gt_op
  where
   (RdrName
lt_op, RdrName
le_op, RdrName
eq_op, RdrName
ge_op, RdrName
gt_op) = String -> Type -> (RdrName, RdrName, RdrName, RdrName, RdrName)
primOrdOps String
"Ord" Type
ty
   wrap :: RdrName -> LHsExpr (GhcPass 'Parsed)
wrap RdrName
prim_op = LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genPrimOpApp LHsExpr (GhcPass 'Parsed)
a_expr RdrName
prim_op LHsExpr (GhcPass 'Parsed)
b_expr
   a_expr :: LHsExpr (GhcPass 'Parsed)
a_expr = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
a
   b_expr :: LHsExpr (GhcPass 'Parsed)
b_expr = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b

unliftedCompare :: RdrName -> RdrName
                -> LHsExpr GhcPs -> LHsExpr GhcPs   -- What to compare
                -> LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
                                                    -- Three results
                -> LHsExpr GhcPs
-- Return (if a < b then lt else if a == b then eq else gt)
unliftedCompare :: RdrName
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
unliftedCompare RdrName
lt_op RdrName
eq_op LHsExpr (GhcPass 'Parsed)
a_expr LHsExpr (GhcPass 'Parsed)
b_expr LHsExpr (GhcPass 'Parsed)
lt LHsExpr (GhcPass 'Parsed)
eq LHsExpr (GhcPass 'Parsed)
gt
  = LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsIf (forall {p} {a} {an}.
(XRec (NoGhcTc p) (HsSigType (NoGhcTc p))
 ~ GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Parsed)),
 NoGhcTc p ~ GhcPass 'Parsed, XExprWithTySig p ~ EpAnn a) =>
XRec p (HsExpr p) -> LocatedAn an (HsExpr p)
ascribeBool forall a b. (a -> b) -> a -> b
$ LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genPrimOpApp LHsExpr (GhcPass 'Parsed)
a_expr RdrName
lt_op LHsExpr (GhcPass 'Parsed)
b_expr) LHsExpr (GhcPass 'Parsed)
lt forall a b. (a -> b) -> a -> b
$
                        -- Test (<) first, not (==), because the latter
                        -- is true less often, so putting it first would
                        -- mean more tests (dynamically)
        LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsIf (forall {p} {a} {an}.
(XRec (NoGhcTc p) (HsSigType (NoGhcTc p))
 ~ GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Parsed)),
 NoGhcTc p ~ GhcPass 'Parsed, XExprWithTySig p ~ EpAnn a) =>
XRec p (HsExpr p) -> LocatedAn an (HsExpr p)
ascribeBool forall a b. (a -> b) -> a -> b
$ LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genPrimOpApp LHsExpr (GhcPass 'Parsed)
a_expr RdrName
eq_op LHsExpr (GhcPass 'Parsed)
b_expr) LHsExpr (GhcPass 'Parsed)
eq LHsExpr (GhcPass 'Parsed)
gt
  where
    ascribeBool :: XRec p (HsExpr p) -> LocatedAn an (HsExpr p)
ascribeBool XRec p (HsExpr p)
e = forall a an. a -> LocatedAn an a
noLocA forall a b. (a -> b) -> a -> b
$ forall p.
XExprWithTySig p
-> LHsExpr p -> LHsSigWcType (NoGhcTc p) -> HsExpr p
ExprWithTySig forall a. EpAnn a
noAnn XRec p (HsExpr p)
e
                           forall a b. (a -> b) -> a -> b
$ forall thing. thing -> HsWildCardBndrs (GhcPass 'Parsed) thing
mkHsWildCardBndrs forall a b. (a -> b) -> a -> b
$ forall a an. a -> LocatedAn an a
noLocA forall a b. (a -> b) -> a -> b
$ LHsType (GhcPass 'Parsed) -> HsSigType (GhcPass 'Parsed)
mkHsImplicitSigType
                           forall a b. (a -> b) -> a -> b
$ forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsType (GhcPass p)
nlHsTyVar RdrName
boolTyCon_RDR

nlConWildPat :: DataCon -> LPat GhcPs
-- The pattern (K {})
nlConWildPat :: DataCon -> LPat (GhcPass 'Parsed)
nlConWildPat DataCon
con = forall a an. a -> LocatedAn an a
noLocA forall a b. (a -> b) -> a -> b
$ ConPat
  { pat_con_ext :: XConPat (GhcPass 'Parsed)
pat_con_ext = forall a. EpAnn a
noAnn
  , pat_con :: XRec (GhcPass 'Parsed) (ConLikeP (GhcPass 'Parsed))
pat_con = forall a an. a -> LocatedAn an a
noLocA forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
con
  , pat_args :: HsConPatDetails (GhcPass 'Parsed)
pat_args = forall tyarg arg rec. rec -> HsConDetails tyarg arg rec
RecCon forall a b. (a -> b) -> a -> b
$ HsRecFields
      { rec_flds :: [LHsRecField
   (GhcPass 'Parsed) (GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed)))]
rec_flds = []
      , rec_dotdot :: Maybe (Located Int)
rec_dotdot = forall a. Maybe a
Nothing }
  }

{-
************************************************************************
*                                                                      *
        Enum instances
*                                                                      *
************************************************************************

@Enum@ can only be derived for enumeration types.  For a type
\begin{verbatim}
data Foo ... = N1 | N2 | ... | Nn
\end{verbatim}

we use both dataToTag# and @tag2con_Foo@ functions, as well as a
@maxtag_Foo@ variable, the later generated by @gen_tag_n_con_binds.

\begin{verbatim}
instance ... Enum (Foo ...) where
    succ x   = toEnum (1 + fromEnum x)
    pred x   = toEnum (fromEnum x - 1)

    toEnum i = tag2con_Foo i

    enumFrom a = map tag2con_Foo [dataToTag# a .. maxtag_Foo]

    -- or, really...
    enumFrom a
      = case dataToTag# a of
          a# -> map tag2con_Foo (enumFromTo (I# a#) maxtag_Foo)

   enumFromThen a b
     = map tag2con_Foo [dataToTag# a, dataToTag# b .. maxtag_Foo]

    -- or, really...
    enumFromThen a b
      = case dataToTag# a of { a# ->
        case dataToTag# b of { b# ->
        map tag2con_Foo (enumFromThenTo (I# a#) (I# b#) maxtag_Foo)
        }}
\end{verbatim}

For @enumFromTo@ and @enumFromThenTo@, we use the default methods.
-}

gen_Enum_binds :: SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff)
gen_Enum_binds :: SrcSpan
-> TyCon
-> [Type]
-> TcM (LHsBinds (GhcPass 'Parsed), BagDerivStuff)
gen_Enum_binds SrcSpan
loc TyCon
tycon [Type]
_ = do
    -- See Note [Auxiliary binders]
    RdrName
tag2con_RDR <- SrcSpan -> TyCon -> TcM RdrName
new_tag2con_rdr_name SrcSpan
loc TyCon
tycon
    RdrName
maxtag_RDR  <- SrcSpan -> TyCon -> TcM RdrName
new_maxtag_rdr_name  SrcSpan
loc TyCon
tycon

    forall (m :: * -> *) a. Monad m => a -> m a
return ( RdrName
-> RdrName
-> Bag
     (GenLocated
        SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
method_binds RdrName
tag2con_RDR RdrName
maxtag_RDR
           , RdrName -> RdrName -> BagDerivStuff
aux_binds    RdrName
tag2con_RDR RdrName
maxtag_RDR )
  where
    method_binds :: RdrName
-> RdrName
-> Bag
     (GenLocated
        SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
method_binds RdrName
tag2con_RDR RdrName
maxtag_RDR = forall a. [a] -> Bag a
listToBag
      [ RdrName -> RdrName -> LHsBind (GhcPass 'Parsed)
succ_enum      RdrName
tag2con_RDR RdrName
maxtag_RDR
      , RdrName -> LHsBind (GhcPass 'Parsed)
pred_enum      RdrName
tag2con_RDR
      , RdrName -> RdrName -> LHsBind (GhcPass 'Parsed)
to_enum        RdrName
tag2con_RDR RdrName
maxtag_RDR
      , RdrName -> RdrName -> LHsBind (GhcPass 'Parsed)
enum_from      RdrName
tag2con_RDR RdrName
maxtag_RDR -- [0 ..]
      , RdrName -> RdrName -> LHsBind (GhcPass 'Parsed)
enum_from_then RdrName
tag2con_RDR RdrName
maxtag_RDR -- [0, 1 ..]
      , LHsBind (GhcPass 'Parsed)
from_enum
      ]
    aux_binds :: RdrName -> RdrName -> BagDerivStuff
aux_binds RdrName
tag2con_RDR RdrName
maxtag_RDR = forall a. [a] -> Bag a
listToBag forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map AuxBindSpec -> DerivStuff
DerivAuxBind
      [ TyCon -> RdrName -> AuxBindSpec
DerivTag2Con TyCon
tycon RdrName
tag2con_RDR
      , TyCon -> RdrName -> AuxBindSpec
DerivMaxTag  TyCon
tycon RdrName
maxtag_RDR
      ]

    occ_nm :: String
occ_nm = forall a. NamedThing a => a -> String
getOccString TyCon
tycon

    succ_enum :: RdrName -> RdrName -> LHsBind (GhcPass 'Parsed)
succ_enum RdrName
tag2con_RDR RdrName
maxtag_RDR
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
succ_RDR [LPat (GhcPass 'Parsed)
a_Pat] forall a b. (a -> b) -> a -> b
$
        [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
a_RDR, RdrName
ah_RDR)] forall a b. (a -> b) -> a -> b
$
        LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsIf (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
eq_RDR [forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
maxtag_RDR,
                               forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
ah_RDR]])
             (String -> String -> String -> LHsExpr (GhcPass 'Parsed)
illegal_Expr String
"succ" String
occ_nm String
"tried to take `succ' of last tag in enumeration")
             (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
tag2con_RDR)
                    (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
plus_RDR [forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
ah_RDR],
                                        forall (p :: Pass). Integer -> LHsExpr (GhcPass p)
nlHsIntLit Integer
1]))

    pred_enum :: RdrName -> LHsBind (GhcPass 'Parsed)
pred_enum RdrName
tag2con_RDR
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
pred_RDR [LPat (GhcPass 'Parsed)
a_Pat] forall a b. (a -> b) -> a -> b
$
        [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
a_RDR, RdrName
ah_RDR)] forall a b. (a -> b) -> a -> b
$
        LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsIf (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
eq_RDR [forall (p :: Pass). Integer -> LHsExpr (GhcPass p)
nlHsIntLit Integer
0,
                               forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
ah_RDR]])
             (String -> String -> String -> LHsExpr (GhcPass 'Parsed)
illegal_Expr String
"pred" String
occ_nm String
"tried to take `pred' of first tag in enumeration")
             (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
tag2con_RDR)
                      (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
plus_RDR
                            [ forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
ah_RDR]
                            , forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall x. XHsInt x -> IntegralLit -> HsLit x
HsInt NoExtField
noExtField
                                                (forall a. Integral a => a -> IntegralLit
mkIntegralLit (-Int
1 :: Int)))]))

    to_enum :: RdrName -> RdrName -> LHsBind (GhcPass 'Parsed)
to_enum RdrName
tag2con_RDR RdrName
maxtag_RDR
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
toEnum_RDR [LPat (GhcPass 'Parsed)
a_Pat] forall a b. (a -> b) -> a -> b
$
        LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsIf (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
and_RDR
                [forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
ge_RDR [forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
a_RDR, forall (p :: Pass). Integer -> LHsExpr (GhcPass p)
nlHsIntLit Integer
0],
                 forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
le_RDR [ forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
a_RDR
                                 , forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
maxtag_RDR]])
             (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
tag2con_RDR [RdrName
a_RDR])
             (String -> RdrName -> LHsExpr (GhcPass 'Parsed)
illegal_toEnum_tag String
occ_nm RdrName
maxtag_RDR)

    enum_from :: RdrName -> RdrName -> LHsBind (GhcPass 'Parsed)
enum_from RdrName
tag2con_RDR RdrName
maxtag_RDR
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
enumFrom_RDR [LPat (GhcPass 'Parsed)
a_Pat] forall a b. (a -> b) -> a -> b
$
          [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
a_RDR, RdrName
ah_RDR)] forall a b. (a -> b) -> a -> b
$
          forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
map_RDR
                [forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
tag2con_RDR,
                 forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar (LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
enum_from_to_Expr
                            (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
ah_RDR])
                            (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
maxtag_RDR))]

    enum_from_then :: RdrName -> RdrName -> LHsBind (GhcPass 'Parsed)
enum_from_then RdrName
tag2con_RDR RdrName
maxtag_RDR
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
enumFromThen_RDR [LPat (GhcPass 'Parsed)
a_Pat, LPat (GhcPass 'Parsed)
b_Pat] forall a b. (a -> b) -> a -> b
$
          [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
a_RDR, RdrName
ah_RDR), (RdrName
b_RDR, RdrName
bh_RDR)] forall a b. (a -> b) -> a -> b
$
          forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
map_RDR [RdrName
tag2con_RDR]) forall a b. (a -> b) -> a -> b
$
            forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar (LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
enum_from_then_to_Expr
                    (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
ah_RDR])
                    (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
bh_RDR])
                    (LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsIf  (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
gt_RDR [forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
ah_RDR],
                                               forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
bh_RDR]])
                           (forall (p :: Pass). Integer -> LHsExpr (GhcPass p)
nlHsIntLit Integer
0)
                           (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
maxtag_RDR)
                           ))

    from_enum :: LHsBind (GhcPass 'Parsed)
from_enum
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
fromEnum_RDR [LPat (GhcPass 'Parsed)
a_Pat] forall a b. (a -> b) -> a -> b
$
          [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
a_RDR, RdrName
ah_RDR)] forall a b. (a -> b) -> a -> b
$
          (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
ah_RDR])

{-
************************************************************************
*                                                                      *
        Bounded instances
*                                                                      *
************************************************************************
-}

gen_Bounded_binds :: SrcSpan -> TyCon -> [Type] -> (LHsBinds GhcPs, BagDerivStuff)
gen_Bounded_binds :: SrcSpan
-> TyCon -> [Type] -> (LHsBinds (GhcPass 'Parsed), BagDerivStuff)
gen_Bounded_binds SrcSpan
loc TyCon
tycon [Type]
_
  | TyCon -> Bool
isEnumerationTyCon TyCon
tycon
  = (forall a. [a] -> Bag a
listToBag [ LHsBind (GhcPass 'Parsed)
min_bound_enum, LHsBind (GhcPass 'Parsed)
max_bound_enum ], forall a. Bag a
emptyBag)
  | Bool
otherwise
  = ASSERT(isSingleton data_cons)
    (forall a. [a] -> Bag a
listToBag [ LHsBind (GhcPass 'Parsed)
min_bound_1con, LHsBind (GhcPass 'Parsed)
max_bound_1con ], forall a. Bag a
emptyBag)
  where
    data_cons :: [DataCon]
data_cons = TyCon -> [DataCon]
tyConDataCons TyCon
tycon

    ----- enum-flavored: ---------------------------
    min_bound_enum :: LHsBind (GhcPass 'Parsed)
min_bound_enum = SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
minBound_RDR (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
data_con_1_RDR)
    max_bound_enum :: LHsBind (GhcPass 'Parsed)
max_bound_enum = SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
maxBound_RDR (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
data_con_N_RDR)

    data_con_1 :: DataCon
data_con_1     = forall a. [a] -> a
head [DataCon]
data_cons
    data_con_N :: DataCon
data_con_N     = forall a. [a] -> a
last [DataCon]
data_cons
    data_con_1_RDR :: RdrName
data_con_1_RDR = forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
data_con_1
    data_con_N_RDR :: RdrName
data_con_N_RDR = forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
data_con_N

    ----- single-constructor-flavored: -------------
    arity :: Int
arity          = DataCon -> Int
dataConSourceArity DataCon
data_con_1

    min_bound_1con :: LHsBind (GhcPass 'Parsed)
min_bound_1con = SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
minBound_RDR forall a b. (a -> b) -> a -> b
$
                     forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
data_con_1_RDR (forall a. Int -> a -> [a]
replicate Int
arity RdrName
minBound_RDR)
    max_bound_1con :: LHsBind (GhcPass 'Parsed)
max_bound_1con = SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
maxBound_RDR forall a b. (a -> b) -> a -> b
$
                     forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
data_con_1_RDR (forall a. Int -> a -> [a]
replicate Int
arity RdrName
maxBound_RDR)

{-
************************************************************************
*                                                                      *
        Ix instances
*                                                                      *
************************************************************************

Deriving @Ix@ is only possible for enumeration types and
single-constructor types.  We deal with them in turn.

For an enumeration type, e.g.,
\begin{verbatim}
    data Foo ... = N1 | N2 | ... | Nn
\end{verbatim}
things go not too differently from @Enum@:
\begin{verbatim}
instance ... Ix (Foo ...) where
    range (a, b)
      = map tag2con_Foo [dataToTag# a .. dataToTag# b]

    -- or, really...
    range (a, b)
      = case (dataToTag# a) of { a# ->
        case (dataToTag# b) of { b# ->
        map tag2con_Foo (enumFromTo (I# a#) (I# b#))
        }}

    -- Generate code for unsafeIndex, because using index leads
    -- to lots of redundant range tests
    unsafeIndex c@(a, b) d
      = case (dataToTag# d -# dataToTag# a) of
               r# -> I# r#

    inRange (a, b) c
      = let
            p_tag = dataToTag# c
        in
        p_tag >= dataToTag# a && p_tag <= dataToTag# b

    -- or, really...
    inRange (a, b) c
      = case (dataToTag# a)   of { a_tag ->
        case (dataToTag# b)   of { b_tag ->
        case (dataToTag# c)   of { c_tag ->
        if (c_tag >=# a_tag) then
          c_tag <=# b_tag
        else
          False
        }}}
\end{verbatim}
(modulo suitable case-ification to handle the unlifted tags)

For a single-constructor type (NB: this includes all tuples), e.g.,
\begin{verbatim}
    data Foo ... = MkFoo a b Int Double c c
\end{verbatim}
we follow the scheme given in Figure~19 of the Haskell~1.2 report
(p.~147).
-}

gen_Ix_binds :: SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff)

gen_Ix_binds :: SrcSpan
-> TyCon
-> [Type]
-> TcM (LHsBinds (GhcPass 'Parsed), BagDerivStuff)
gen_Ix_binds SrcSpan
loc TyCon
tycon [Type]
_ = do
    -- See Note [Auxiliary binders]
    RdrName
tag2con_RDR <- SrcSpan -> TyCon -> TcM RdrName
new_tag2con_rdr_name SrcSpan
loc TyCon
tycon

    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ if TyCon -> Bool
isEnumerationTyCon TyCon
tycon
      then (RdrName
-> Bag
     (GenLocated
        SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
enum_ixes RdrName
tag2con_RDR, forall a. [a] -> Bag a
listToBag forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map AuxBindSpec -> DerivStuff
DerivAuxBind
                   [ TyCon -> RdrName -> AuxBindSpec
DerivTag2Con TyCon
tycon RdrName
tag2con_RDR
                   ])
      else (Bag
  (GenLocated
     SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
single_con_ixes, forall a. Bag a
emptyBag)
  where
    --------------------------------------------------------------
    enum_ixes :: RdrName
-> Bag
     (GenLocated
        SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
enum_ixes RdrName
tag2con_RDR = forall a. [a] -> Bag a
listToBag
      [ RdrName -> LHsBind (GhcPass 'Parsed)
enum_range   RdrName
tag2con_RDR
      , LHsBind (GhcPass 'Parsed)
enum_index
      , LHsBind (GhcPass 'Parsed)
enum_inRange
      ]

    enum_range :: RdrName -> LHsBind (GhcPass 'Parsed)
enum_range RdrName
tag2con_RDR
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
range_RDR [[LPat (GhcPass 'Parsed)] -> Boxity -> LPat (GhcPass 'Parsed)
nlTuplePat [LPat (GhcPass 'Parsed)
a_Pat, LPat (GhcPass 'Parsed)
b_Pat] Boxity
Boxed] forall a b. (a -> b) -> a -> b
$
          [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
a_RDR, RdrName
ah_RDR)] forall a b. (a -> b) -> a -> b
$
          [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
b_RDR, RdrName
bh_RDR)] forall a b. (a -> b) -> a -> b
$
          forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
map_RDR [RdrName
tag2con_RDR]) forall a b. (a -> b) -> a -> b
$
              forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar (LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
enum_from_to_Expr
                        (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
ah_RDR])
                        (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
bh_RDR]))

    enum_index :: LHsBind (GhcPass 'Parsed)
enum_index
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
unsafeIndex_RDR
                [forall a an. a -> LocatedAn an a
noLocA (forall p. XAsPat p -> LIdP p -> LPat p -> Pat p
AsPat forall a. EpAnn a
noAnn (forall a an. a -> LocatedAn an a
noLocA RdrName
c_RDR)
                           ([LPat (GhcPass 'Parsed)] -> Boxity -> LPat (GhcPass 'Parsed)
nlTuplePat [LPat (GhcPass 'Parsed)
a_Pat, LPat (GhcPass 'Parsed)
nlWildPat] Boxity
Boxed)),
                                LPat (GhcPass 'Parsed)
d_Pat] (
           [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
a_RDR, RdrName
ah_RDR)] (
           [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
d_RDR, RdrName
dh_RDR)] (
           let
                rhs :: LHsExpr (GhcPass 'Parsed)
rhs = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
intDataCon_RDR [RdrName
c_RDR]
           in
           LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase
             (LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genOpApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
dh_RDR) RdrName
minusInt_RDR (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
ah_RDR))
             [forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
c_RDR) LocatedA (HsExpr (GhcPass 'Parsed))
rhs]
           ))
        )

    -- This produces something like `(ch >= ah) && (ch <= bh)`
    enum_inRange :: LHsBind (GhcPass 'Parsed)
enum_inRange
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
inRange_RDR [[LPat (GhcPass 'Parsed)] -> Boxity -> LPat (GhcPass 'Parsed)
nlTuplePat [LPat (GhcPass 'Parsed)
a_Pat, LPat (GhcPass 'Parsed)
b_Pat] Boxity
Boxed, LPat (GhcPass 'Parsed)
c_Pat] forall a b. (a -> b) -> a -> b
$
          [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
a_RDR, RdrName
ah_RDR)] (
          [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
b_RDR, RdrName
bh_RDR)] (
          [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName
c_RDR, RdrName
ch_RDR)] (
          -- This used to use `if`, which interacts badly with RebindableSyntax.
          -- See #11396.
          forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
and_RDR
              [ LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genPrimOpApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
ch_RDR) RdrName
geInt_RDR (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
ah_RDR)
              , LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genPrimOpApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
ch_RDR) RdrName
leInt_RDR (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
bh_RDR)
              ]
          )))

    --------------------------------------------------------------
    single_con_ixes :: Bag
  (GenLocated
     SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
single_con_ixes
      = forall a. [a] -> Bag a
listToBag [LHsBind (GhcPass 'Parsed)
single_con_range, LHsBind (GhcPass 'Parsed)
single_con_index, LHsBind (GhcPass 'Parsed)
single_con_inRange]

    data_con :: DataCon
data_con
      = case TyCon -> Maybe DataCon
tyConSingleDataCon_maybe TyCon
tycon of -- just checking...
          Maybe DataCon
Nothing -> forall a. String -> a
panic String
"get_Ix_binds"
          Just DataCon
dc -> DataCon
dc

    con_arity :: Int
con_arity    = DataCon -> Int
dataConSourceArity DataCon
data_con
    data_con_RDR :: RdrName
data_con_RDR = forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
data_con

    as_needed :: [RdrName]
as_needed = forall a. Int -> [a] -> [a]
take Int
con_arity [RdrName]
as_RDRs
    bs_needed :: [RdrName]
bs_needed = forall a. Int -> [a] -> [a]
take Int
con_arity [RdrName]
bs_RDRs
    cs_needed :: [RdrName]
cs_needed = forall a. Int -> [a] -> [a]
take Int
con_arity [RdrName]
cs_RDRs

    con_pat :: [RdrName] -> LPat (GhcPass 'Parsed)
con_pat  [RdrName]
xs  = RdrName -> [RdrName] -> LPat (GhcPass 'Parsed)
nlConVarPat RdrName
data_con_RDR [RdrName]
xs
    con_expr :: LHsExpr (GhcPass 'Parsed)
con_expr     = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
data_con_RDR [RdrName]
cs_needed

    --------------------------------------------------------------
    single_con_range :: LHsBind (GhcPass 'Parsed)
single_con_range
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
range_RDR
          [[LPat (GhcPass 'Parsed)] -> Boxity -> LPat (GhcPass 'Parsed)
nlTuplePat [[RdrName] -> LPat (GhcPass 'Parsed)
con_pat [RdrName]
as_needed, [RdrName] -> LPat (GhcPass 'Parsed)
con_pat [RdrName]
bs_needed] Boxity
Boxed] forall a b. (a -> b) -> a -> b
$
        forall a an. a -> LocatedAn an a
noLocA (HsStmtContext GhcRn
-> [ExprLStmt (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> HsExpr (GhcPass 'Parsed)
mkHsComp forall p. HsStmtContext p
ListComp [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
stmts LHsExpr (GhcPass 'Parsed)
con_expr)
      where
        stmts :: [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
stmts = forall a b c d.
String -> (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
zipWith3Equal String
"single_con_range" forall {an}.
RdrName
-> RdrName
-> RdrName
-> LocatedAn
     an
     (StmtLR
        (GhcPass 'Parsed)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
mk_qual [RdrName]
as_needed [RdrName]
bs_needed [RdrName]
cs_needed

        mk_qual :: RdrName
-> RdrName
-> RdrName
-> LocatedAn
     an
     (StmtLR
        (GhcPass 'Parsed)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
mk_qual RdrName
a RdrName
b RdrName
c = forall a an. a -> LocatedAn an a
noLocA forall a b. (a -> b) -> a -> b
$ forall (bodyR :: * -> *).
EpAnn [AddEpAnn]
-> LPat (GhcPass 'Parsed)
-> LocatedA (bodyR (GhcPass 'Parsed))
-> StmtLR
     (GhcPass 'Parsed)
     (GhcPass 'Parsed)
     (LocatedA (bodyR (GhcPass 'Parsed)))
mkPsBindStmt forall a. EpAnn a
noAnn (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
c)
                                 (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
range_RDR)
                                          (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
[IdP (GhcPass p)]
-> XExplicitTuple (GhcPass p) -> LHsExpr (GhcPass p)
mkLHsVarTuple [RdrName
a,RdrName
b] forall a. EpAnn a
noAnn))

    ----------------
    single_con_index :: LHsBind (GhcPass 'Parsed)
single_con_index
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
unsafeIndex_RDR
                [[LPat (GhcPass 'Parsed)] -> Boxity -> LPat (GhcPass 'Parsed)
nlTuplePat [[RdrName] -> LPat (GhcPass 'Parsed)
con_pat [RdrName]
as_needed, [RdrName] -> LPat (GhcPass 'Parsed)
con_pat [RdrName]
bs_needed] Boxity
Boxed,
                 [RdrName] -> LPat (GhcPass 'Parsed)
con_pat [RdrName]
cs_needed]
        -- We need to reverse the order we consider the components in
        -- so that
        --     range (l,u) !! index (l,u) i == i   -- when i is in range
        -- (from http://haskell.org/onlinereport/ix.html) holds.
                ([(RdrName, RdrName, RdrName)]
-> LocatedA (HsExpr (GhcPass 'Parsed))
mk_index (forall a. [a] -> [a]
reverse forall a b. (a -> b) -> a -> b
$ forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [RdrName]
as_needed [RdrName]
bs_needed [RdrName]
cs_needed))
      where
        -- index (l1,u1) i1 + rangeSize (l1,u1) * (index (l2,u2) i2 + ...)
        mk_index :: [(RdrName, RdrName, RdrName)]
-> LocatedA (HsExpr (GhcPass 'Parsed))
mk_index []        = forall (p :: Pass). Integer -> LHsExpr (GhcPass p)
nlHsIntLit Integer
0
        mk_index [(RdrName
l,RdrName
u,RdrName
i)] = forall {p :: Pass} {a}.
(IdGhcP p ~ RdrName, XExplicitTuple (GhcPass p) ~ EpAnn a,
 Anno (IdGhcP p) ~ SrcSpanAnn' (EpAnn NameAnn), IsPass p) =>
RdrName
-> RdrName
-> RdrName
-> GenLocated SrcSpanAnnA (HsExpr (GhcPass p))
mk_one RdrName
l RdrName
u RdrName
i
        mk_index ((RdrName
l,RdrName
u,RdrName
i) : [(RdrName, RdrName, RdrName)]
rest)
          = LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genOpApp (
                forall {p :: Pass} {a}.
(IdGhcP p ~ RdrName, XExplicitTuple (GhcPass p) ~ EpAnn a,
 Anno (IdGhcP p) ~ SrcSpanAnn' (EpAnn NameAnn), IsPass p) =>
RdrName
-> RdrName
-> RdrName
-> GenLocated SrcSpanAnnA (HsExpr (GhcPass p))
mk_one RdrName
l RdrName
u RdrName
i
            ) RdrName
plus_RDR (
                LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genOpApp (
                    (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
unsafeRangeSize_RDR)
                             (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
[IdP (GhcPass p)]
-> XExplicitTuple (GhcPass p) -> LHsExpr (GhcPass p)
mkLHsVarTuple [RdrName
l,RdrName
u] forall a. EpAnn a
noAnn))
                ) RdrName
times_RDR ([(RdrName, RdrName, RdrName)]
-> LocatedA (HsExpr (GhcPass 'Parsed))
mk_index [(RdrName, RdrName, RdrName)]
rest)
           )
        mk_one :: RdrName -> RdrName -> RdrName -> LHsExpr (GhcPass p)
mk_one RdrName
l RdrName
u RdrName
i
          = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
unsafeIndex_RDR [forall (p :: Pass) a.
IsSrcSpanAnn p a =>
[IdP (GhcPass p)]
-> XExplicitTuple (GhcPass p) -> LHsExpr (GhcPass p)
mkLHsVarTuple [RdrName
l,RdrName
u] forall a. EpAnn a
noAnn, forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
i]

    ------------------
    single_con_inRange :: LHsBind (GhcPass 'Parsed)
single_con_inRange
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
inRange_RDR
                [[LPat (GhcPass 'Parsed)] -> Boxity -> LPat (GhcPass 'Parsed)
nlTuplePat [[RdrName] -> LPat (GhcPass 'Parsed)
con_pat [RdrName]
as_needed, [RdrName] -> LPat (GhcPass 'Parsed)
con_pat [RdrName]
bs_needed] Boxity
Boxed,
                 [RdrName] -> LPat (GhcPass 'Parsed)
con_pat [RdrName]
cs_needed] forall a b. (a -> b) -> a -> b
$
          if Int
con_arity forall a. Eq a => a -> a -> Bool
== Int
0
             -- If the product type has no fields, inRange is trivially true
             -- (see #12853).
             then LHsExpr (GhcPass 'Parsed)
true_Expr
             else forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldl1 LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
and_Expr (forall a b c d.
String -> (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
zipWith3Equal String
"single_con_inRange" forall {p :: Pass} {a}.
(IdGhcP p ~ RdrName, XExplicitTuple (GhcPass p) ~ EpAnn a,
 Anno (IdGhcP p) ~ SrcSpanAnn' (EpAnn NameAnn), IsPass p) =>
RdrName
-> RdrName
-> RdrName
-> GenLocated SrcSpanAnnA (HsExpr (GhcPass p))
in_range
                    [RdrName]
as_needed [RdrName]
bs_needed [RdrName]
cs_needed)
      where
        in_range :: RdrName -> RdrName -> RdrName -> LHsExpr (GhcPass p)
in_range RdrName
a RdrName
b RdrName
c
          = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
inRange_RDR [forall (p :: Pass) a.
IsSrcSpanAnn p a =>
[IdP (GhcPass p)]
-> XExplicitTuple (GhcPass p) -> LHsExpr (GhcPass p)
mkLHsVarTuple [RdrName
a,RdrName
b] forall a. EpAnn a
noAnn, forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
c]

{-
************************************************************************
*                                                                      *
        Read instances
*                                                                      *
************************************************************************

Example

  infix 4 %%
  data T = Int %% Int
         | T1 { f1 :: Int }
         | T2 T

instance Read T where
  readPrec =
    parens
    ( prec 4 (
        do x <- ReadP.step Read.readPrec
           expectP (Symbol "%%")
           y <- ReadP.step Read.readPrec
           return (x %% y))
      +++
      prec (appPrec+1) (
        -- Note the "+1" part; "T2 T1 {f1=3}" should parse ok
        -- Record construction binds even more tightly than application
        do expectP (Ident "T1")
           expectP (Punc '{')
           x          <- Read.readField "f1" (ReadP.reset readPrec)
           expectP (Punc '}')
           return (T1 { f1 = x }))
      +++
      prec appPrec (
        do expectP (Ident "T2")
           x <- ReadP.step Read.readPrec
           return (T2 x))
    )

  readListPrec = readListPrecDefault
  readList     = readListDefault


Note [Use expectP]
~~~~~~~~~~~~~~~~~~
Note that we use
   expectP (Ident "T1")
rather than
   Ident "T1" <- lexP
The latter desugares to inline code for matching the Ident and the
string, and this can be very voluminous. The former is much more
compact.  Cf #7258, although that also concerned non-linearity in
the occurrence analyser, a separate issue.

Note [Read for empty data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What should we get for this?  (#7931)
   data Emp deriving( Read )   -- No data constructors

Here we want
  read "[]" :: [Emp]   to succeed, returning []
So we do NOT want
   instance Read Emp where
     readPrec = error "urk"
Rather we want
   instance Read Emp where
     readPred = pfail   -- Same as choose []

Because 'pfail' allows the parser to backtrack, but 'error' doesn't.
These instances are also useful for Read (Either Int Emp), where
we want to be able to parse (Left 3) just fine.
-}

gen_Read_binds :: (Name -> Fixity) -> SrcSpan -> TyCon -> [Type]
               -> (LHsBinds GhcPs, BagDerivStuff)

gen_Read_binds :: (Name -> Fixity)
-> SrcSpan
-> TyCon
-> [Type]
-> (LHsBinds (GhcPass 'Parsed), BagDerivStuff)
gen_Read_binds Name -> Fixity
get_fixity SrcSpan
loc TyCon
tycon [Type]
_
  = (forall a. [a] -> Bag a
listToBag [LHsBind (GhcPass 'Parsed)
read_prec, LHsBind (GhcPass 'Parsed)
default_readlist, LHsBind (GhcPass 'Parsed)
default_readlistprec], forall a. Bag a
emptyBag)
  where
    -----------------------------------------------------------------------
    default_readlist :: LHsBind (GhcPass 'Parsed)
default_readlist
        = SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
readList_RDR     (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
readListDefault_RDR)

    default_readlistprec :: LHsBind (GhcPass 'Parsed)
default_readlistprec
        = SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
readListPrec_RDR (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
readListPrecDefault_RDR)
    -----------------------------------------------------------------------

    data_cons :: [DataCon]
data_cons = TyCon -> [DataCon]
tyConDataCons TyCon
tycon
    ([DataCon]
nullary_cons, [DataCon]
non_nullary_cons) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition DataCon -> Bool
isNullarySrcDataCon [DataCon]
data_cons

    read_prec :: LHsBind (GhcPass 'Parsed)
read_prec = SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
readPrec_RDR LHsExpr (GhcPass 'Parsed)
rhs
      where
        rhs :: LHsExpr (GhcPass 'Parsed)
rhs | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [DataCon]
data_cons -- See Note [Read for empty data types]
            = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
pfail_RDR
            | Bool
otherwise
            = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
parens_RDR)
                      (forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
mk_alt ([LocatedA (HsExpr (GhcPass 'Parsed))]
read_nullary_cons forall a. [a] -> [a] -> [a]
++
                                      [LocatedA (HsExpr (GhcPass 'Parsed))]
read_non_nullary_cons))

    read_non_nullary_cons :: [LocatedA (HsExpr (GhcPass 'Parsed))]
read_non_nullary_cons = forall a b. (a -> b) -> [a] -> [b]
map DataCon -> LocatedA (HsExpr (GhcPass 'Parsed))
read_non_nullary_con [DataCon]
non_nullary_cons

    read_nullary_cons :: [LocatedA (HsExpr (GhcPass 'Parsed))]
read_nullary_cons
      = case [DataCon]
nullary_cons of
            []    -> []
            [DataCon
con] -> [HsStmtContext GhcRn
-> [ExprLStmt (GhcPass 'Parsed)] -> LHsExpr (GhcPass 'Parsed)
nlHsDo (forall p. Maybe ModuleName -> HsStmtContext p
DoExpr forall a. Maybe a
Nothing) (forall {a} {an} {idL :: Pass}.
NamedThing a =>
a
-> [LocatedAn
      an
      (StmtLR
         (GhcPass idL)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
match_con DataCon
con forall a. [a] -> [a] -> [a]
++ [forall a an. a -> LocatedAn an a
noLocA forall a b. (a -> b) -> a -> b
$ forall (idR :: Pass) (bodyR :: * -> *) (idL :: Pass).
IsPass idR =>
LocatedA (bodyR (GhcPass idR))
-> StmtLR
     (GhcPass idL) (GhcPass idR) (LocatedA (bodyR (GhcPass idR)))
mkLastStmt (forall {id :: Pass} {thing}.
(Anno (IdGhcP id) ~ SrcSpanAnn' (EpAnn NameAnn),
 IdGhcP id ~ RdrName, NamedThing thing, IsPass id) =>
thing
-> [IdGhcP id] -> GenLocated SrcSpanAnnA (HsExpr (GhcPass id))
result_expr DataCon
con [])])]
            [DataCon]
_     -> [forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
choose_RDR)
                              ([LHsExpr (GhcPass 'Parsed)] -> LHsExpr (GhcPass 'Parsed)
nlList (forall a b. (a -> b) -> [a] -> [b]
map forall {p :: Pass} {a} {thing}.
(Anno (IdGhcP p) ~ SrcSpanAnn' (EpAnn NameAnn), IdGhcP p ~ RdrName,
 XExplicitTuple (GhcPass p) ~ EpAnn a, NamedThing thing,
 IsPass p) =>
thing -> GenLocated SrcSpanAnnA (HsExpr (GhcPass p))
mk_pair [DataCon]
nullary_cons))]
        -- NB For operators the parens around (:=:) are matched by the
        -- enclosing "parens" call, so here we must match the naked
        -- data_con_str con

    match_con :: a
-> [LocatedAn
      an
      (StmtLR
         (GhcPass idL)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
match_con a
con | String -> Bool
isSym String
con_str = [forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
symbol_pat String
con_str]
                  | Bool
otherwise     = forall {an} {idL :: Pass}.
String
-> [LocatedAn
      an
      (StmtLR
         (GhcPass idL)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
ident_h_pat  String
con_str
                  where
                    con_str :: String
con_str = forall a. NamedThing a => a -> String
data_con_str a
con
        -- For nullary constructors we must match Ident s for normal constrs
        -- and   Symbol s   for operators

    mk_pair :: thing -> LHsExpr (GhcPass p)
mk_pair thing
con = forall (p :: Pass).
[LHsExpr (GhcPass p)]
-> XExplicitTuple (GhcPass p) -> LHsExpr (GhcPass p)
mkLHsTupleExpr [forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString (forall a. NamedThing a => a -> String
data_con_str thing
con)),
                                  forall {id :: Pass} {thing}.
(Anno (IdGhcP id) ~ SrcSpanAnn' (EpAnn NameAnn),
 IdGhcP id ~ RdrName, NamedThing thing, IsPass id) =>
thing
-> [IdGhcP id] -> GenLocated SrcSpanAnnA (HsExpr (GhcPass id))
result_expr thing
con []] forall a. EpAnn a
noAnn

    read_non_nullary_con :: DataCon -> LocatedA (HsExpr (GhcPass 'Parsed))
read_non_nullary_con DataCon
data_con
      | Bool
is_infix  = Integer
-> [LocatedAn
      AnnListItem
      (StmtLR
         (GhcPass 'Parsed)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
mk_parser Integer
infix_prec  [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
infix_stmts  LocatedA (HsExpr (GhcPass 'Parsed))
body
      | Bool
is_record = Integer
-> [LocatedAn
      AnnListItem
      (StmtLR
         (GhcPass 'Parsed)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
mk_parser Integer
record_prec [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
record_stmts LocatedA (HsExpr (GhcPass 'Parsed))
body
--              Using these two lines instead allows the derived
--              read for infix and record bindings to read the prefix form
--      | is_infix  = mk_alt prefix_parser (mk_parser infix_prec  infix_stmts  body)
--      | is_record = mk_alt prefix_parser (mk_parser record_prec record_stmts body)
      | Bool
otherwise = LocatedA (HsExpr (GhcPass 'Parsed))
prefix_parser
      where
        body :: LocatedA (HsExpr (GhcPass 'Parsed))
body = forall {id :: Pass} {thing}.
(Anno (IdGhcP id) ~ SrcSpanAnn' (EpAnn NameAnn),
 IdGhcP id ~ RdrName, NamedThing thing, IsPass id) =>
thing
-> [IdGhcP id] -> GenLocated SrcSpanAnnA (HsExpr (GhcPass id))
result_expr DataCon
data_con [RdrName]
as_needed
        con_str :: String
con_str = forall a. NamedThing a => a -> String
data_con_str DataCon
data_con

        prefix_parser :: LocatedA (HsExpr (GhcPass 'Parsed))
prefix_parser = Integer
-> [LocatedAn
      AnnListItem
      (StmtLR
         (GhcPass 'Parsed)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed))
mk_parser Integer
prefix_prec [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
prefix_stmts LocatedA (HsExpr (GhcPass 'Parsed))
body

        read_prefix_con :: [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
read_prefix_con
            | String -> Bool
isSym String
con_str = [forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
read_punc String
"(", forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
symbol_pat String
con_str, forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
read_punc String
")"]
            | Bool
otherwise     = forall {an} {idL :: Pass}.
String
-> [LocatedAn
      an
      (StmtLR
         (GhcPass idL)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
ident_h_pat String
con_str

        read_infix_con :: [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
read_infix_con
            | String -> Bool
isSym String
con_str = [forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
symbol_pat String
con_str]
            | Bool
otherwise     = [forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
read_punc String
"`"] forall a. [a] -> [a] -> [a]
++ forall {an} {idL :: Pass}.
String
-> [LocatedAn
      an
      (StmtLR
         (GhcPass idL)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
ident_h_pat String
con_str forall a. [a] -> [a] -> [a]
++ [forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
read_punc String
"`"]

        prefix_stmts :: [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
prefix_stmts            -- T a b c
          = [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
read_prefix_con forall a. [a] -> [a] -> [a]
++ [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
read_args

        infix_stmts :: [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
infix_stmts             -- a %% b, or  a `T` b
          = [LocatedAn
  AnnListItem
  (StmtLR
     (GhcPass 'Parsed)
     (GhcPass 'Parsed)
     (LocatedA (HsExpr (GhcPass 'Parsed))))
read_a1]
            forall a. [a] -> [a] -> [a]
++ [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
read_infix_con
            forall a. [a] -> [a] -> [a]
++ [LocatedAn
  AnnListItem
  (StmtLR
     (GhcPass 'Parsed)
     (GhcPass 'Parsed)
     (LocatedA (HsExpr (GhcPass 'Parsed))))
read_a2]

        record_stmts :: [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
record_stmts            -- T { f1 = a, f2 = b }
          = [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
read_prefix_con
            forall a. [a] -> [a] -> [a]
++ [forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
read_punc String
"{"]
            forall a. [a] -> [a] -> [a]
++ forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat (forall a. a -> [a] -> [a]
intersperse [forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
read_punc String
","] [[LocatedAn
    AnnListItem
    (StmtLR
       (GhcPass 'Parsed)
       (GhcPass 'Parsed)
       (LocatedA (HsExpr (GhcPass 'Parsed))))]]
field_stmts)
            forall a. [a] -> [a] -> [a]
++ [forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
read_punc String
"}"]

        field_stmts :: [[LocatedAn
    AnnListItem
    (StmtLR
       (GhcPass 'Parsed)
       (GhcPass 'Parsed)
       (LocatedA (HsExpr (GhcPass 'Parsed))))]]
field_stmts  = forall a b c. String -> (a -> b -> c) -> [a] -> [b] -> [c]
zipWithEqual String
"lbl_stmts" forall {an}.
FastString
-> RdrName
-> [LocatedAn
      an
      (StmtLR
         (GhcPass 'Parsed)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
read_field [FastString]
labels [RdrName]
as_needed

        con_arity :: Int
con_arity    = DataCon -> Int
dataConSourceArity DataCon
data_con
        labels :: [FastString]
labels       = forall a b. (a -> b) -> [a] -> [b]
map FieldLabel -> FastString
flLabel forall a b. (a -> b) -> a -> b
$ DataCon -> [FieldLabel]
dataConFieldLabels DataCon
data_con
        dc_nm :: Name
dc_nm        = forall a. NamedThing a => a -> Name
getName DataCon
data_con
        is_infix :: Bool
is_infix     = DataCon -> Bool
dataConIsInfix DataCon
data_con
        is_record :: Bool
is_record    = [FastString]
labels forall a. [a] -> Int -> Bool
`lengthExceeds` Int
0
        as_needed :: [RdrName]
as_needed    = forall a. Int -> [a] -> [a]
take Int
con_arity [RdrName]
as_RDRs
        read_args :: [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
read_args    = forall a b c. String -> (a -> b -> c) -> [a] -> [b] -> [c]
zipWithEqual String
"gen_Read_binds" forall {an}.
RdrName
-> Type
-> LocatedAn
     an
     (StmtLR
        (GhcPass 'Parsed)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
read_arg [RdrName]
as_needed (forall a b. (a -> b) -> [a] -> [b]
map forall a. Scaled a -> a
scaledThing forall a b. (a -> b) -> a -> b
$ DataCon -> [Scaled Type]
dataConOrigArgTys DataCon
data_con)
        (LocatedAn
  AnnListItem
  (StmtLR
     (GhcPass 'Parsed)
     (GhcPass 'Parsed)
     (LocatedA (HsExpr (GhcPass 'Parsed))))
read_a1:LocatedAn
  AnnListItem
  (StmtLR
     (GhcPass 'Parsed)
     (GhcPass 'Parsed)
     (LocatedA (HsExpr (GhcPass 'Parsed))))
read_a2:[LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
_) = [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
read_args

        prefix_prec :: Integer
prefix_prec = Integer
appPrecedence
        infix_prec :: Integer
infix_prec  = (Name -> Fixity) -> Name -> Integer
getPrecedence Name -> Fixity
get_fixity Name
dc_nm
        record_prec :: Integer
record_prec = Integer
appPrecedence forall a. Num a => a -> a -> a
+ Integer
1 -- Record construction binds even more tightly
                                        -- than application; e.g. T2 T1 {x=2} means T2 (T1 {x=2})

    ------------------------------------------------------------------------
    --          Helpers
    ------------------------------------------------------------------------
    mk_alt :: LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedA (HsExpr (GhcPass 'Parsed)) -> LHsExpr (GhcPass 'Parsed)
mk_alt LocatedA (HsExpr (GhcPass 'Parsed))
e1 LocatedA (HsExpr (GhcPass 'Parsed))
e2       = LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genOpApp LocatedA (HsExpr (GhcPass 'Parsed))
e1 RdrName
alt_RDR LocatedA (HsExpr (GhcPass 'Parsed))
e2                         -- e1 +++ e2
    mk_parser :: Integer
-> [LocatedAn
      AnnListItem
      (StmtLR
         (GhcPass 'Parsed)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> LHsExpr (GhcPass 'Parsed)
mk_parser Integer
p [LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
ss LocatedA (HsExpr (GhcPass 'Parsed))
b   = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
prec_RDR [forall (p :: Pass). Integer -> LHsExpr (GhcPass p)
nlHsIntLit Integer
p                -- prec p (do { ss ; b })
                                           , HsStmtContext GhcRn
-> [ExprLStmt (GhcPass 'Parsed)] -> LHsExpr (GhcPass 'Parsed)
nlHsDo (forall p. Maybe ModuleName -> HsStmtContext p
DoExpr forall a. Maybe a
Nothing) ([LocatedAn
   AnnListItem
   (StmtLR
      (GhcPass 'Parsed)
      (GhcPass 'Parsed)
      (LocatedA (HsExpr (GhcPass 'Parsed))))]
ss forall a. [a] -> [a] -> [a]
++ [forall a an. a -> LocatedAn an a
noLocA forall a b. (a -> b) -> a -> b
$ forall (idR :: Pass) (bodyR :: * -> *) (idL :: Pass).
IsPass idR =>
LocatedA (bodyR (GhcPass idR))
-> StmtLR
     (GhcPass idL) (GhcPass idR) (LocatedA (bodyR (GhcPass idR)))
mkLastStmt LocatedA (HsExpr (GhcPass 'Parsed))
b])]
    con_app :: thing -> [IdGhcP p] -> LHsExpr (GhcPass p)
con_app thing
con [IdGhcP p]
as     = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps (forall thing. NamedThing thing => thing -> RdrName
getRdrName thing
con) [IdGhcP p]
as                -- con as
    result_expr :: thing -> [IdGhcP id] -> LHsExpr (GhcPass id)
result_expr thing
con [IdGhcP id]
as = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
returnM_RDR) (forall {id :: Pass} {thing}.
(Anno (IdGhcP id) ~ SrcSpanAnn' (EpAnn NameAnn),
 IdGhcP id ~ RdrName, NamedThing thing, IsPass id) =>
thing
-> [IdGhcP id] -> GenLocated SrcSpanAnnA (HsExpr (GhcPass id))
con_app thing
con [IdGhcP id]
as) -- return (con as)

    -- For constructors and field labels ending in '#', we hackily
    -- let the lexer generate two tokens, and look for both in sequence
    -- Thus [Ident "I"; Symbol "#"].  See #5041
    ident_h_pat :: String
-> [LocatedAn
      an
      (StmtLR
         (GhcPass idL)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
ident_h_pat String
s | Just (String
ss, Char
'#') <- forall a. [a] -> Maybe ([a], a)
snocView String
s = [ forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
ident_pat String
ss, forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
symbol_pat String
"#" ]
                  | Bool
otherwise                    = [ forall {an} {idL :: Pass}.
String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
ident_pat String
s ]

    bindLex :: LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
bindLex LocatedA (HsExpr (GhcPass 'Parsed))
pat  = forall a an. a -> LocatedAn an a
noLocA (forall (bodyR :: * -> *) (idL :: Pass).
LocatedA (bodyR (GhcPass 'Parsed))
-> StmtLR
     (GhcPass idL)
     (GhcPass 'Parsed)
     (LocatedA (bodyR (GhcPass 'Parsed)))
mkBodyStmt (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
expectP_RDR) LocatedA (HsExpr (GhcPass 'Parsed))
pat)) -- expectP p
                   -- See Note [Use expectP]
    ident_pat :: String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
ident_pat  String
s = forall {an} {idL :: Pass}.
LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
bindLex forall a b. (a -> b) -> a -> b
$ forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
ident_RDR  [forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString String
s)]  -- expectP (Ident "foo")
    symbol_pat :: String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
symbol_pat String
s = forall {an} {idL :: Pass}.
LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
bindLex forall a b. (a -> b) -> a -> b
$ forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
symbol_RDR [forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString String
s)]  -- expectP (Symbol ">>")
    read_punc :: String
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
read_punc String
c  = forall {an} {idL :: Pass}.
LocatedA (HsExpr (GhcPass 'Parsed))
-> LocatedAn
     an
     (StmtLR
        (GhcPass idL)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
bindLex forall a b. (a -> b) -> a -> b
$ forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
punc_RDR   [forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString String
c)]  -- expectP (Punc "<")

    data_con_str :: a -> String
data_con_str a
con = OccName -> String
occNameString (forall a. NamedThing a => a -> OccName
getOccName a
con)

    read_arg :: RdrName
-> Type
-> LocatedAn
     an
     (StmtLR
        (GhcPass 'Parsed)
        (GhcPass 'Parsed)
        (LocatedA (HsExpr (GhcPass 'Parsed))))
read_arg RdrName
a Type
ty = ASSERT( not (isUnliftedType ty) )
                    forall a an. a -> LocatedAn an a
noLocA (forall (bodyR :: * -> *).
EpAnn [AddEpAnn]
-> LPat (GhcPass 'Parsed)
-> LocatedA (bodyR (GhcPass 'Parsed))
-> StmtLR
     (GhcPass 'Parsed)
     (GhcPass 'Parsed)
     (LocatedA (bodyR (GhcPass 'Parsed)))
mkPsBindStmt forall a. EpAnn a
noAnn (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
a) (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
step_RDR [RdrName
readPrec_RDR]))

    -- When reading field labels we might encounter
    --      a  = 3
    --      _a = 3
    -- or   (#) = 4
    -- Note the parens!
    read_field :: FastString
-> RdrName
-> [LocatedAn
      an
      (StmtLR
         (GhcPass 'Parsed)
         (GhcPass 'Parsed)
         (LocatedA (HsExpr (GhcPass 'Parsed))))]
read_field FastString
lbl RdrName
a =
        [forall a an. a -> LocatedAn an a
noLocA
          (forall (bodyR :: * -> *).
EpAnn [AddEpAnn]
-> LPat (GhcPass 'Parsed)
-> LocatedA (bodyR (GhcPass 'Parsed))
-> StmtLR
     (GhcPass 'Parsed)
     (GhcPass 'Parsed)
     (LocatedA (bodyR (GhcPass 'Parsed)))
mkPsBindStmt forall a. EpAnn a
noAnn
            (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
a)
            (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp
              LocatedA (HsExpr (GhcPass 'Parsed))
read_field
              (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
reset_RDR [RdrName
readPrec_RDR])
            )
          )
        ]
        where
          lbl_str :: String
lbl_str = FastString -> String
unpackFS FastString
lbl
          mk_read_field :: IdGhcP p -> String -> LHsExpr (GhcPass p)
mk_read_field IdGhcP p
read_field_rdr String
lbl
              = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps IdGhcP p
read_field_rdr [forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString String
lbl)]
          read_field :: LocatedA (HsExpr (GhcPass 'Parsed))
read_field
              | String -> Bool
isSym String
lbl_str
              = forall {p :: Pass} {a}.
(Anno (IdGhcP p) ~ SrcSpanAnn' (EpAnn a), IsPass p) =>
IdGhcP p -> String -> GenLocated SrcSpanAnnA (HsExpr (GhcPass p))
mk_read_field RdrName
readSymField_RDR String
lbl_str
              | Just (String
ss, Char
'#') <- forall a. [a] -> Maybe ([a], a)
snocView String
lbl_str -- #14918
              = forall {p :: Pass} {a}.
(Anno (IdGhcP p) ~ SrcSpanAnn' (EpAnn a), IsPass p) =>
IdGhcP p -> String -> GenLocated SrcSpanAnnA (HsExpr (GhcPass p))
mk_read_field RdrName
readFieldHash_RDR String
ss
              | Bool
otherwise
              = forall {p :: Pass} {a}.
(Anno (IdGhcP p) ~ SrcSpanAnn' (EpAnn a), IsPass p) =>
IdGhcP p -> String -> GenLocated SrcSpanAnnA (HsExpr (GhcPass p))
mk_read_field RdrName
readField_RDR String
lbl_str

{-
************************************************************************
*                                                                      *
        Show instances
*                                                                      *
************************************************************************

Example

    infixr 5 :^:

    data Tree a =  Leaf a  |  Tree a :^: Tree a

    instance (Show a) => Show (Tree a) where

        showsPrec d (Leaf m) = showParen (d > app_prec) showStr
          where
             showStr = showString "Leaf " . showsPrec (app_prec+1) m

        showsPrec d (u :^: v) = showParen (d > up_prec) showStr
          where
             showStr = showsPrec (up_prec+1) u .
                       showString " :^: "      .
                       showsPrec (up_prec+1) v
                -- Note: right-associativity of :^: ignored

    up_prec  = 5    -- Precedence of :^:
    app_prec = 10   -- Application has precedence one more than
                    -- the most tightly-binding operator
-}

gen_Show_binds :: (Name -> Fixity) -> SrcSpan -> TyCon -> [Type]
               -> (LHsBinds GhcPs, BagDerivStuff)

gen_Show_binds :: (Name -> Fixity)
-> SrcSpan
-> TyCon
-> [Type]
-> (LHsBinds (GhcPass 'Parsed), BagDerivStuff)
gen_Show_binds Name -> Fixity
get_fixity SrcSpan
loc TyCon
tycon [Type]
tycon_args
  = (forall a. a -> Bag a
unitBag LHsBind (GhcPass 'Parsed)
shows_prec, forall a. Bag a
emptyBag)
  where
    data_cons :: [DataCon]
data_cons = TyCon -> [Type] -> [DataCon]
getPossibleDataCons TyCon
tycon [Type]
tycon_args
    shows_prec :: LHsBind (GhcPass 'Parsed)
shows_prec = Int
-> SrcSpan
-> RdrName
-> (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))
-> [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkFunBindEC Int
2 SrcSpan
loc RdrName
showsPrec_RDR forall a. a -> a
id (forall a b. (a -> b) -> [a] -> [b]
map DataCon
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    LocatedA (HsExpr (GhcPass 'Parsed)))
pats_etc [DataCon]
data_cons)
    comma_space :: LHsExpr (GhcPass 'Parsed)
comma_space = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
showCommaSpace_RDR

    pats_etc :: DataCon
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    LocatedA (HsExpr (GhcPass 'Parsed)))
pats_etc DataCon
data_con
      | Bool
nullary_con =  -- skip the showParen junk...
         ASSERT(null bs_needed)
         ([LPat (GhcPass 'Parsed)
nlWildPat, LPat (GhcPass 'Parsed)
con_pat], String -> LHsExpr (GhcPass 'Parsed)
mk_showString_app String
op_con_str)
      | Bool
otherwise   =
         ([LPat (GhcPass 'Parsed)
a_Pat, LPat (GhcPass 'Parsed)
con_pat],
          LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
showParen_Expr (LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genOpApp LHsExpr (GhcPass 'Parsed)
a_Expr RdrName
ge_RDR (forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit
                         (forall x. XHsInt x -> IntegralLit -> HsLit x
HsInt NoExtField
noExtField (forall a. Integral a => a -> IntegralLit
mkIntegralLit Integer
con_prec_plus_one))))
                         (forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar ([LHsExpr (GhcPass 'Parsed)] -> LHsExpr (GhcPass 'Parsed)
nested_compose_Expr [LocatedA (HsExpr (GhcPass 'Parsed))]
show_thingies)))
        where
             data_con_RDR :: RdrName
data_con_RDR  = forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
data_con
             con_arity :: Int
con_arity     = DataCon -> Int
dataConSourceArity DataCon
data_con
             bs_needed :: [RdrName]
bs_needed     = forall a. Int -> [a] -> [a]
take Int
con_arity [RdrName]
bs_RDRs
             arg_tys :: [Scaled Type]
arg_tys       = DataCon -> [Scaled Type]
dataConOrigArgTys DataCon
data_con         -- Correspond 1-1 with bs_needed
             con_pat :: LPat (GhcPass 'Parsed)
con_pat       = RdrName -> [RdrName] -> LPat (GhcPass 'Parsed)
nlConVarPat RdrName
data_con_RDR [RdrName]
bs_needed
             nullary_con :: Bool
nullary_con   = Int
con_arity forall a. Eq a => a -> a -> Bool
== Int
0
             labels :: [FastString]
labels        = forall a b. (a -> b) -> [a] -> [b]
map FieldLabel -> FastString
flLabel forall a b. (a -> b) -> a -> b
$ DataCon -> [FieldLabel]
dataConFieldLabels DataCon
data_con
             lab_fields :: Int
lab_fields    = forall (t :: * -> *) a. Foldable t => t a -> Int
length [FastString]
labels
             record_syntax :: Bool
record_syntax = Int
lab_fields forall a. Ord a => a -> a -> Bool
> Int
0

             dc_nm :: Name
dc_nm          = forall a. NamedThing a => a -> Name
getName DataCon
data_con
             dc_occ_nm :: OccName
dc_occ_nm      = forall a. NamedThing a => a -> OccName
getOccName DataCon
data_con
             con_str :: String
con_str        = OccName -> String
occNameString OccName
dc_occ_nm
             op_con_str :: String
op_con_str     = String -> String
wrapOpParens String
con_str
             backquote_str :: String
backquote_str  = String -> String
wrapOpBackquotes String
con_str

             show_thingies :: [LocatedA (HsExpr (GhcPass 'Parsed))]
show_thingies
                | Bool
is_infix      = [LocatedA (HsExpr (GhcPass 'Parsed))
show_arg1, String -> LHsExpr (GhcPass 'Parsed)
mk_showString_app (String
" " forall a. [a] -> [a] -> [a]
++ String
backquote_str forall a. [a] -> [a] -> [a]
++ String
" "), LocatedA (HsExpr (GhcPass 'Parsed))
show_arg2]
                | Bool
record_syntax = String -> LHsExpr (GhcPass 'Parsed)
mk_showString_app (String
op_con_str forall a. [a] -> [a] -> [a]
++ String
" {") forall a. a -> [a] -> [a]
:
                                  [LocatedA (HsExpr (GhcPass 'Parsed))]
show_record_args forall a. [a] -> [a] -> [a]
++ [String -> LHsExpr (GhcPass 'Parsed)
mk_showString_app String
"}"]
                | Bool
otherwise     = String -> LHsExpr (GhcPass 'Parsed)
mk_showString_app (String
op_con_str forall a. [a] -> [a] -> [a]
++ String
" ") forall a. a -> [a] -> [a]
: [LocatedA (HsExpr (GhcPass 'Parsed))]
show_prefix_args

             show_label :: FastString -> LHsExpr (GhcPass 'Parsed)
show_label FastString
l = String -> LHsExpr (GhcPass 'Parsed)
mk_showString_app (String
nm forall a. [a] -> [a] -> [a]
++ String
" = ")
                        -- Note the spaces around the "=" sign.  If we
                        -- don't have them then we get Foo { x=-1 } and
                        -- the "=-" parses as a single lexeme.  Only the
                        -- space after the '=' is necessary, but it
                        -- seems tidier to have them both sides.
                 where
                   nm :: String
nm       = String -> String
wrapOpParens (FastString -> String
unpackFS FastString
l)

             show_args :: [LocatedA (HsExpr (GhcPass 'Parsed))]
show_args               = forall a b c. String -> (a -> b -> c) -> [a] -> [b] -> [c]
zipWithEqual String
"gen_Show_binds" RdrName -> Type -> LHsExpr (GhcPass 'Parsed)
show_arg [RdrName]
bs_needed (forall a b. (a -> b) -> [a] -> [b]
map forall a. Scaled a -> a
scaledThing [Scaled Type]
arg_tys)
             (LocatedA (HsExpr (GhcPass 'Parsed))
show_arg1:LocatedA (HsExpr (GhcPass 'Parsed))
show_arg2:[LocatedA (HsExpr (GhcPass 'Parsed))]
_) = [LocatedA (HsExpr (GhcPass 'Parsed))]
show_args
             show_prefix_args :: [LocatedA (HsExpr (GhcPass 'Parsed))]
show_prefix_args        = forall a. a -> [a] -> [a]
intersperse (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
showSpace_RDR) [LocatedA (HsExpr (GhcPass 'Parsed))]
show_args

                -- Assumption for record syntax: no of fields == no of
                -- labelled fields (and in same order)
             show_record_args :: [LocatedA (HsExpr (GhcPass 'Parsed))]
show_record_args = forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat forall a b. (a -> b) -> a -> b
$
                                forall a. a -> [a] -> [a]
intersperse [LocatedA (HsExpr (GhcPass 'Parsed))
comma_space] forall a b. (a -> b) -> a -> b
$
                                [ [FastString -> LocatedA (HsExpr (GhcPass 'Parsed))
show_label FastString
lbl, LocatedA (HsExpr (GhcPass 'Parsed))
arg]
                                | (FastString
lbl,LocatedA (HsExpr (GhcPass 'Parsed))
arg) <- forall a b. String -> [a] -> [b] -> [(a, b)]
zipEqual String
"gen_Show_binds"
                                                        [FastString]
labels [LocatedA (HsExpr (GhcPass 'Parsed))]
show_args ]

             show_arg :: RdrName -> Type -> LHsExpr GhcPs
             show_arg :: RdrName -> Type -> LHsExpr (GhcPass 'Parsed)
show_arg RdrName
b Type
arg_ty
                 | HasDebugCallStack => Type -> Bool
isUnliftedType Type
arg_ty
                 -- See Note [Deriving and unboxed types] in GHC.Tc.Deriv.Infer
                 = LocatedA (HsExpr (GhcPass 'Parsed)) -> LHsExpr (GhcPass 'Parsed)
with_conv forall a b. (a -> b) -> a -> b
$
                    forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
compose_RDR
                        [LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
mk_shows_app LHsExpr (GhcPass 'Parsed)
boxed_arg, String -> LHsExpr (GhcPass 'Parsed)
mk_showString_app String
postfixMod]
                 | Bool
otherwise
                 = Integer -> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
mk_showsPrec_app Integer
arg_prec LHsExpr (GhcPass 'Parsed)
arg
               where
                 arg :: LHsExpr (GhcPass 'Parsed)
arg        = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b
                 boxed_arg :: LHsExpr (GhcPass 'Parsed)
boxed_arg  = String
-> LHsExpr (GhcPass 'Parsed) -> Type -> LHsExpr (GhcPass 'Parsed)
box String
"Show" LHsExpr (GhcPass 'Parsed)
arg Type
arg_ty
                 postfixMod :: String
postfixMod = forall a. HasCallStack => String -> [(Type, a)] -> Type -> a
assoc_ty_id String
"Show" [(Type, String)]
postfixModTbl Type
arg_ty
                 with_conv :: LocatedA (HsExpr (GhcPass 'Parsed)) -> LHsExpr (GhcPass 'Parsed)
with_conv LocatedA (HsExpr (GhcPass 'Parsed))
expr
                    | (Just String
conv) <- forall a. [(Type, a)] -> Type -> Maybe a
assoc_ty_id_maybe [(Type, String)]
primConvTbl Type
arg_ty =
                        [LHsExpr (GhcPass 'Parsed)] -> LHsExpr (GhcPass 'Parsed)
nested_compose_Expr
                            [ String -> LHsExpr (GhcPass 'Parsed)
mk_showString_app (String
"(" forall a. [a] -> [a] -> [a]
++ String
conv forall a. [a] -> [a] -> [a]
++ String
" ")
                            , LocatedA (HsExpr (GhcPass 'Parsed))
expr
                            , String -> LHsExpr (GhcPass 'Parsed)
mk_showString_app String
")"
                            ]
                    | Bool
otherwise = LocatedA (HsExpr (GhcPass 'Parsed))
expr

                -- Fixity stuff
             is_infix :: Bool
is_infix = DataCon -> Bool
dataConIsInfix DataCon
data_con
             con_prec_plus_one :: Integer
con_prec_plus_one = Integer
1 forall a. Num a => a -> a -> a
+ Bool -> (Name -> Fixity) -> Name -> Integer
getPrec Bool
is_infix Name -> Fixity
get_fixity Name
dc_nm
             arg_prec :: Integer
arg_prec | Bool
record_syntax = Integer
0  -- Record fields don't need parens
                      | Bool
otherwise     = Integer
con_prec_plus_one

wrapOpParens :: String -> String
wrapOpParens :: String -> String
wrapOpParens String
s | String -> Bool
isSym String
s   = Char
'(' forall a. a -> [a] -> [a]
: String
s forall a. [a] -> [a] -> [a]
++ String
")"
               | Bool
otherwise = String
s

wrapOpBackquotes :: String -> String
wrapOpBackquotes :: String -> String
wrapOpBackquotes String
s | String -> Bool
isSym String
s   = String
s
                   | Bool
otherwise = Char
'`' forall a. a -> [a] -> [a]
: String
s forall a. [a] -> [a] -> [a]
++ String
"`"

isSym :: String -> Bool
isSym :: String -> Bool
isSym String
""      = Bool
False
isSym (Char
c : String
_) = Char -> Bool
startsVarSym Char
c Bool -> Bool -> Bool
|| Char -> Bool
startsConSym Char
c

-- | showString :: String -> ShowS
mk_showString_app :: String -> LHsExpr GhcPs
mk_showString_app :: String -> LHsExpr (GhcPass 'Parsed)
mk_showString_app String
str = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
showString_RDR) (forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString String
str))

-- | showsPrec :: Show a => Int -> a -> ShowS
mk_showsPrec_app :: Integer -> LHsExpr GhcPs -> LHsExpr GhcPs
mk_showsPrec_app :: Integer -> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
mk_showsPrec_app Integer
p LHsExpr (GhcPass 'Parsed)
x
  = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
showsPrec_RDR [forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall x. XHsInt x -> IntegralLit -> HsLit x
HsInt NoExtField
noExtField (forall a. Integral a => a -> IntegralLit
mkIntegralLit Integer
p)), LHsExpr (GhcPass 'Parsed)
x]

-- | shows :: Show a => a -> ShowS
mk_shows_app :: LHsExpr GhcPs -> LHsExpr GhcPs
mk_shows_app :: LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
mk_shows_app LHsExpr (GhcPass 'Parsed)
x = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
shows_RDR) LHsExpr (GhcPass 'Parsed)
x

getPrec :: Bool -> (Name -> Fixity) -> Name -> Integer
getPrec :: Bool -> (Name -> Fixity) -> Name -> Integer
getPrec Bool
is_infix Name -> Fixity
get_fixity Name
nm
  | Bool -> Bool
not Bool
is_infix   = Integer
appPrecedence
  | Bool
otherwise      = (Name -> Fixity) -> Name -> Integer
getPrecedence Name -> Fixity
get_fixity Name
nm

appPrecedence :: Integer
appPrecedence :: Integer
appPrecedence = forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
maxPrecedence forall a. Num a => a -> a -> a
+ Integer
1
  -- One more than the precedence of the most
  -- tightly-binding operator

getPrecedence :: (Name -> Fixity) -> Name -> Integer
getPrecedence :: (Name -> Fixity) -> Name -> Integer
getPrecedence Name -> Fixity
get_fixity Name
nm
   = case Name -> Fixity
get_fixity Name
nm of
        Fixity SourceText
_ Int
x FixityDirection
_assoc -> forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
x
          -- NB: the Report says that associativity is not taken
          --     into account for either Read or Show; hence we
          --     ignore associativity here

{-
************************************************************************
*                                                                      *
        Data instances
*                                                                      *
************************************************************************

From the data type

  data T a b = T1 a b | T2

we generate

  $cT1 = mkDataCon $dT "T1" Prefix
  $cT2 = mkDataCon $dT "T2" Prefix
  $dT  = mkDataType "Module.T" [] [$con_T1, $con_T2]
  -- the [] is for field labels.

  instance (Data a, Data b) => Data (T a b) where
    gfoldl k z (T1 a b) = z T `k` a `k` b
    gfoldl k z T2           = z T2
    -- ToDo: add gmapT,Q,M, gfoldr

    gunfold k z c = case conIndex c of
                        I# 1# -> k (k (z T1))
                        I# 2# -> z T2

    toConstr (T1 _ _) = $cT1
    toConstr T2       = $cT2

    dataTypeOf _ = $dT

    dataCast1 = gcast1   -- If T :: * -> *
    dataCast2 = gcast2   -- if T :: * -> * -> *
-}

gen_Data_binds :: SrcSpan
               -> TyCon                 -- For data families, this is the
                                        --  *representation* TyCon
               -> [Type]
               -> TcM (LHsBinds GhcPs,  -- The method bindings
                       BagDerivStuff)   -- Auxiliary bindings
gen_Data_binds :: SrcSpan
-> TyCon
-> [Type]
-> TcM (LHsBinds (GhcPass 'Parsed), BagDerivStuff)
gen_Data_binds SrcSpan
loc TyCon
rep_tc [Type]
_
  = do { -- See Note [Auxiliary binders]
         RdrName
dataT_RDR  <- SrcSpan -> TyCon -> TcM RdrName
new_dataT_rdr_name SrcSpan
loc TyCon
rep_tc
       ; [RdrName]
dataC_RDRs <- forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (SrcSpan -> DataCon -> TcM RdrName
new_dataC_rdr_name SrcSpan
loc) [DataCon]
data_cons

       ; forall (f :: * -> *) a. Applicative f => a -> f a
pure ( forall a. [a] -> Bag a
listToBag [ LHsBind (GhcPass 'Parsed)
gfoldl_bind, LHsBind (GhcPass 'Parsed)
gunfold_bind
                          , [RdrName] -> LHsBind (GhcPass 'Parsed)
toCon_bind [RdrName]
dataC_RDRs, RdrName -> LHsBind (GhcPass 'Parsed)
dataTypeOf_bind RdrName
dataT_RDR ]
                forall a. Bag a -> Bag a -> Bag a
`unionBags` Bag
  (GenLocated
     SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
gcast_binds
                          -- Auxiliary definitions: the data type and constructors
              , forall a. [a] -> Bag a
listToBag forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map AuxBindSpec -> DerivStuff
DerivAuxBind
                  ( TyCon -> RdrName -> [RdrName] -> AuxBindSpec
DerivDataDataType TyCon
rep_tc RdrName
dataT_RDR [RdrName]
dataC_RDRs
                  forall a. a -> [a] -> [a]
: forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\DataCon
data_con RdrName
dataC_RDR ->
                               DataCon -> RdrName -> RdrName -> AuxBindSpec
DerivDataConstr DataCon
data_con RdrName
dataC_RDR RdrName
dataT_RDR)
                            [DataCon]
data_cons [RdrName]
dataC_RDRs )
              ) }
  where
    data_cons :: [DataCon]
data_cons  = TyCon -> [DataCon]
tyConDataCons TyCon
rep_tc
    n_cons :: Int
n_cons     = forall (t :: * -> *) a. Foldable t => t a -> Int
length [DataCon]
data_cons
    one_constr :: Bool
one_constr = Int
n_cons forall a. Eq a => a -> a -> Bool
== Int
1

        ------------ gfoldl
    gfoldl_bind :: LHsBind (GhcPass 'Parsed)
gfoldl_bind = Int
-> SrcSpan
-> RdrName
-> (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))
-> [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkFunBindEC Int
3 SrcSpan
loc RdrName
gfoldl_RDR forall a. a -> a
id (forall a b. (a -> b) -> [a] -> [b]
map DataCon
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    LocatedA (HsExpr (GhcPass 'Parsed)))
gfoldl_eqn [DataCon]
data_cons)

    gfoldl_eqn :: DataCon
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    LocatedA (HsExpr (GhcPass 'Parsed)))
gfoldl_eqn DataCon
con
      = ([forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
k_RDR, LPat (GhcPass 'Parsed)
z_Pat, RdrName -> [RdrName] -> LPat (GhcPass 'Parsed)
nlConVarPat RdrName
con_name [RdrName]
as_needed],
                   forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' LocatedA (HsExpr (GhcPass 'Parsed))
-> RdrName -> LocatedA (HsExpr (GhcPass 'Parsed))
mk_k_app (LHsExpr (GhcPass 'Parsed)
z_Expr forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
`nlHsApp` (forall {p :: Pass}.
(IdGhcP p ~ RdrName,
 XMG (GhcPass p) (GenLocated SrcSpanAnnA (HsExpr (GhcPass p)))
 ~ NoExtField,
 Anno (IdGhcP p) ~ SrcSpanAnn' (EpAnn NameAnn), IsPass p) =>
DataCon -> GenLocated SrcSpanAnnA (HsExpr (GhcPass p))
eta_expand_data_con DataCon
con)) [RdrName]
as_needed)
                   where
                     con_name ::  RdrName
                     con_name :: RdrName
con_name = forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
con
                     as_needed :: [RdrName]
as_needed = forall a. Int -> [a] -> [a]
take (DataCon -> Int
dataConSourceArity DataCon
con) [RdrName]
as_RDRs
                     mk_k_app :: LocatedA (HsExpr (GhcPass 'Parsed))
-> RdrName -> LHsExpr (GhcPass 'Parsed)
mk_k_app LocatedA (HsExpr (GhcPass 'Parsed))
e RdrName
v = forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar (LHsExpr (GhcPass 'Parsed)
-> IdP (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsOpApp LocatedA (HsExpr (GhcPass 'Parsed))
e RdrName
k_RDR (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
v))

        ------------ gunfold
    gunfold_bind :: LHsBind (GhcPass 'Parsed)
gunfold_bind = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc
                     RdrName
gunfold_RDR
                     [LPat (GhcPass 'Parsed)
k_Pat, LPat (GhcPass 'Parsed)
z_Pat, if Bool
one_constr then LPat (GhcPass 'Parsed)
nlWildPat else LPat (GhcPass 'Parsed)
c_Pat]
                     LocatedA (HsExpr (GhcPass 'Parsed))
gunfold_rhs

    gunfold_rhs :: LocatedA (HsExpr (GhcPass 'Parsed))
gunfold_rhs
        | Bool
one_constr = DataCon -> LocatedA (HsExpr (GhcPass 'Parsed))
mk_unfold_rhs (forall a. [a] -> a
head [DataCon]
data_cons)   -- No need for case
        | Bool
otherwise  = LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
conIndex_RDR forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
`nlHsApp` LHsExpr (GhcPass 'Parsed)
c_Expr)
                                (forall a b. (a -> b) -> [a] -> [b]
map DataCon
-> LMatch (GhcPass 'Parsed) (LocatedA (HsExpr (GhcPass 'Parsed)))
gunfold_alt [DataCon]
data_cons)

    gunfold_alt :: DataCon
-> LMatch (GhcPass 'Parsed) (LocatedA (HsExpr (GhcPass 'Parsed)))
gunfold_alt DataCon
dc = forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt (DataCon -> LPat (GhcPass 'Parsed)
mk_unfold_pat DataCon
dc) (DataCon -> LocatedA (HsExpr (GhcPass 'Parsed))
mk_unfold_rhs DataCon
dc)
    mk_unfold_rhs :: DataCon -> LocatedA (HsExpr (GhcPass 'Parsed))
mk_unfold_rhs DataCon
dc = forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp
                           (LHsExpr (GhcPass 'Parsed)
z_Expr forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
`nlHsApp` (forall {p :: Pass}.
(IdGhcP p ~ RdrName,
 XMG (GhcPass p) (GenLocated SrcSpanAnnA (HsExpr (GhcPass p)))
 ~ NoExtField,
 Anno (IdGhcP p) ~ SrcSpanAnn' (EpAnn NameAnn), IsPass p) =>
DataCon -> GenLocated SrcSpanAnnA (HsExpr (GhcPass p))
eta_expand_data_con DataCon
dc))
                           (forall a. Int -> a -> [a]
replicate (DataCon -> Int
dataConSourceArity DataCon
dc) (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
k_RDR))

    eta_expand_data_con :: DataCon -> LHsExpr (GhcPass p)
eta_expand_data_con DataCon
dc =
        forall (p :: Pass).
(IsPass p, XMG (GhcPass p) (LHsExpr (GhcPass p)) ~ NoExtField) =>
[LPat (GhcPass p)] -> LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
mkHsLam [GenLocated SrcSpanAnnA (Pat (GhcPass p))]
eta_expand_pats
          (forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar (forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
dc)) [GenLocated SrcSpanAnnA (HsExpr (GhcPass p))]
eta_expand_hsvars)
      where
        eta_expand_pats :: [GenLocated SrcSpanAnnA (Pat (GhcPass p))]
eta_expand_pats = forall a b. (a -> b) -> [a] -> [b]
map forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat [RdrName]
eta_expand_vars
        eta_expand_hsvars :: [GenLocated SrcSpanAnnA (HsExpr (GhcPass p))]
eta_expand_hsvars = forall a b. (a -> b) -> [a] -> [b]
map forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar [RdrName]
eta_expand_vars
        eta_expand_vars :: [RdrName]
eta_expand_vars = forall a. Int -> [a] -> [a]
take (DataCon -> Int
dataConSourceArity DataCon
dc) [RdrName]
as_RDRs


    mk_unfold_pat :: DataCon -> LPat (GhcPass 'Parsed)
mk_unfold_pat DataCon
dc    -- Last one is a wild-pat, to avoid
                        -- redundant test, and annoying warning
      | Int
tagforall a. Num a => a -> a -> a
-Int
fIRST_TAG forall a. Eq a => a -> a -> Bool
== Int
n_consforall a. Num a => a -> a -> a
-Int
1 = LPat (GhcPass 'Parsed)
nlWildPat   -- Last constructor
      | Bool
otherwise = RdrName -> [LPat (GhcPass 'Parsed)] -> LPat (GhcPass 'Parsed)
nlConPat RdrName
intDataCon_RDR
                             [HsLit (GhcPass 'Parsed) -> LPat (GhcPass 'Parsed)
nlLitPat (forall x. XHsIntPrim x -> Integer -> HsLit x
HsIntPrim SourceText
NoSourceText (forall a. Integral a => a -> Integer
toInteger Int
tag))]
      where
        tag :: Int
tag = DataCon -> Int
dataConTag DataCon
dc

        ------------ toConstr
    toCon_bind :: [RdrName] -> LHsBind (GhcPass 'Parsed)
toCon_bind [RdrName]
dataC_RDRs
      = Int
-> SrcSpan
-> RdrName
-> (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))
-> [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkFunBindEC Int
1 SrcSpan
loc RdrName
toConstr_RDR forall a. a -> a
id
            (forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith forall {p :: Pass} {a}.
(Anno (IdGhcP p) ~ SrcSpanAnn' (EpAnn a), IsPass p) =>
DataCon
-> IdGhcP p
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    GenLocated SrcSpanAnnA (HsExpr (GhcPass p)))
to_con_eqn [DataCon]
data_cons [RdrName]
dataC_RDRs)
    to_con_eqn :: DataCon
-> IdGhcP p
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    GenLocated SrcSpanAnnA (HsExpr (GhcPass p)))
to_con_eqn DataCon
dc IdGhcP p
con_name = ([DataCon -> LPat (GhcPass 'Parsed)
nlWildConPat DataCon
dc], forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar IdGhcP p
con_name)

        ------------ dataTypeOf
    dataTypeOf_bind :: RdrName -> LHsBind (GhcPass 'Parsed)
dataTypeOf_bind RdrName
dataT_RDR
      = SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind
          SrcSpan
loc
          RdrName
dataTypeOf_RDR
          [LPat (GhcPass 'Parsed)
nlWildPat]
          (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
dataT_RDR)

        ------------ gcast1/2
        -- Make the binding    dataCast1 x = gcast1 x  -- if T :: * -> *
        --               or    dataCast2 x = gcast2 s  -- if T :: * -> * -> *
        -- (or nothing if T has neither of these two types)

        -- But care is needed for data families:
        -- If we have   data family D a
        --              data instance D (a,b,c) = A | B deriving( Data )
        -- and we want  instance ... => Data (D [(a,b,c)]) where ...
        -- then we need     dataCast1 x = gcast1 x
        -- because D :: * -> *
        -- even though rep_tc has kind * -> * -> * -> *
        -- Hence looking for the kind of fam_tc not rep_tc
        -- See #4896
    tycon_kind :: Type
tycon_kind = case TyCon -> Maybe (TyCon, [Type])
tyConFamInst_maybe TyCon
rep_tc of
                    Just (TyCon
fam_tc, [Type]
_) -> TyCon -> Type
tyConKind TyCon
fam_tc
                    Maybe (TyCon, [Type])
Nothing          -> TyCon -> Type
tyConKind TyCon
rep_tc
    gcast_binds :: Bag
  (GenLocated
     SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
gcast_binds | Type
tycon_kind HasDebugCallStack => Type -> Type -> Bool
`tcEqKind` Type
kind1 = RdrName
-> RdrName
-> Bag
     (GenLocated
        SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
mk_gcast RdrName
dataCast1_RDR RdrName
gcast1_RDR
                | Type
tycon_kind HasDebugCallStack => Type -> Type -> Bool
`tcEqKind` Type
kind2 = RdrName
-> RdrName
-> Bag
     (GenLocated
        SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
mk_gcast RdrName
dataCast2_RDR RdrName
gcast2_RDR
                | Bool
otherwise                 = forall a. Bag a
emptyBag
    mk_gcast :: RdrName
-> RdrName
-> Bag
     (GenLocated
        SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)))
mk_gcast RdrName
dataCast_RDR RdrName
gcast_RDR
      = forall a. a -> Bag a
unitBag (SrcSpan
-> RdrName
-> [LPat (GhcPass 'Parsed)]
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkSimpleGeneratedFunBind SrcSpan
loc RdrName
dataCast_RDR [forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
f_RDR]
                                 (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
gcast_RDR forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
`nlHsApp` forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
f_RDR))


kind1, kind2 :: Kind
kind1 :: Type
kind1 = Type
typeToTypeKind
kind2 :: Type
kind2 = Type
liftedTypeKind Type -> Type -> Type
`mkVisFunTyMany` Type
kind1

gfoldl_RDR, gunfold_RDR, toConstr_RDR, dataTypeOf_RDR, mkConstrTag_RDR,
    mkDataType_RDR, conIndex_RDR, prefix_RDR, infix_RDR,
    dataCast1_RDR, dataCast2_RDR, gcast1_RDR, gcast2_RDR,
    constr_RDR, dataType_RDR,
    eqChar_RDR  , ltChar_RDR  , geChar_RDR  , gtChar_RDR  , leChar_RDR  ,
    eqInt_RDR   , ltInt_RDR   , geInt_RDR   , gtInt_RDR   , leInt_RDR   ,
    eqInt8_RDR  , ltInt8_RDR  , geInt8_RDR  , gtInt8_RDR  , leInt8_RDR  ,
    eqInt16_RDR , ltInt16_RDR , geInt16_RDR , gtInt16_RDR , leInt16_RDR ,
    eqInt32_RDR , ltInt32_RDR , geInt32_RDR , gtInt32_RDR , leInt32_RDR ,
    eqInt64_RDR , ltInt64_RDR , geInt64_RDR , gtInt64_RDR , leInt64_RDR ,
    eqWord_RDR  , ltWord_RDR  , geWord_RDR  , gtWord_RDR  , leWord_RDR  ,
    eqWord8_RDR , ltWord8_RDR , geWord8_RDR , gtWord8_RDR , leWord8_RDR ,
    eqWord16_RDR, ltWord16_RDR, geWord16_RDR, gtWord16_RDR, leWord16_RDR,
    eqWord32_RDR, ltWord32_RDR, geWord32_RDR, gtWord32_RDR, leWord32_RDR,
    eqWord64_RDR, ltWord64_RDR, geWord64_RDR, gtWord64_RDR, leWord64_RDR,
    eqAddr_RDR  , ltAddr_RDR  , geAddr_RDR  , gtAddr_RDR  , leAddr_RDR  ,
    eqFloat_RDR , ltFloat_RDR , geFloat_RDR , gtFloat_RDR , leFloat_RDR ,
    eqDouble_RDR, ltDouble_RDR, geDouble_RDR, gtDouble_RDR, leDouble_RDR,
    word8ToWord_RDR , int8ToInt_RDR ,
    word16ToWord_RDR, int16ToInt_RDR,
    word32ToWord_RDR, int32ToInt_RDR
    :: RdrName
gfoldl_RDR :: RdrName
gfoldl_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gENERICS (String -> FastString
fsLit String
"gfoldl")
gunfold_RDR :: RdrName
gunfold_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gENERICS (String -> FastString
fsLit String
"gunfold")
toConstr_RDR :: RdrName
toConstr_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gENERICS (String -> FastString
fsLit String
"toConstr")
dataTypeOf_RDR :: RdrName
dataTypeOf_RDR = Module -> FastString -> RdrName
varQual_RDR  Module
gENERICS (String -> FastString
fsLit String
"dataTypeOf")
dataCast1_RDR :: RdrName
dataCast1_RDR  = Module -> FastString -> RdrName
varQual_RDR  Module
gENERICS (String -> FastString
fsLit String
"dataCast1")
dataCast2_RDR :: RdrName
dataCast2_RDR  = Module -> FastString -> RdrName
varQual_RDR  Module
gENERICS (String -> FastString
fsLit String
"dataCast2")
gcast1_RDR :: RdrName
gcast1_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
tYPEABLE (String -> FastString
fsLit String
"gcast1")
gcast2_RDR :: RdrName
gcast2_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
tYPEABLE (String -> FastString
fsLit String
"gcast2")
mkConstrTag_RDR :: RdrName
mkConstrTag_RDR = Module -> FastString -> RdrName
varQual_RDR Module
gENERICS (String -> FastString
fsLit String
"mkConstrTag")
constr_RDR :: RdrName
constr_RDR     = Module -> FastString -> RdrName
tcQual_RDR   Module
gENERICS (String -> FastString
fsLit String
"Constr")
mkDataType_RDR :: RdrName
mkDataType_RDR = Module -> FastString -> RdrName
varQual_RDR  Module
gENERICS (String -> FastString
fsLit String
"mkDataType")
dataType_RDR :: RdrName
dataType_RDR   = Module -> FastString -> RdrName
tcQual_RDR   Module
gENERICS (String -> FastString
fsLit String
"DataType")
conIndex_RDR :: RdrName
conIndex_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gENERICS (String -> FastString
fsLit String
"constrIndex")
prefix_RDR :: RdrName
prefix_RDR     = Module -> FastString -> RdrName
dataQual_RDR Module
gENERICS (String -> FastString
fsLit String
"Prefix")
infix_RDR :: RdrName
infix_RDR      = Module -> FastString -> RdrName
dataQual_RDR Module
gENERICS (String -> FastString
fsLit String
"Infix")

eqChar_RDR :: RdrName
eqChar_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqChar#")
ltChar_RDR :: RdrName
ltChar_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltChar#")
leChar_RDR :: RdrName
leChar_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leChar#")
gtChar_RDR :: RdrName
gtChar_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtChar#")
geChar_RDR :: RdrName
geChar_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geChar#")

eqInt_RDR :: RdrName
eqInt_RDR      = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"==#")
ltInt_RDR :: RdrName
ltInt_RDR      = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"<#" )
leInt_RDR :: RdrName
leInt_RDR      = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"<=#")
gtInt_RDR :: RdrName
gtInt_RDR      = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
">#" )
geInt_RDR :: RdrName
geInt_RDR      = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
">=#")

eqInt8_RDR :: RdrName
eqInt8_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqInt8#")
ltInt8_RDR :: RdrName
ltInt8_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltInt8#" )
leInt8_RDR :: RdrName
leInt8_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leInt8#")
gtInt8_RDR :: RdrName
gtInt8_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtInt8#" )
geInt8_RDR :: RdrName
geInt8_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geInt8#")

eqInt16_RDR :: RdrName
eqInt16_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqInt16#")
ltInt16_RDR :: RdrName
ltInt16_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltInt16#" )
leInt16_RDR :: RdrName
leInt16_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leInt16#")
gtInt16_RDR :: RdrName
gtInt16_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtInt16#" )
geInt16_RDR :: RdrName
geInt16_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geInt16#")

eqInt32_RDR :: RdrName
eqInt32_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqInt32#")
ltInt32_RDR :: RdrName
ltInt32_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltInt32#" )
leInt32_RDR :: RdrName
leInt32_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leInt32#")
gtInt32_RDR :: RdrName
gtInt32_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtInt32#" )
geInt32_RDR :: RdrName
geInt32_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geInt32#")

eqInt64_RDR :: RdrName
eqInt64_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqInt64#")
ltInt64_RDR :: RdrName
ltInt64_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltInt64#" )
leInt64_RDR :: RdrName
leInt64_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leInt64#")
gtInt64_RDR :: RdrName
gtInt64_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtInt64#" )
geInt64_RDR :: RdrName
geInt64_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geInt64#")

eqWord_RDR :: RdrName
eqWord_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqWord#")
ltWord_RDR :: RdrName
ltWord_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltWord#")
leWord_RDR :: RdrName
leWord_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leWord#")
gtWord_RDR :: RdrName
gtWord_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtWord#")
geWord_RDR :: RdrName
geWord_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geWord#")

eqWord8_RDR :: RdrName
eqWord8_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqWord8#")
ltWord8_RDR :: RdrName
ltWord8_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltWord8#" )
leWord8_RDR :: RdrName
leWord8_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leWord8#")
gtWord8_RDR :: RdrName
gtWord8_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtWord8#" )
geWord8_RDR :: RdrName
geWord8_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geWord8#")

eqWord16_RDR :: RdrName
eqWord16_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqWord16#")
ltWord16_RDR :: RdrName
ltWord16_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltWord16#" )
leWord16_RDR :: RdrName
leWord16_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leWord16#")
gtWord16_RDR :: RdrName
gtWord16_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtWord16#" )
geWord16_RDR :: RdrName
geWord16_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geWord16#")

eqWord32_RDR :: RdrName
eqWord32_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqWord32#")
ltWord32_RDR :: RdrName
ltWord32_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltWord32#" )
leWord32_RDR :: RdrName
leWord32_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leWord32#")
gtWord32_RDR :: RdrName
gtWord32_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtWord32#" )
geWord32_RDR :: RdrName
geWord32_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geWord32#")

eqWord64_RDR :: RdrName
eqWord64_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqWord64#")
ltWord64_RDR :: RdrName
ltWord64_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltWord64#" )
leWord64_RDR :: RdrName
leWord64_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leWord64#")
gtWord64_RDR :: RdrName
gtWord64_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtWord64#" )
geWord64_RDR :: RdrName
geWord64_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geWord64#")

eqAddr_RDR :: RdrName
eqAddr_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqAddr#")
ltAddr_RDR :: RdrName
ltAddr_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltAddr#")
leAddr_RDR :: RdrName
leAddr_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leAddr#")
gtAddr_RDR :: RdrName
gtAddr_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtAddr#")
geAddr_RDR :: RdrName
geAddr_RDR     = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geAddr#")

eqFloat_RDR :: RdrName
eqFloat_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"eqFloat#")
ltFloat_RDR :: RdrName
ltFloat_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"ltFloat#")
leFloat_RDR :: RdrName
leFloat_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"leFloat#")
gtFloat_RDR :: RdrName
gtFloat_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"gtFloat#")
geFloat_RDR :: RdrName
geFloat_RDR    = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"geFloat#")

eqDouble_RDR :: RdrName
eqDouble_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"==##")
ltDouble_RDR :: RdrName
ltDouble_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"<##" )
leDouble_RDR :: RdrName
leDouble_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"<=##")
gtDouble_RDR :: RdrName
gtDouble_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
">##" )
geDouble_RDR :: RdrName
geDouble_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
">=##")

word8ToWord_RDR :: RdrName
word8ToWord_RDR = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"word8ToWord#")
int8ToInt_RDR :: RdrName
int8ToInt_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"int8ToInt#")

word16ToWord_RDR :: RdrName
word16ToWord_RDR = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"word16ToWord#")
int16ToInt_RDR :: RdrName
int16ToInt_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"int16ToInt#")

word32ToWord_RDR :: RdrName
word32ToWord_RDR = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"word32ToWord#")
int32ToInt_RDR :: RdrName
int32ToInt_RDR   = Module -> FastString -> RdrName
varQual_RDR  Module
gHC_PRIM (String -> FastString
fsLit String
"int32ToInt#")


{-
************************************************************************
*                                                                      *
                        Lift instances
*                                                                      *
************************************************************************

Example:

    data Foo a = Foo a | a :^: a deriving Lift

    ==>

    instance (Lift a) => Lift (Foo a) where
        lift (Foo a) = [| Foo $(lift a) |]
        lift ((:^:) u v) = [| (:^:) $(lift u) $(lift v) |]

        liftTyped (Foo a) = [|| Foo $$(liftTyped a) ||]
        liftTyped ((:^:) u v) = [|| (:^:) $$(liftTyped u) $$(liftTyped v) ||]

Note that we use explicit splices here in order to not trigger the implicit
lifting warning in derived code. (See #20688)
-}


gen_Lift_binds :: SrcSpan -> TyCon -> [Type] -> (LHsBinds GhcPs, BagDerivStuff)
gen_Lift_binds :: SrcSpan
-> TyCon -> [Type] -> (LHsBinds (GhcPass 'Parsed), BagDerivStuff)
gen_Lift_binds SrcSpan
loc TyCon
tycon [Type]
tycon_args = (forall a. [a] -> Bag a
listToBag [LHsBind (GhcPass 'Parsed)
lift_bind, LHsBind (GhcPass 'Parsed)
liftTyped_bind], forall a. Bag a
emptyBag)
  where
    lift_bind :: LHsBind (GhcPass 'Parsed)
lift_bind      = Int
-> SrcSpan
-> RdrName
-> (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))
-> [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkFunBindEC Int
1 SrcSpan
loc RdrName
lift_RDR (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp LHsExpr (GhcPass 'Parsed)
pure_Expr)
                                 (forall a b. (a -> b) -> [a] -> [b]
map (forall {p} {a} {an}.
(XBracket p ~ EpAnn a) =>
(LocatedA (HsExpr (GhcPass 'Parsed)) -> HsBracket p)
-> (RdrName
    -> LocatedA (HsExpr (GhcPass 'Parsed))
    -> HsSplice (GhcPass 'Parsed))
-> Name
-> DataCon
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    LocatedAn an (HsExpr p))
pats_etc LHsExpr (GhcPass 'Parsed) -> HsBracket (GhcPass 'Parsed)
mk_exp IdP (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> HsSplice (GhcPass 'Parsed)
mk_usplice Name
liftName) [DataCon]
data_cons)
    liftTyped_bind :: LHsBind (GhcPass 'Parsed)
liftTyped_bind = Int
-> SrcSpan
-> RdrName
-> (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))
-> [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkFunBindEC Int
1 SrcSpan
loc RdrName
liftTyped_RDR (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp LHsExpr (GhcPass 'Parsed)
unsafeCodeCoerce_Expr forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp LHsExpr (GhcPass 'Parsed)
pure_Expr)
                                 (forall a b. (a -> b) -> [a] -> [b]
map (forall {p} {a} {an}.
(XBracket p ~ EpAnn a) =>
(LocatedA (HsExpr (GhcPass 'Parsed)) -> HsBracket p)
-> (RdrName
    -> LocatedA (HsExpr (GhcPass 'Parsed))
    -> HsSplice (GhcPass 'Parsed))
-> Name
-> DataCon
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    LocatedAn an (HsExpr p))
pats_etc LHsExpr (GhcPass 'Parsed) -> HsBracket (GhcPass 'Parsed)
mk_texp IdP (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> HsSplice (GhcPass 'Parsed)
mk_tsplice Name
liftTypedName) [DataCon]
data_cons)

    mk_exp :: LHsExpr (GhcPass 'Parsed) -> HsBracket (GhcPass 'Parsed)
mk_exp = forall p. XExpBr p -> LHsExpr p -> HsBracket p
ExpBr NoExtField
noExtField
    mk_texp :: LHsExpr (GhcPass 'Parsed) -> HsBracket (GhcPass 'Parsed)
mk_texp = forall p. XTExpBr p -> LHsExpr p -> HsBracket p
TExpBr NoExtField
noExtField

    mk_usplice :: IdP (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> HsSplice (GhcPass 'Parsed)
mk_usplice = forall id.
XUntypedSplice id
-> SpliceDecoration -> IdP id -> LHsExpr id -> HsSplice id
HsUntypedSplice forall a. EpAnn a
EpAnnNotUsed SpliceDecoration
DollarSplice
    mk_tsplice :: IdP (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> HsSplice (GhcPass 'Parsed)
mk_tsplice = forall id.
XTypedSplice id
-> SpliceDecoration -> IdP id -> LHsExpr id -> HsSplice id
HsTypedSplice forall a. EpAnn a
EpAnnNotUsed SpliceDecoration
DollarSplice
    data_cons :: [DataCon]
data_cons = TyCon -> [Type] -> [DataCon]
getPossibleDataCons TyCon
tycon [Type]
tycon_args

    pats_etc :: (LocatedA (HsExpr (GhcPass 'Parsed)) -> HsBracket p)
-> (RdrName
    -> LocatedA (HsExpr (GhcPass 'Parsed))
    -> HsSplice (GhcPass 'Parsed))
-> Name
-> DataCon
-> ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))],
    LocatedAn an (HsExpr p))
pats_etc LocatedA (HsExpr (GhcPass 'Parsed)) -> HsBracket p
mk_bracket RdrName
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> HsSplice (GhcPass 'Parsed)
mk_splice Name
lift_name DataCon
data_con
      = ([LPat (GhcPass 'Parsed)
con_pat], LocatedAn an (HsExpr p)
lift_Expr)
       where
            con_pat :: LPat (GhcPass 'Parsed)
con_pat      = RdrName -> [RdrName] -> LPat (GhcPass 'Parsed)
nlConVarPat RdrName
data_con_RDR [RdrName]
as_needed
            data_con_RDR :: RdrName
data_con_RDR = forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
data_con
            con_arity :: Int
con_arity    = DataCon -> Int
dataConSourceArity DataCon
data_con
            as_needed :: [RdrName]
as_needed    = forall a. Int -> [a] -> [a]
take Int
con_arity [RdrName]
as_RDRs
            lift_Expr :: LocatedAn an (HsExpr p)
lift_Expr    = forall a an. a -> LocatedAn an a
noLocA (forall p. XBracket p -> HsBracket p -> HsExpr p
HsBracket forall a. EpAnn a
noAnn (LocatedA (HsExpr (GhcPass 'Parsed)) -> HsBracket p
mk_bracket LHsExpr (GhcPass 'Parsed)
br_body))
            br_body :: LHsExpr (GhcPass 'Parsed)
br_body      = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps (Name -> RdrName
Exact (DataCon -> Name
dataConName DataCon
data_con))
                                    (forall a b. (a -> b) -> [a] -> [b]
map RdrName -> LHsExpr (GhcPass 'Parsed)
lift_var [RdrName]
as_needed)

            lift_var :: RdrName -> LHsExpr (GhcPass 'Parsed)
            lift_var :: RdrName -> LHsExpr (GhcPass 'Parsed)
lift_var RdrName
x   = forall a an. a -> LocatedAn an a
noLocA (forall p. XSpliceE p -> HsSplice p -> HsExpr p
HsSpliceE forall a. EpAnn a
EpAnnNotUsed (RdrName
-> LocatedA (HsExpr (GhcPass 'Parsed))
-> HsSplice (GhcPass 'Parsed)
mk_splice RdrName
x (forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar (RdrName -> LHsExpr (GhcPass 'Parsed)
mk_lift_expr RdrName
x))))

            mk_lift_expr :: RdrName -> LHsExpr (GhcPass 'Parsed)
            mk_lift_expr :: RdrName -> LHsExpr (GhcPass 'Parsed)
mk_lift_expr RdrName
x = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps (Name -> RdrName
Exact Name
lift_name) [forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
x]

{-
************************************************************************
*                                                                      *
                     Newtype-deriving instances
*                                                                      *
************************************************************************

Note [Newtype-deriving instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We take every method in the original instance and `coerce` it to fit
into the derived instance. We need type applications on the argument
to `coerce` to make it obvious what instantiation of the method we're
coercing from.  So from, say,

  class C a b where
    op :: forall c. a -> [b] -> c -> Int

  newtype T x = MkT <rep-ty>

  instance C a <rep-ty> => C a (T x) where
    op :: forall c. a -> [T x] -> c -> Int
    op = coerce @(a -> [<rep-ty>] -> c -> Int)
                @(a -> [T x]      -> c -> Int)
                op

In addition to the type applications, we also have an explicit
type signature on the entire RHS. This brings the method-bound variable
`c` into scope over the two type applications.
See Note [GND and QuantifiedConstraints] for more information on why this
is important.

Giving 'coerce' two explicitly-visible type arguments grants us finer control
over how it should be instantiated. Recall

  coerce :: Coercible a b => a -> b

By giving it explicit type arguments we deal with the case where
'op' has a higher rank type, and so we must instantiate 'coerce' with
a polytype.  E.g.

   class C a where op :: a -> forall b. b -> b
   newtype T x = MkT <rep-ty>
   instance C <rep-ty> => C (T x) where
     op :: T x -> forall b. b -> b
     op = coerce @(<rep-ty> -> forall b. b -> b)
                 @(T x      -> forall b. b -> b)
                op

The use of type applications is crucial here. We have to instantiate
both type args of (coerce :: Coercible a b => a -> b) to polytypes,
and we can only do that with VTA or Quick Look. Here VTA seems more
appropriate for machine generated code: it's simple and robust.

However, to allow VTA with polytypes we must switch on
-XImpredicativeTypes locally in GHC.Tc.Deriv.genInst.
See #8503 for more discussion.

Note [Newtype-deriving trickiness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#12768):
  class C a where { op :: D a => a -> a }

  instance C a  => C [a] where { op = opList }

  opList :: (C a, D [a]) => [a] -> [a]
  opList = ...

Now suppose we try GND on this:
  newtype N a = MkN [a] deriving( C )

The GND is expecting to get an implementation of op for N by
coercing opList, thus:

  instance C a => C (N a) where { op = opN }

  opN :: (C a, D (N a)) => N a -> N a
  opN = coerce @([a]   -> [a])
               @([N a] -> [N a]
               opList :: D (N a) => [N a] -> [N a]

But there is no reason to suppose that (D [a]) and (D (N a))
are inter-coercible; these instances might completely different.
So GHC rightly rejects this code.

Note [GND and QuantifiedConstraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following example from #15290:

  class C m where
    join :: m (m a) -> m a

  newtype T m a = MkT (m a)

  deriving instance
    (C m, forall p q. Coercible p q => Coercible (m p) (m q)) =>
    C (T m)

The code that GHC used to generate for this was:

  instance (C m, forall p q. Coercible p q => Coercible (m p) (m q)) =>
      C (T m) where
    join = coerce @(forall a.   m   (m a) ->   m a)
                  @(forall a. T m (T m a) -> T m a)
                  join

This instantiates `coerce` at a polymorphic type, a form of impredicative
polymorphism, so we're already on thin ice. And in fact the ice breaks,
as we'll explain:

The call to `coerce` gives rise to:

  Coercible (forall a.   m   (m a) ->   m a)
            (forall a. T m (T m a) -> T m a)

And that simplified to the following implication constraint:

  forall a <no-ev>. m (T m a) ~R# m (m a)

But because this constraint is under a `forall`, inside a type, we have to
prove it *without computing any term evidence* (hence the <no-ev>). Alas, we
*must* generate a term-level evidence binding in order to instantiate the
quantified constraint! In response, GHC currently chooses not to use such
a quantified constraint.
See Note [Instances in no-evidence implications] in GHC.Tc.Solver.Interact.

But this isn't the death knell for combining QuantifiedConstraints with GND.
On the contrary, if we generate GND bindings in a slightly different way, then
we can avoid this situation altogether. Instead of applying `coerce` to two
polymorphic types, we instead let an instance signature do the polymorphic
instantiation, and omit the `forall`s in the type applications.
More concretely, we generate the following code instead:

  instance (C m, forall p q. Coercible p q => Coercible (m p) (m q)) =>
      C (T m) where
    join :: forall a. T m (T m a) -> T m a
    join = coerce @(  m   (m a) ->   m a)
                  @(T m (T m a) -> T m a)
                  join

Now the visible type arguments are both monotypes, so we don't need any of this
funny quantified constraint instantiation business. While this particular
example no longer uses impredicative instantiation, we still need to enable
ImpredicativeTypes to typecheck GND-generated code for class methods with
higher-rank types. See Note [Newtype-deriving instances].

You might think that that second @(T m (T m a) -> T m a) argument is redundant
in the presence of the instance signature, but in fact leaving it off will
break this example (from the T15290d test case):

  class C a where
    c :: Int -> forall b. b -> a

  instance C Int

  instance C Age where
    c :: Int -> forall b. b -> Age
    c = coerce @(Int -> forall b. b -> Int)
               c

That is because we still need to instantiate the second argument of
coerce with a polytype, and we can only do that with VTA or QuickLook.

Be aware that the use of an instance signature doesn't /solve/ this
problem; it just makes it less likely to occur. For example, if a class has
a truly higher-rank type like so:

  class CProblem m where
    op :: (forall b. ... (m b) ...) -> Int

Then the same situation will arise again. But at least it won't arise for the
common case of methods with ordinary, prenex-quantified types.

-----
-- Wrinkle: Use HsOuterExplicit
-----

One minor complication with the plan above is that we need to ensure that the
type variables from a method's instance signature properly scope over the body
of the method. For example, recall:

  instance (C m, forall p q. Coercible p q => Coercible (m p) (m q)) =>
      C (T m) where
    join :: forall a. T m (T m a) -> T m a
    join = coerce @(  m   (m a) ->   m a)
                  @(T m (T m a) -> T m a)
                  join

In the example above, it is imperative that the `a` in the instance signature
for `join` scope over the body of `join` by way of ScopedTypeVariables.
This might sound obvious, but note that in gen_Newtype_binds, which is
responsible for generating the code above, the type in `join`'s instance
signature is given as a Core type, whereas gen_Newtype_binds will eventually
produce HsBinds (i.e., source Haskell) that is renamed and typechecked. We
must ensure that `a` is in scope over the body of `join` during renaming
or else the generated code will be rejected.

In short, we need to convert the instance signature from a Core type to an
HsType (i.e., a source Haskell type). Two possible options are:

1. Convert the Core type entirely to an HsType (i.e., a source Haskell type).
2. Embed the entire Core type using HsCoreTy.

Neither option is quite satisfactory:

1. Converting a Core type to an HsType in full generality is surprisingly
   complicated. Previous versions of GHCs did this, but it was the source of
   numerous bugs (see #14579 and #16518, for instance).
2. While HsCoreTy is much less complicated that option (1), it's not quite
   what we want. In order for `a` to be in scope over the body of `join` during
   renaming, the `forall` must be contained in an HsOuterExplicit.
   (See Note [Lexically scoped type variables] in GHC.Hs.Type.) HsCoreTy
   bypasses HsOuterExplicit, so this won't work either.

As a compromise, we adopt a combination of the two options above:

* Split apart the top-level ForAllTys in the instance signature's Core type,
* Convert the top-level ForAllTys to an HsOuterExplicit, and
* Embed the remainder of the Core type in an HsCoreTy.

This retains most of the simplicity of option (2) while still ensuring that
the type variables are correctly scoped.

Note that splitting apart top-level ForAllTys will expand any type synonyms
in the Core type itself. This ends up being important to fix a corner case
observed in #18914. Consider this example:

  type T f = forall a. f a

  class C f where
    m :: T f

  newtype N f a = MkN (f a)
    deriving C

What code should `deriving C` generate? It will have roughly the following
shape:

  instance C f => C (N f) where
    m :: T (N f)
    m = coerce @(...) (...) (m @f)

At a minimum, we must instantiate `coerce` with `@(T f)` and `@(T (N f))`, but
with the `forall`s removed in order to make them monotypes. However, the
`forall` is hidden underneath the `T` type synonym, so we must first expand `T`
before we can strip of the `forall`. Expanding `T`, we get
`coerce @(forall a. f a) @(forall a. N f a)`, and after omitting the `forall`s,
we get `coerce @(f a) @(N f a)`.

We can't stop there, however, or else we would end up with this code:

  instance C f => C (N f) where
    m :: T (N f)
    m = coerce @(f a) @(N f a) (m @f)

Notice that the type variable `a` is completely unbound. In order to make sure
that `a` is in scope, we must /also/ expand the `T` in `m :: T (N f)` to get
`m :: forall a. N f a`. Fortunately, we will do just that in the plan outlined
above, since when we split off the top-level ForAllTys in the instance
signature, we must first expand the T type synonym.

Note [GND and ambiguity]
~~~~~~~~~~~~~~~~~~~~~~~~
We make an effort to make the code generated through GND be robust w.r.t.
ambiguous type variables. As one example, consider the following example
(from #15637):

  class C a where f :: String
  instance C () where f = "foo"
  newtype T = T () deriving C

A naïve attempt and generating a C T instance would be:

  instance C T where
    f :: String
    f = coerce @String @String f

This isn't going to typecheck, however, since GHC doesn't know what to
instantiate the type variable `a` with in the call to `f` in the method body.
(Note that `f :: forall a. String`!) To compensate for the possibility of
ambiguity here, we explicitly instantiate `a` like so:

  instance C T where
    f :: String
    f = coerce @String @String (f @())

All better now.
-}

gen_Newtype_binds :: SrcSpan
                  -> Class   -- the class being derived
                  -> [TyVar] -- the tvs in the instance head (this includes
                             -- the tvs from both the class types and the
                             -- newtype itself)
                  -> [Type]  -- instance head parameters (incl. newtype)
                  -> Type    -- the representation type
                  -> TcM (LHsBinds GhcPs, [LSig GhcPs], BagDerivStuff)
-- See Note [Newtype-deriving instances]
gen_Newtype_binds :: SrcSpan
-> Class
-> [Id]
-> [Type]
-> Type
-> TcM
     (LHsBinds (GhcPass 'Parsed), [LSig (GhcPass 'Parsed)],
      BagDerivStuff)
gen_Newtype_binds SrcSpan
loc' Class
cls [Id]
inst_tvs [Type]
inst_tys Type
rhs_ty
  = do let ats :: [TyCon]
ats = Class -> [TyCon]
classATs Class
cls
           ([GenLocated
   SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed))]
binds, [GenLocated SrcSpanAnnA (Sig (GhcPass 'Parsed))]
sigs) = forall a b c. (a -> (b, c)) -> [a] -> ([b], [c])
mapAndUnzip Id -> (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed))
mk_bind_and_sig (Class -> [Id]
classMethods Class
cls)
       [FamInst]
atf_insts <- ASSERT( all (not . isDataFamilyTyCon) ats )
                    forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM TyCon -> TcM FamInst
mk_atf_inst [TyCon]
ats
       forall (m :: * -> *) a. Monad m => a -> m a
return ( forall a. [a] -> Bag a
listToBag [GenLocated
   SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed))]
binds
              , [GenLocated SrcSpanAnnA (Sig (GhcPass 'Parsed))]
sigs
              , forall a. [a] -> Bag a
listToBag forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map FamInst -> DerivStuff
DerivFamInst [FamInst]
atf_insts )
  where
    locn :: SrcSpanAnn' (EpAnn NameAnn)
locn = forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc'
    loca :: SrcSpanAnnA
loca = forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc'
    -- For each class method, generate its derived binding and instance
    -- signature. Using the first example from
    -- Note [Newtype-deriving instances]:
    --
    --   class C a b where
    --     op :: forall c. a -> [b] -> c -> Int
    --
    --   newtype T x = MkT <rep-ty>
    --
    -- Then we would generate <derived-op-impl> below:
    --
    --   instance C a <rep-ty> => C a (T x) where
    --     <derived-op-impl>
    mk_bind_and_sig :: Id -> (LHsBind GhcPs, LSig GhcPs)
    mk_bind_and_sig :: Id -> (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed))
mk_bind_and_sig Id
meth_id
      = ( -- The derived binding, e.g.,
          --
          --   op = coerce @(a -> [<rep-ty>] -> c -> Int)
          --               @(a -> [T x]      -> c -> Int)
          --               op
          LocatedAn NameAnn RdrName
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkRdrFunBind LocatedAn NameAnn RdrName
loc_meth_RDR [forall (p :: Pass) (body :: * -> *).
(Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA,
 Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan) =>
HsMatchContext (NoGhcTc (GhcPass p))
-> [LPat (GhcPass p)]
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkSimpleMatch
                                        (forall p. LIdP p -> HsMatchContext p
mkPrefixFunRhs LocatedAn NameAnn RdrName
loc_meth_RDR)
                                        [] LHsExpr (GhcPass 'Parsed)
rhs_expr]
        , -- The derived instance signature, e.g.,
          --
          --   op :: forall c. a -> [T x] -> c -> Int
          --
          -- Make sure that `forall c` is in an HsOuterExplicit so that it
          -- scopes over the body of `op`. See "Wrinkle: Use HsOuterExplicit" in
          -- Note [GND and QuantifiedConstraints].
          forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loca forall a b. (a -> b) -> a -> b
$ forall pass.
XClassOpSig pass
-> Bool -> [LIdP pass] -> LHsSigType pass -> Sig pass
ClassOpSig forall a. EpAnn a
noAnn Bool
False [LocatedAn NameAnn RdrName
loc_meth_RDR]
                 forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loca forall a b. (a -> b) -> a -> b
$ EpAnnForallTy
-> [LHsTyVarBndr Specificity (GhcPass 'Parsed)]
-> LHsType (GhcPass 'Parsed)
-> HsSigType (GhcPass 'Parsed)
mkHsExplicitSigType forall a. EpAnn a
noAnn
                              (forall a b. (a -> b) -> [a] -> [b]
map forall flag. VarBndr Id flag -> LHsTyVarBndr flag (GhcPass 'Parsed)
mk_hs_tvb [TcInvisTVBinder]
to_tvbs)
                              (Type -> LHsType (GhcPass 'Parsed)
nlHsCoreTy Type
to_rho)
        )
      where
        Pair Type
from_ty Type
to_ty = Class -> [Id] -> [Type] -> Type -> Id -> Pair Type
mkCoerceClassMethEqn Class
cls [Id]
inst_tvs [Type]
inst_tys Type
rhs_ty Id
meth_id
        ([Id]
_, [Type]
_, Type
from_tau)  = Type -> ([Id], [Type], Type)
tcSplitSigmaTy Type
from_ty
        ([TcInvisTVBinder]
to_tvbs, Type
to_rho) = Type -> ([TcInvisTVBinder], Type)
tcSplitForAllInvisTVBinders Type
to_ty
        ([Type]
_, Type
to_tau)       = Type -> ([Type], Type)
tcSplitPhiTy Type
to_rho
        -- The use of tcSplitForAllInvisTVBinders above expands type synonyms,
        -- which is important to ensure correct type variable scoping.
        -- See "Wrinkle: Use HsOuterExplicit" in
        -- Note [GND and QuantifiedConstraints].

        mk_hs_tvb :: VarBndr TyVar flag -> LHsTyVarBndr flag GhcPs
        mk_hs_tvb :: forall flag. VarBndr Id flag -> LHsTyVarBndr flag (GhcPass 'Parsed)
mk_hs_tvb (Bndr Id
tv flag
flag) = forall a an. a -> LocatedAn an a
noLocA forall a b. (a -> b) -> a -> b
$ forall flag pass.
XKindedTyVar pass
-> flag -> LIdP pass -> LHsKind pass -> HsTyVarBndr flag pass
KindedTyVar forall a. EpAnn a
noAnn
                                                        flag
flag
                                                        (forall a an. a -> LocatedAn an a
noLocA (forall thing. NamedThing thing => thing -> RdrName
getRdrName Id
tv))
                                                        (Type -> LHsType (GhcPass 'Parsed)
nlHsCoreTy (Id -> Type
tyVarKind Id
tv))

        meth_RDR :: RdrName
meth_RDR = forall thing. NamedThing thing => thing -> RdrName
getRdrName Id
meth_id
        loc_meth_RDR :: LocatedAn NameAnn RdrName
loc_meth_RDR = forall l e. l -> e -> GenLocated l e
L SrcSpanAnn' (EpAnn NameAnn)
locn RdrName
meth_RDR

        rhs_expr :: LHsExpr (GhcPass 'Parsed)
rhs_expr = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar (forall thing. NamedThing thing => thing -> RdrName
getRdrName Id
coerceId)
                                      LHsExpr (GhcPass 'Parsed) -> Type -> LHsExpr (GhcPass 'Parsed)
`nlHsAppType`     Type
from_tau
                                      LHsExpr (GhcPass 'Parsed) -> Type -> LHsExpr (GhcPass 'Parsed)
`nlHsAppType`     Type
to_tau
                                      forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
`nlHsApp`         LocatedA (HsExpr (GhcPass 'Parsed))
meth_app

        -- The class method, applied to all of the class instance types
        -- (including the representation type) to avoid potential ambiguity.
        -- See Note [GND and ambiguity]
        meth_app :: LocatedA (HsExpr (GhcPass 'Parsed))
meth_app = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' LHsExpr (GhcPass 'Parsed) -> Type -> LHsExpr (GhcPass 'Parsed)
nlHsAppType (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
meth_RDR) forall a b. (a -> b) -> a -> b
$
                   TyCon -> [Type] -> [Type]
filterOutInferredTypes (Class -> TyCon
classTyCon Class
cls) [Type]
underlying_inst_tys
                     -- Filter out any inferred arguments, since they can't be
                     -- applied with visible type application.

    mk_atf_inst :: TyCon -> TcM FamInst
    mk_atf_inst :: TyCon -> TcM FamInst
mk_atf_inst TyCon
fam_tc = do
        Name
rep_tc_name <- LocatedN Name -> [Type] -> TcM Name
newFamInstTyConName (forall l e. l -> e -> GenLocated l e
L SrcSpanAnn' (EpAnn NameAnn)
locn (TyCon -> Name
tyConName TyCon
fam_tc))
                                           [Type]
rep_lhs_tys
        let axiom :: CoAxiom Unbranched
axiom = Role
-> Name
-> [Id]
-> [Id]
-> [Id]
-> TyCon
-> [Type]
-> Type
-> CoAxiom Unbranched
mkSingleCoAxiom Role
Nominal Name
rep_tc_name [Id]
rep_tvs' [] [Id]
rep_cvs'
                                    TyCon
fam_tc [Type]
rep_lhs_tys Type
rep_rhs_ty
        -- Check (c) from Note [GND and associated type families] in GHC.Tc.Deriv
        TyCon -> CoAxBranch -> TcM ()
checkValidCoAxBranch TyCon
fam_tc (CoAxiom Unbranched -> CoAxBranch
coAxiomSingleBranch CoAxiom Unbranched
axiom)
        FamFlavor -> CoAxiom Unbranched -> TcM FamInst
newFamInst FamFlavor
SynFamilyInst CoAxiom Unbranched
axiom
      where
        cls_tvs :: [Id]
cls_tvs     = Class -> [Id]
classTyVars Class
cls
        in_scope :: InScopeSet
in_scope    = VarSet -> InScopeSet
mkInScopeSet forall a b. (a -> b) -> a -> b
$ [Id] -> VarSet
mkVarSet [Id]
inst_tvs
        lhs_env :: TvSubstEnv
lhs_env     = HasDebugCallStack => [Id] -> [Type] -> TvSubstEnv
zipTyEnv [Id]
cls_tvs [Type]
inst_tys
        lhs_subst :: TCvSubst
lhs_subst   = InScopeSet -> TvSubstEnv -> TCvSubst
mkTvSubst InScopeSet
in_scope TvSubstEnv
lhs_env
        rhs_env :: TvSubstEnv
rhs_env     = HasDebugCallStack => [Id] -> [Type] -> TvSubstEnv
zipTyEnv [Id]
cls_tvs [Type]
underlying_inst_tys
        rhs_subst :: TCvSubst
rhs_subst   = InScopeSet -> TvSubstEnv -> TCvSubst
mkTvSubst InScopeSet
in_scope TvSubstEnv
rhs_env
        fam_tvs :: [Id]
fam_tvs     = TyCon -> [Id]
tyConTyVars TyCon
fam_tc
        rep_lhs_tys :: [Type]
rep_lhs_tys = TCvSubst -> [Id] -> [Type]
substTyVars TCvSubst
lhs_subst [Id]
fam_tvs
        rep_rhs_tys :: [Type]
rep_rhs_tys = TCvSubst -> [Id] -> [Type]
substTyVars TCvSubst
rhs_subst [Id]
fam_tvs
        rep_rhs_ty :: Type
rep_rhs_ty  = TyCon -> [Type] -> Type
mkTyConApp TyCon
fam_tc [Type]
rep_rhs_tys
        rep_tcvs :: [Id]
rep_tcvs    = [Type] -> [Id]
tyCoVarsOfTypesList [Type]
rep_lhs_tys
        ([Id]
rep_tvs, [Id]
rep_cvs) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition Id -> Bool
isTyVar [Id]
rep_tcvs
        rep_tvs' :: [Id]
rep_tvs'    = [Id] -> [Id]
scopedSort [Id]
rep_tvs
        rep_cvs' :: [Id]
rep_cvs'    = [Id] -> [Id]
scopedSort [Id]
rep_cvs

    -- Same as inst_tys, but with the last argument type replaced by the
    -- representation type.
    underlying_inst_tys :: [Type]
    underlying_inst_tys :: [Type]
underlying_inst_tys = forall a. [a] -> a -> [a]
changeLast [Type]
inst_tys Type
rhs_ty

nlHsAppType :: LHsExpr GhcPs -> Type -> LHsExpr GhcPs
nlHsAppType :: LHsExpr (GhcPass 'Parsed) -> Type -> LHsExpr (GhcPass 'Parsed)
nlHsAppType LHsExpr (GhcPass 'Parsed)
e Type
s = forall a an. a -> LocatedAn an a
noLocA (forall p.
XAppTypeE p -> LHsExpr p -> LHsWcType (NoGhcTc p) -> HsExpr p
HsAppType SrcSpan
noSrcSpan LHsExpr (GhcPass 'Parsed)
e HsWildCardBndrs
  (GhcPass 'Parsed)
  (GenLocated SrcSpanAnnA (HsType (GhcPass 'Parsed)))
hs_ty)
  where
    hs_ty :: HsWildCardBndrs
  (GhcPass 'Parsed)
  (GenLocated SrcSpanAnnA (HsType (GhcPass 'Parsed)))
hs_ty = forall thing. thing -> HsWildCardBndrs (GhcPass 'Parsed) thing
mkHsWildCardBndrs forall a b. (a -> b) -> a -> b
$ forall (p :: Pass).
PprPrec -> LHsType (GhcPass p) -> LHsType (GhcPass p)
parenthesizeHsType PprPrec
appPrec forall a b. (a -> b) -> a -> b
$ Type -> LHsType (GhcPass 'Parsed)
nlHsCoreTy Type
s

nlHsCoreTy :: HsCoreTy -> LHsType GhcPs
nlHsCoreTy :: Type -> LHsType (GhcPass 'Parsed)
nlHsCoreTy = forall a an. a -> LocatedAn an a
noLocA forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall pass. XXType pass -> HsType pass
XHsType

mkCoerceClassMethEqn :: Class   -- the class being derived
                     -> [TyVar] -- the tvs in the instance head (this includes
                                -- the tvs from both the class types and the
                                -- newtype itself)
                     -> [Type]  -- instance head parameters (incl. newtype)
                     -> Type    -- the representation type
                     -> Id      -- the method to look at
                     -> Pair Type
-- See Note [Newtype-deriving instances]
-- See also Note [Newtype-deriving trickiness]
-- The pair is the (from_type, to_type), where to_type is
-- the type of the method we are trying to get
mkCoerceClassMethEqn :: Class -> [Id] -> [Type] -> Type -> Id -> Pair Type
mkCoerceClassMethEqn Class
cls [Id]
inst_tvs [Type]
inst_tys Type
rhs_ty Id
id
  = forall a. a -> a -> Pair a
Pair (HasCallStack => TCvSubst -> Type -> Type
substTy TCvSubst
rhs_subst Type
user_meth_ty)
         (HasCallStack => TCvSubst -> Type -> Type
substTy TCvSubst
lhs_subst Type
user_meth_ty)
  where
    cls_tvs :: [Id]
cls_tvs = Class -> [Id]
classTyVars Class
cls
    in_scope :: InScopeSet
in_scope = VarSet -> InScopeSet
mkInScopeSet forall a b. (a -> b) -> a -> b
$ [Id] -> VarSet
mkVarSet [Id]
inst_tvs
    lhs_subst :: TCvSubst
lhs_subst = InScopeSet -> TvSubstEnv -> TCvSubst
mkTvSubst InScopeSet
in_scope (HasDebugCallStack => [Id] -> [Type] -> TvSubstEnv
zipTyEnv [Id]
cls_tvs [Type]
inst_tys)
    rhs_subst :: TCvSubst
rhs_subst = InScopeSet -> TvSubstEnv -> TCvSubst
mkTvSubst InScopeSet
in_scope (HasDebugCallStack => [Id] -> [Type] -> TvSubstEnv
zipTyEnv [Id]
cls_tvs (forall a. [a] -> a -> [a]
changeLast [Type]
inst_tys Type
rhs_ty))
    ([Id]
_class_tvs, Type
_class_constraint, Type
user_meth_ty)
      = Type -> ([Id], Type, Type)
tcSplitMethodTy (Id -> Type
varType Id
id)

{-
************************************************************************
*                                                                      *
\subsection{Generating extra binds (@tag2con@, etc.)}
*                                                                      *
************************************************************************

\begin{verbatim}
data Foo ... = ...

tag2con_Foo :: Int -> Foo ...   -- easier if Int, not Int#
maxtag_Foo  :: Int              -- ditto (NB: not unlifted)
\end{verbatim}

The `tags' here start at zero, hence the @fIRST_TAG@ (currently one)
fiddling around.
-}

-- | Generate the full code for an auxiliary binding.
-- See @Note [Auxiliary binders] (Wrinkle: Reducing code duplication)@.
genAuxBindSpecOriginal :: DynFlags -> SrcSpan -> AuxBindSpec
                       -> (LHsBind GhcPs, LSig GhcPs)
genAuxBindSpecOriginal :: DynFlags
-> SrcSpan
-> AuxBindSpec
-> (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed))
genAuxBindSpecOriginal DynFlags
dflags SrcSpan
loc AuxBindSpec
spec
  = (AuxBindSpec -> LHsBind (GhcPass 'Parsed)
gen_bind AuxBindSpec
spec,
     forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loca (forall pass.
XTypeSig pass -> [LIdP pass] -> LHsSigWcType pass -> Sig pass
TypeSig forall a. EpAnn a
noAnn [forall l e. l -> e -> GenLocated l e
L SrcSpanAnn' (EpAnn NameAnn)
locn (AuxBindSpec -> RdrName
auxBindSpecRdrName AuxBindSpec
spec)]
           (SrcSpan -> AuxBindSpec -> LHsSigWcType (GhcPass 'Parsed)
genAuxBindSpecSig SrcSpan
loc AuxBindSpec
spec)))
  where
    loca :: SrcSpanAnnA
loca = forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc
    locn :: SrcSpanAnn' (EpAnn NameAnn)
locn = forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc
    gen_bind :: AuxBindSpec -> LHsBind GhcPs
    gen_bind :: AuxBindSpec -> LHsBind (GhcPass 'Parsed)
gen_bind (DerivTag2Con TyCon
_ RdrName
tag2con_RDR)
      = Int
-> SrcSpan
-> RdrName
-> [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkFunBindSE Int
0 SrcSpan
loc RdrName
tag2con_RDR
           [([RdrName -> [RdrName] -> LPat (GhcPass 'Parsed)
nlConVarPat RdrName
intDataCon_RDR [RdrName
a_RDR]],
              forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
tagToEnum_RDR) LHsExpr (GhcPass 'Parsed)
a_Expr)]

    gen_bind (DerivMaxTag TyCon
tycon RdrName
maxtag_RDR)
      = SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
maxtag_RDR LHsExpr (GhcPass 'Parsed)
rhs
      where
        rhs :: LHsExpr (GhcPass 'Parsed)
rhs = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
intDataCon_RDR)
                      (forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall x. XHsIntPrim x -> Integer -> HsLit x
HsIntPrim SourceText
NoSourceText Integer
max_tag))
        max_tag :: Integer
max_tag =  case (TyCon -> [DataCon]
tyConDataCons TyCon
tycon) of
                     [DataCon]
data_cons -> forall a. Integral a => a -> Integer
toInteger ((forall (t :: * -> *) a. Foldable t => t a -> Int
length [DataCon]
data_cons) forall a. Num a => a -> a -> a
- Int
fIRST_TAG)

    gen_bind (DerivDataDataType TyCon
tycon RdrName
dataT_RDR [RdrName]
dataC_RDRs)
      = SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
dataT_RDR LHsExpr (GhcPass 'Parsed)
rhs
      where
        ctx :: SDocContext
ctx = DynFlags -> SDocContext
initDefaultSDocContext DynFlags
dflags
        rhs :: LHsExpr (GhcPass 'Parsed)
rhs = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
mkDataType_RDR
              forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
`nlHsApp` forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString (SDocContext -> SDoc -> String
showSDocOneLine SDocContext
ctx (forall a. Outputable a => a -> SDoc
ppr TyCon
tycon)))
              forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
`nlHsApp` [LHsExpr (GhcPass 'Parsed)] -> LHsExpr (GhcPass 'Parsed)
nlList (forall a b. (a -> b) -> [a] -> [b]
map forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar [RdrName]
dataC_RDRs)

    gen_bind (DerivDataConstr DataCon
dc RdrName
dataC_RDR RdrName
dataT_RDR)
      = SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
dataC_RDR LHsExpr (GhcPass 'Parsed)
rhs
      where
        rhs :: LHsExpr (GhcPass 'Parsed)
rhs = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps RdrName
mkConstrTag_RDR [LocatedA (HsExpr (GhcPass 'Parsed))]
constr_args

        constr_args :: [LocatedA (HsExpr (GhcPass 'Parsed))]
constr_args
           = [ forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
dataT_RDR                            -- DataType
             , forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString (OccName -> String
occNameString OccName
dc_occ))  -- Constructor name
             , forall (p :: Pass). Integer -> LHsExpr (GhcPass p)
nlHsIntLit (forall a. Integral a => a -> Integer
toInteger (DataCon -> Int
dataConTag DataCon
dc))       -- Constructor tag
             , [LHsExpr (GhcPass 'Parsed)] -> LHsExpr (GhcPass 'Parsed)
nlList  [LocatedA (HsExpr (GhcPass 'Parsed))]
labels                               -- Field labels
             , forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
fixity ]                             -- Fixity

        labels :: [LocatedA (HsExpr (GhcPass 'Parsed))]
labels   = forall a b. (a -> b) -> [a] -> [b]
map (forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString forall b c a. (b -> c) -> (a -> b) -> a -> c
. FastString -> String
unpackFS forall b c a. (b -> c) -> (a -> b) -> a -> c
. FieldLabel -> FastString
flLabel)
                       (DataCon -> [FieldLabel]
dataConFieldLabels DataCon
dc)
        dc_occ :: OccName
dc_occ   = forall a. NamedThing a => a -> OccName
getOccName DataCon
dc
        is_infix :: Bool
is_infix = OccName -> Bool
isDataSymOcc OccName
dc_occ
        fixity :: RdrName
fixity | Bool
is_infix  = RdrName
infix_RDR
               | Bool
otherwise = RdrName
prefix_RDR

-- | Generate the code for an auxiliary binding that is a duplicate of another
-- auxiliary binding.
-- See @Note [Auxiliary binders] (Wrinkle: Reducing code duplication)@.
genAuxBindSpecDup :: SrcSpan -> RdrName -> AuxBindSpec
                  -> (LHsBind GhcPs, LSig GhcPs)
genAuxBindSpecDup :: SrcSpan
-> RdrName
-> AuxBindSpec
-> (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed))
genAuxBindSpecDup SrcSpan
loc RdrName
original_rdr_name AuxBindSpec
dup_spec
  = (SrcSpan
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsBind (GhcPass 'Parsed)
mkHsVarBind SrcSpan
loc RdrName
dup_rdr_name (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
original_rdr_name),
     forall l e. l -> e -> GenLocated l e
L SrcSpanAnnA
loca (forall pass.
XTypeSig pass -> [LIdP pass] -> LHsSigWcType pass -> Sig pass
TypeSig forall a. EpAnn a
noAnn [forall l e. l -> e -> GenLocated l e
L SrcSpanAnn' (EpAnn NameAnn)
locn RdrName
dup_rdr_name]
           (SrcSpan -> AuxBindSpec -> LHsSigWcType (GhcPass 'Parsed)
genAuxBindSpecSig SrcSpan
loc AuxBindSpec
dup_spec)))
  where
    loca :: SrcSpanAnnA
loca = forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc
    locn :: SrcSpanAnn' (EpAnn NameAnn)
locn = forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc
    dup_rdr_name :: RdrName
dup_rdr_name = AuxBindSpec -> RdrName
auxBindSpecRdrName AuxBindSpec
dup_spec

-- | Generate the type signature of an auxiliary binding.
-- See @Note [Auxiliary binders]@.
genAuxBindSpecSig :: SrcSpan -> AuxBindSpec -> LHsSigWcType GhcPs
genAuxBindSpecSig :: SrcSpan -> AuxBindSpec -> LHsSigWcType (GhcPass 'Parsed)
genAuxBindSpecSig SrcSpan
loc AuxBindSpec
spec = case AuxBindSpec
spec of
  DerivTag2Con TyCon
tycon RdrName
_
    -> GenLocated SrcSpanAnnA (HsType (GhcPass 'Parsed))
-> HsWildCardBndrs
     (GhcPass 'Parsed)
     (GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Parsed)))
mk_sig forall a b. (a -> b) -> a -> b
$ forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) forall a b. (a -> b) -> a -> b
$
       forall pass. XXType pass -> HsType pass
XHsType forall a b. (a -> b) -> a -> b
$ [Id] -> Type -> Type
mkSpecForAllTys (TyCon -> [Id]
tyConTyVars TyCon
tycon) forall a b. (a -> b) -> a -> b
$
       Type
intTy Type -> Type -> Type
`mkVisFunTyMany` TyCon -> Type
mkParentType TyCon
tycon
  DerivMaxTag TyCon
_ RdrName
_
    -> GenLocated SrcSpanAnnA (HsType (GhcPass 'Parsed))
-> HsWildCardBndrs
     (GhcPass 'Parsed)
     (GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Parsed)))
mk_sig (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) (forall pass. XXType pass -> HsType pass
XHsType Type
intTy))
  DerivDataDataType TyCon
_ RdrName
_ [RdrName]
_
    -> GenLocated SrcSpanAnnA (HsType (GhcPass 'Parsed))
-> HsWildCardBndrs
     (GhcPass 'Parsed)
     (GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Parsed)))
mk_sig (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsType (GhcPass p)
nlHsTyVar RdrName
dataType_RDR)
  DerivDataConstr DataCon
_ RdrName
_ RdrName
_
    -> GenLocated SrcSpanAnnA (HsType (GhcPass 'Parsed))
-> HsWildCardBndrs
     (GhcPass 'Parsed)
     (GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Parsed)))
mk_sig (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsType (GhcPass p)
nlHsTyVar RdrName
constr_RDR)
  where
    mk_sig :: GenLocated SrcSpanAnnA (HsType (GhcPass 'Parsed))
-> HsWildCardBndrs
     (GhcPass 'Parsed)
     (GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Parsed)))
mk_sig = forall thing. thing -> HsWildCardBndrs (GhcPass 'Parsed) thing
mkHsWildCardBndrs forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) forall b c a. (b -> c) -> (a -> b) -> a -> c
. LHsType (GhcPass 'Parsed) -> HsSigType (GhcPass 'Parsed)
mkHsImplicitSigType

type SeparateBagsDerivStuff =
  -- DerivAuxBinds
  ( Bag (LHsBind GhcPs, LSig GhcPs)

  -- Extra family instances (used by DeriveGeneric, DeriveAnyClass, and
  -- GeneralizedNewtypeDeriving)
  , Bag FamInst )

-- | Take a 'BagDerivStuff' and partition it into 'SeparateBagsDerivStuff'.
-- Also generate the code for auxiliary bindings based on the declarative
-- descriptions in the supplied 'AuxBindSpec's. See @Note [Auxiliary binders]@.
genAuxBinds :: DynFlags -> SrcSpan -> BagDerivStuff -> SeparateBagsDerivStuff
genAuxBinds :: DynFlags -> SrcSpan -> BagDerivStuff -> SeparateBagsDerivStuff
genAuxBinds DynFlags
dflags SrcSpan
loc BagDerivStuff
b = (Bag AuxBindSpec
-> Bag
     (GenLocated
        SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)),
      GenLocated SrcSpanAnnA (Sig (GhcPass 'Parsed)))
gen_aux_bind_specs Bag AuxBindSpec
b1, Bag FamInst
b2) where
  (Bag AuxBindSpec
b1,Bag FamInst
b2) = forall a b c. (a -> Either b c) -> Bag a -> (Bag b, Bag c)
partitionBagWith DerivStuff -> Either AuxBindSpec FamInst
splitDerivAuxBind BagDerivStuff
b
  splitDerivAuxBind :: DerivStuff -> Either AuxBindSpec FamInst
splitDerivAuxBind (DerivAuxBind AuxBindSpec
x) = forall a b. a -> Either a b
Left AuxBindSpec
x
  splitDerivAuxBind (DerivFamInst FamInst
t) = forall a b. b -> Either a b
Right FamInst
t

  gen_aux_bind_specs :: Bag AuxBindSpec
-> Bag
     (GenLocated
        SrcSpanAnnA (HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)),
      GenLocated SrcSpanAnnA (Sig (GhcPass 'Parsed)))
gen_aux_bind_specs = forall a b. (a, b) -> b
snd forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr AuxBindSpec
-> (OccEnv RdrName,
    Bag (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed)))
-> (OccEnv RdrName,
    Bag (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed)))
gen_aux_bind_spec (forall a. OccEnv a
emptyOccEnv, forall a. Bag a
emptyBag)

  -- Perform a CSE-like pass over the generated auxiliary bindings to avoid
  -- code duplication, as described in
  -- Note [Auxiliary binders] (Wrinkle: Reducing code duplication).
  -- The OccEnv remembers the first occurrence of each sort of auxiliary
  -- binding and maps it to the unique RdrName for that binding.
  gen_aux_bind_spec :: AuxBindSpec
                    -> (OccEnv RdrName, Bag (LHsBind GhcPs, LSig GhcPs))
                    -> (OccEnv RdrName, Bag (LHsBind GhcPs, LSig GhcPs))
  gen_aux_bind_spec :: AuxBindSpec
-> (OccEnv RdrName,
    Bag (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed)))
-> (OccEnv RdrName,
    Bag (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed)))
gen_aux_bind_spec AuxBindSpec
spec (OccEnv RdrName
original_rdr_name_env, Bag (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed))
spec_bag) =
    case forall a. OccEnv a -> OccName -> Maybe a
lookupOccEnv OccEnv RdrName
original_rdr_name_env OccName
spec_occ of
      Maybe RdrName
Nothing
        -> ( forall a. OccEnv a -> OccName -> a -> OccEnv a
extendOccEnv OccEnv RdrName
original_rdr_name_env OccName
spec_occ RdrName
spec_rdr_name
           , DynFlags
-> SrcSpan
-> AuxBindSpec
-> (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed))
genAuxBindSpecOriginal DynFlags
dflags SrcSpan
loc AuxBindSpec
spec forall a. a -> Bag a -> Bag a
`consBag` Bag (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed))
spec_bag )
      Just RdrName
original_rdr_name
        -> ( OccEnv RdrName
original_rdr_name_env
           , SrcSpan
-> RdrName
-> AuxBindSpec
-> (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed))
genAuxBindSpecDup SrcSpan
loc RdrName
original_rdr_name AuxBindSpec
spec forall a. a -> Bag a -> Bag a
`consBag` Bag (LHsBind (GhcPass 'Parsed), LSig (GhcPass 'Parsed))
spec_bag )
    where
      spec_rdr_name :: RdrName
spec_rdr_name = AuxBindSpec -> RdrName
auxBindSpecRdrName AuxBindSpec
spec
      spec_occ :: OccName
spec_occ      = RdrName -> OccName
rdrNameOcc RdrName
spec_rdr_name

mkParentType :: TyCon -> Type
-- Turn the representation tycon of a family into
-- a use of its family constructor
mkParentType :: TyCon -> Type
mkParentType TyCon
tc
  = case TyCon -> Maybe (TyCon, [Type])
tyConFamInst_maybe TyCon
tc of
       Maybe (TyCon, [Type])
Nothing  -> TyCon -> [Type] -> Type
mkTyConApp TyCon
tc ([Id] -> [Type]
mkTyVarTys (TyCon -> [Id]
tyConTyVars TyCon
tc))
       Just (TyCon
fam_tc,[Type]
tys) -> TyCon -> [Type] -> Type
mkTyConApp TyCon
fam_tc [Type]
tys

{-
************************************************************************
*                                                                      *
\subsection{Utility bits for generating bindings}
*                                                                      *
************************************************************************
-}

-- | Make a function binding. If no equations are given, produce a function
-- with the given arity that produces a stock error.
mkFunBindSE :: Arity -> SrcSpan -> RdrName
             -> [([LPat GhcPs], LHsExpr GhcPs)]
             -> LHsBind GhcPs
mkFunBindSE :: Int
-> SrcSpan
-> RdrName
-> [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkFunBindSE Int
arity SrcSpan
loc RdrName
fun [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
pats_and_exprs
  = Int
-> LocatedAn NameAnn RdrName
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkRdrFunBindSE Int
arity (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) RdrName
fun) [GenLocated
   SrcSpanAnnA
   (Match (GhcPass 'Parsed) (LocatedA (HsExpr (GhcPass 'Parsed))))]
matches
  where
    matches :: [GenLocated
   SrcSpanAnnA
   (Match (GhcPass 'Parsed) (LocatedA (HsExpr (GhcPass 'Parsed))))]
matches = [forall (p :: Pass).
IsPass p =>
HsMatchContext (NoGhcTc (GhcPass p))
-> [LPat (GhcPass p)]
-> LHsExpr (GhcPass p)
-> HsLocalBinds (GhcPass p)
-> LMatch (GhcPass p) (LHsExpr (GhcPass p))
mkMatch (forall p. LIdP p -> HsMatchContext p
mkPrefixFunRhs (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) RdrName
fun))
                               (forall a b. (a -> b) -> [a] -> [b]
map (forall (p :: Pass).
IsPass p =>
PprPrec -> LPat (GhcPass p) -> LPat (GhcPass p)
parenthesizePat PprPrec
appPrec) [GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))]
p) LocatedA (HsExpr (GhcPass 'Parsed))
e
                               forall (a :: Pass) (b :: Pass).
HsLocalBindsLR (GhcPass a) (GhcPass b)
emptyLocalBinds
              | ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))]
p,LocatedA (HsExpr (GhcPass 'Parsed))
e) <-[([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
pats_and_exprs]

mkRdrFunBind :: LocatedN RdrName -> [LMatch GhcPs (LHsExpr GhcPs)]
             -> LHsBind GhcPs
mkRdrFunBind :: LocatedAn NameAnn RdrName
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkRdrFunBind fun :: LocatedAn NameAnn RdrName
fun@(L SrcSpanAnn' (EpAnn NameAnn)
loc RdrName
_fun_rdr) [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
matches
  = forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
na2la SrcSpanAnn' (EpAnn NameAnn)
loc) (Origin
-> LocatedAn NameAnn RdrName
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)
mkFunBind Origin
Generated LocatedAn NameAnn RdrName
fun [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
matches)

-- | Make a function binding. If no equations are given, produce a function
-- with the given arity that uses an empty case expression for the last
-- argument that is passes to the given function to produce the right-hand
-- side.
mkFunBindEC :: Arity -> SrcSpan -> RdrName
            -> (LHsExpr GhcPs -> LHsExpr GhcPs)
            -> [([LPat GhcPs], LHsExpr GhcPs)]
            -> LHsBind GhcPs
mkFunBindEC :: Int
-> SrcSpan
-> RdrName
-> (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))
-> [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkFunBindEC Int
arity SrcSpan
loc RdrName
fun LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
catch_all [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
pats_and_exprs
  = Int
-> (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))
-> LocatedAn NameAnn RdrName
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkRdrFunBindEC Int
arity LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
catch_all (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) RdrName
fun) [GenLocated
   SrcSpanAnnA
   (Match (GhcPass 'Parsed) (LocatedA (HsExpr (GhcPass 'Parsed))))]
matches
  where
    matches :: [GenLocated
   SrcSpanAnnA
   (Match (GhcPass 'Parsed) (LocatedA (HsExpr (GhcPass 'Parsed))))]
matches = [ forall (p :: Pass).
IsPass p =>
HsMatchContext (NoGhcTc (GhcPass p))
-> [LPat (GhcPass p)]
-> LHsExpr (GhcPass p)
-> HsLocalBinds (GhcPass p)
-> LMatch (GhcPass p) (LHsExpr (GhcPass p))
mkMatch (forall p. LIdP p -> HsMatchContext p
mkPrefixFunRhs (forall l e. l -> e -> GenLocated l e
L (forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan SrcSpan
loc) RdrName
fun))
                                (forall a b. (a -> b) -> [a] -> [b]
map (forall (p :: Pass).
IsPass p =>
PprPrec -> LPat (GhcPass p) -> LPat (GhcPass p)
parenthesizePat PprPrec
appPrec) [GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))]
p) LocatedA (HsExpr (GhcPass 'Parsed))
e
                                forall (a :: Pass) (b :: Pass).
HsLocalBindsLR (GhcPass a) (GhcPass b)
emptyLocalBinds
              | ([GenLocated SrcSpanAnnA (Pat (GhcPass 'Parsed))]
p,LocatedA (HsExpr (GhcPass 'Parsed))
e) <- [([LPat (GhcPass 'Parsed)], LHsExpr (GhcPass 'Parsed))]
pats_and_exprs ]

-- | Produces a function binding. When no equations are given, it generates
-- a binding of the given arity and an empty case expression
-- for the last argument that it passes to the given function to produce
-- the right-hand side.
mkRdrFunBindEC :: Arity
               -> (LHsExpr GhcPs -> LHsExpr GhcPs)
               -> LocatedN RdrName
               -> [LMatch GhcPs (LHsExpr GhcPs)]
               -> LHsBind GhcPs
mkRdrFunBindEC :: Int
-> (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))
-> LocatedAn NameAnn RdrName
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkRdrFunBindEC Int
arity LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
catch_all fun :: LocatedAn NameAnn RdrName
fun@(L SrcSpanAnn' (EpAnn NameAnn)
loc RdrName
_fun_rdr) [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
matches
  = forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
na2la SrcSpanAnn' (EpAnn NameAnn)
loc) (Origin
-> LocatedAn NameAnn RdrName
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)
mkFunBind Origin
Generated LocatedAn NameAnn RdrName
fun [GenLocated
   SrcSpanAnnA
   (Match (GhcPass 'Parsed) (LocatedA (HsExpr (GhcPass 'Parsed))))]
matches')
 where
   -- Catch-all eqn looks like
   --     fmap _ z = case z of {}
   -- or
   --     traverse _ z = pure (case z of)
   -- or
   --     foldMap _ z = mempty
   -- It's needed if there no data cons at all,
   -- which can happen with -XEmptyDataDecls
   -- See #4302
   matches' :: [GenLocated
   SrcSpanAnnA
   (Match (GhcPass 'Parsed) (LocatedA (HsExpr (GhcPass 'Parsed))))]
matches' = if forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
matches
              then [forall (p :: Pass).
IsPass p =>
HsMatchContext (NoGhcTc (GhcPass p))
-> [LPat (GhcPass p)]
-> LHsExpr (GhcPass p)
-> HsLocalBinds (GhcPass p)
-> LMatch (GhcPass p) (LHsExpr (GhcPass p))
mkMatch (forall p. LIdP p -> HsMatchContext p
mkPrefixFunRhs LocatedAn NameAnn RdrName
fun)
                            (forall a. Int -> a -> [a]
replicate (Int
arity forall a. Num a => a -> a -> a
- Int
1) LPat (GhcPass 'Parsed)
nlWildPat forall a. [a] -> [a] -> [a]
++ [LPat (GhcPass 'Parsed)
z_Pat])
                            (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
catch_all forall a b. (a -> b) -> a -> b
$ LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase LHsExpr (GhcPass 'Parsed)
z_Expr [])
                            forall (a :: Pass) (b :: Pass).
HsLocalBindsLR (GhcPass a) (GhcPass b)
emptyLocalBinds]
              else [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
matches

-- | Produces a function binding. When there are no equations, it generates
-- a binding with the given arity that produces an error based on the name of
-- the type of the last argument.
mkRdrFunBindSE :: Arity -> LocatedN RdrName ->
                    [LMatch GhcPs (LHsExpr GhcPs)] -> LHsBind GhcPs
mkRdrFunBindSE :: Int
-> LocatedAn NameAnn RdrName
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsBind (GhcPass 'Parsed)
mkRdrFunBindSE Int
arity fun :: LocatedAn NameAnn RdrName
fun@(L SrcSpanAnn' (EpAnn NameAnn)
loc RdrName
fun_rdr) [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
matches
  = forall l e. l -> e -> GenLocated l e
L (forall a ann. SrcSpanAnn' a -> SrcAnn ann
na2la SrcSpanAnn' (EpAnn NameAnn)
loc) (Origin
-> LocatedAn NameAnn RdrName
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> HsBindLR (GhcPass 'Parsed) (GhcPass 'Parsed)
mkFunBind Origin
Generated LocatedAn NameAnn RdrName
fun [GenLocated
   SrcSpanAnnA
   (Match (GhcPass 'Parsed) (LocatedA (HsExpr (GhcPass 'Parsed))))]
matches')
 where
   -- Catch-all eqn looks like
   --     compare _ _ = error "Void compare"
   -- It's needed if there no data cons at all,
   -- which can happen with -XEmptyDataDecls
   -- See #4302
   matches' :: [GenLocated
   SrcSpanAnnA
   (Match (GhcPass 'Parsed) (LocatedA (HsExpr (GhcPass 'Parsed))))]
matches' = if forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
matches
              then [forall (p :: Pass).
IsPass p =>
HsMatchContext (NoGhcTc (GhcPass p))
-> [LPat (GhcPass p)]
-> LHsExpr (GhcPass p)
-> HsLocalBinds (GhcPass p)
-> LMatch (GhcPass p) (LHsExpr (GhcPass p))
mkMatch (forall p. LIdP p -> HsMatchContext p
mkPrefixFunRhs LocatedAn NameAnn RdrName
fun)
                            (forall a. Int -> a -> [a]
replicate Int
arity LPat (GhcPass 'Parsed)
nlWildPat)
                            (String -> LHsExpr (GhcPass 'Parsed)
error_Expr String
str) forall (a :: Pass) (b :: Pass).
HsLocalBindsLR (GhcPass a) (GhcPass b)
emptyLocalBinds]
              else [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
matches
   str :: String
str = String
"Void " forall a. [a] -> [a] -> [a]
++ OccName -> String
occNameString (RdrName -> OccName
rdrNameOcc RdrName
fun_rdr)


box ::         String           -- The class involved
            -> LHsExpr GhcPs    -- The argument
            -> Type             -- The argument type
            -> LHsExpr GhcPs    -- Boxed version of the arg
-- See Note [Deriving and unboxed types] in GHC.Tc.Deriv.Infer
box :: String
-> LHsExpr (GhcPass 'Parsed) -> Type -> LHsExpr (GhcPass 'Parsed)
box String
cls_str LHsExpr (GhcPass 'Parsed)
arg Type
arg_ty = forall a. HasCallStack => String -> [(Type, a)] -> Type -> a
assoc_ty_id String
cls_str [(Type, LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))]
boxConTbl Type
arg_ty LHsExpr (GhcPass 'Parsed)
arg

---------------------
primOrdOps :: String    -- The class involved
           -> Type      -- The type
           -> (RdrName, RdrName, RdrName, RdrName, RdrName)  -- (lt,le,eq,ge,gt)
-- See Note [Deriving and unboxed types] in GHC.Tc.Deriv.Infer
primOrdOps :: String -> Type -> (RdrName, RdrName, RdrName, RdrName, RdrName)
primOrdOps String
str Type
ty = forall a. HasCallStack => String -> [(Type, a)] -> Type -> a
assoc_ty_id String
str [(Type, (RdrName, RdrName, RdrName, RdrName, RdrName))]
ordOpTbl Type
ty

ordOpTbl :: [(Type, (RdrName, RdrName, RdrName, RdrName, RdrName))]
ordOpTbl :: [(Type, (RdrName, RdrName, RdrName, RdrName, RdrName))]
ordOpTbl
 =  [(Type
charPrimTy  , (RdrName
ltChar_RDR  , RdrName
leChar_RDR
     , RdrName
eqChar_RDR  , RdrName
geChar_RDR  , RdrName
gtChar_RDR  ))
    ,(Type
intPrimTy   , (RdrName
ltInt_RDR   , RdrName
leInt_RDR
     , RdrName
eqInt_RDR   , RdrName
geInt_RDR   , RdrName
gtInt_RDR   ))
    ,(Type
int8PrimTy  , (RdrName
ltInt8_RDR  , RdrName
leInt8_RDR
     , RdrName
eqInt8_RDR  , RdrName
geInt8_RDR  , RdrName
gtInt8_RDR   ))
    ,(Type
int16PrimTy , (RdrName
ltInt16_RDR , RdrName
leInt16_RDR
     , RdrName
eqInt16_RDR , RdrName
geInt16_RDR , RdrName
gtInt16_RDR   ))
    ,(Type
int32PrimTy , (RdrName
ltInt32_RDR , RdrName
leInt32_RDR
     , RdrName
eqInt32_RDR , RdrName
geInt32_RDR , RdrName
gtInt32_RDR   ))
    ,(Type
int64PrimTy , (RdrName
ltInt64_RDR , RdrName
leInt64_RDR
     , RdrName
eqInt64_RDR , RdrName
geInt64_RDR , RdrName
gtInt64_RDR   ))
    ,(Type
wordPrimTy  , (RdrName
ltWord_RDR  , RdrName
leWord_RDR
     , RdrName
eqWord_RDR  , RdrName
geWord_RDR  , RdrName
gtWord_RDR  ))
    ,(Type
word8PrimTy , (RdrName
ltWord8_RDR , RdrName
leWord8_RDR
     , RdrName
eqWord8_RDR , RdrName
geWord8_RDR , RdrName
gtWord8_RDR   ))
    ,(Type
word16PrimTy, (RdrName
ltWord16_RDR, RdrName
leWord16_RDR
     , RdrName
eqWord16_RDR, RdrName
geWord16_RDR, RdrName
gtWord16_RDR  ))
    ,(Type
word32PrimTy, (RdrName
ltWord32_RDR, RdrName
leWord32_RDR
     , RdrName
eqWord32_RDR, RdrName
geWord32_RDR, RdrName
gtWord32_RDR  ))
    ,(Type
word64PrimTy, (RdrName
ltWord64_RDR, RdrName
leWord64_RDR
     , RdrName
eqWord64_RDR, RdrName
geWord64_RDR, RdrName
gtWord64_RDR  ))
    ,(Type
addrPrimTy  , (RdrName
ltAddr_RDR  , RdrName
leAddr_RDR
     , RdrName
eqAddr_RDR  , RdrName
geAddr_RDR  , RdrName
gtAddr_RDR  ))
    ,(Type
floatPrimTy , (RdrName
ltFloat_RDR , RdrName
leFloat_RDR
     , RdrName
eqFloat_RDR , RdrName
geFloat_RDR , RdrName
gtFloat_RDR ))
    ,(Type
doublePrimTy, (RdrName
ltDouble_RDR, RdrName
leDouble_RDR
     , RdrName
eqDouble_RDR, RdrName
geDouble_RDR, RdrName
gtDouble_RDR)) ]

-- A mapping from a primitive type to a function that constructs its boxed
-- version.
-- NOTE: Int8#/Word8# will become Int/Word.
boxConTbl :: [(Type, LHsExpr GhcPs -> LHsExpr GhcPs)]
boxConTbl :: [(Type, LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))]
boxConTbl =
    [ (Type
charPrimTy  , forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
charDataCon))
    , (Type
intPrimTy   , forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
intDataCon))
    , (Type
wordPrimTy  , forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
wordDataCon ))
    , (Type
floatPrimTy , forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
floatDataCon ))
    , (Type
doublePrimTy, forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
doubleDataCon))
    , (Type
int8PrimTy,
        forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
intDataCon)
        forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
int8ToInt_RDR))
    , (Type
word8PrimTy,
        forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
wordDataCon)
        forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
word8ToWord_RDR))
    , (Type
int16PrimTy,
        forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
intDataCon)
        forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
int16ToInt_RDR))
    , (Type
word16PrimTy,
        forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
wordDataCon)
        forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
word16ToWord_RDR))
    , (Type
int32PrimTy,
        forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
intDataCon)
        forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
int32ToInt_RDR))
    , (Type
word32PrimTy,
        forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar forall a b. (a -> b) -> a -> b
$ forall thing. NamedThing thing => thing -> RdrName
getRdrName DataCon
wordDataCon)
        forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
word32ToWord_RDR))
    ]


-- | A table of postfix modifiers for unboxed values.
postfixModTbl :: [(Type, String)]
postfixModTbl :: [(Type, String)]
postfixModTbl
  = [(Type
charPrimTy  , String
"#" )
    ,(Type
intPrimTy   , String
"#" )
    ,(Type
wordPrimTy  , String
"##")
    ,(Type
floatPrimTy , String
"#" )
    ,(Type
doublePrimTy, String
"##")
    ,(Type
int8PrimTy, String
"#")
    ,(Type
word8PrimTy, String
"##")
    ,(Type
int16PrimTy, String
"#")
    ,(Type
word16PrimTy, String
"##")
    ,(Type
int32PrimTy, String
"#")
    ,(Type
word32PrimTy, String
"##")
    ]

primConvTbl :: [(Type, String)]
primConvTbl :: [(Type, String)]
primConvTbl =
    [ (Type
int8PrimTy, String
"intToInt8#")
    , (Type
word8PrimTy, String
"wordToWord8#")
    , (Type
int16PrimTy, String
"intToInt16#")
    , (Type
word16PrimTy, String
"wordToWord16#")
    , (Type
int32PrimTy, String
"intToInt32#")
    , (Type
word32PrimTy, String
"wordToWord32#")
    ]

litConTbl :: [(Type, LHsExpr GhcPs -> LHsExpr GhcPs)]
litConTbl :: [(Type, LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed))]
litConTbl
  = [(Type
charPrimTy  , forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
charPrimL_RDR))
    ,(Type
intPrimTy   , forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
intPrimL_RDR)
                      forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
toInteger_RDR))
    ,(Type
wordPrimTy  , forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
wordPrimL_RDR)
                      forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
toInteger_RDR))
    ,(Type
addrPrimTy  , forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
stringPrimL_RDR)
                      forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp
                          (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
map_RDR)
                          (RdrName
compose_RDR forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
`nlHsApps`
                            [ forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
fromIntegral_RDR
                            , forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
fromEnum_RDR
                            ])))
    ,(Type
floatPrimTy , forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
floatPrimL_RDR)
                      forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
toRational_RDR))
    ,(Type
doublePrimTy, forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
doublePrimL_RDR)
                      forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
toRational_RDR))
    ]

-- | Lookup `Type` in an association list.
assoc_ty_id :: HasCallStack => String           -- The class involved
            -> [(Type,a)]       -- The table
            -> Type             -- The type
            -> a                -- The result of the lookup
assoc_ty_id :: forall a. HasCallStack => String -> [(Type, a)] -> Type -> a
assoc_ty_id String
cls_str [(Type, a)]
tbl Type
ty
  | Just a
a <- forall a. [(Type, a)] -> Type -> Maybe a
assoc_ty_id_maybe [(Type, a)]
tbl Type
ty = a
a
  | Bool
otherwise =
      forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"Error in deriving:"
          (String -> SDoc
text String
"Can't derive" SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
cls_str SDoc -> SDoc -> SDoc
<+>
           String -> SDoc
text String
"for primitive type" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty)

-- | Lookup `Type` in an association list.
assoc_ty_id_maybe :: [(Type, a)] -> Type -> Maybe a
assoc_ty_id_maybe :: forall a. [(Type, a)] -> Type -> Maybe a
assoc_ty_id_maybe [(Type, a)]
tbl Type
ty = forall a b. (a, b) -> b
snd forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
find (\(Type
t, a
_) -> Type
t Type -> Type -> Bool
`eqType` Type
ty) [(Type, a)]
tbl

-----------------------------------------------------------------------

and_Expr :: LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
and_Expr :: LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
and_Expr LHsExpr (GhcPass 'Parsed)
a LHsExpr (GhcPass 'Parsed)
b = LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genOpApp LHsExpr (GhcPass 'Parsed)
a RdrName
and_RDR    LHsExpr (GhcPass 'Parsed)
b

-----------------------------------------------------------------------

eq_Expr :: Type -> LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
eq_Expr :: Type
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
eq_Expr Type
ty LHsExpr (GhcPass 'Parsed)
a LHsExpr (GhcPass 'Parsed)
b
    | Bool -> Bool
not (HasDebugCallStack => Type -> Bool
isUnliftedType Type
ty) = LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genOpApp LHsExpr (GhcPass 'Parsed)
a RdrName
eq_RDR LHsExpr (GhcPass 'Parsed)
b
    | Bool
otherwise               = LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genPrimOpApp LHsExpr (GhcPass 'Parsed)
a RdrName
prim_eq LHsExpr (GhcPass 'Parsed)
b
 where
   (RdrName
_, RdrName
_, RdrName
prim_eq, RdrName
_, RdrName
_) = String -> Type -> (RdrName, RdrName, RdrName, RdrName, RdrName)
primOrdOps String
"Eq" Type
ty

untag_Expr :: [(RdrName, RdrName)]
           -> LHsExpr GhcPs -> LHsExpr GhcPs
untag_Expr :: [(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [] LHsExpr (GhcPass 'Parsed)
expr = LHsExpr (GhcPass 'Parsed)
expr
untag_Expr ((RdrName
untag_this, RdrName
put_tag_here) : [(RdrName, RdrName)]
more) LHsExpr (GhcPass 'Parsed)
expr
  = LHsExpr (GhcPass 'Parsed)
-> [LMatch (GhcPass 'Parsed) (LHsExpr (GhcPass 'Parsed))]
-> LHsExpr (GhcPass 'Parsed)
nlHsCase (forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps RdrName
dataToTag_RDR [RdrName
untag_this])) {-of-}
      [forall (p :: Pass) (body :: * -> *).
(Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpan,
 Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
 ~ SrcSpanAnnA) =>
LPat (GhcPass p)
-> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
put_tag_here) ([(RdrName, RdrName)]
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
untag_Expr [(RdrName, RdrName)]
more LHsExpr (GhcPass 'Parsed)
expr)]

enum_from_to_Expr
        :: LHsExpr GhcPs -> LHsExpr GhcPs
        -> LHsExpr GhcPs
enum_from_then_to_Expr
        :: LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
        -> LHsExpr GhcPs

enum_from_to_Expr :: LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
enum_from_to_Expr      LHsExpr (GhcPass 'Parsed)
f   LHsExpr (GhcPass 'Parsed)
t2 = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
enumFromTo_RDR) LHsExpr (GhcPass 'Parsed)
f) LHsExpr (GhcPass 'Parsed)
t2
enum_from_then_to_Expr :: LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
enum_from_then_to_Expr LHsExpr (GhcPass 'Parsed)
f LHsExpr (GhcPass 'Parsed)
t LHsExpr (GhcPass 'Parsed)
t2 = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
enumFromThenTo_RDR) LHsExpr (GhcPass 'Parsed)
f) LHsExpr (GhcPass 'Parsed)
t) LHsExpr (GhcPass 'Parsed)
t2

showParen_Expr
        :: LHsExpr GhcPs -> LHsExpr GhcPs
        -> LHsExpr GhcPs

showParen_Expr :: LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
showParen_Expr LHsExpr (GhcPass 'Parsed)
e1 LHsExpr (GhcPass 'Parsed)
e2 = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
showParen_RDR) LHsExpr (GhcPass 'Parsed)
e1) LHsExpr (GhcPass 'Parsed)
e2

nested_compose_Expr :: [LHsExpr GhcPs] -> LHsExpr GhcPs

nested_compose_Expr :: [LHsExpr (GhcPass 'Parsed)] -> LHsExpr (GhcPass 'Parsed)
nested_compose_Expr []  = forall a. String -> a
panic String
"nested_compose_expr"   -- Arg is always non-empty
nested_compose_Expr [LHsExpr (GhcPass 'Parsed)
e] = LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
parenify LHsExpr (GhcPass 'Parsed)
e
nested_compose_Expr (LHsExpr (GhcPass 'Parsed)
e:[LHsExpr (GhcPass 'Parsed)]
es)
  = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
compose_RDR) (LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
parenify LHsExpr (GhcPass 'Parsed)
e)) ([LHsExpr (GhcPass 'Parsed)] -> LHsExpr (GhcPass 'Parsed)
nested_compose_Expr [LHsExpr (GhcPass 'Parsed)]
es)

-- impossible_Expr is used in case RHSs that should never happen.
-- We generate these to keep the desugarer from complaining that they *might* happen!
error_Expr :: String -> LHsExpr GhcPs
error_Expr :: String -> LHsExpr (GhcPass 'Parsed)
error_Expr String
string = forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
error_RDR) (forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString String
string))

-- illegal_Expr is used when signalling error conditions in the RHS of a derived
-- method. It is currently only used by Enum.{succ,pred}
illegal_Expr :: String -> String -> String -> LHsExpr GhcPs
illegal_Expr :: String -> String -> String -> LHsExpr (GhcPass 'Parsed)
illegal_Expr String
meth String
tp String
msg =
   forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
error_RDR) (forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString (String
meth forall a. [a] -> [a] -> [a]
++ Char
'{'forall a. a -> [a] -> [a]
:String
tp forall a. [a] -> [a] -> [a]
++ String
"}: " forall a. [a] -> [a] -> [a]
++ String
msg)))

-- illegal_toEnum_tag is an extended version of illegal_Expr, which also allows you
-- to include the value of a_RDR in the error string.
illegal_toEnum_tag :: String -> RdrName -> LHsExpr GhcPs
illegal_toEnum_tag :: String -> RdrName -> LHsExpr (GhcPass 'Parsed)
illegal_toEnum_tag String
tp RdrName
maxtag =
   forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
error_RDR)
           (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
append_RDR)
                       (forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString (String
"toEnum{" forall a. [a] -> [a] -> [a]
++ String
tp forall a. [a] -> [a] -> [a]
++ String
"}: tag ("))))
                    (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp
                           (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
showsPrec_RDR)
                           (forall (p :: Pass). Integer -> LHsExpr (GhcPass p)
nlHsIntLit Integer
0))
                           (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
a_RDR))
                           (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp
                               (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
append_RDR)
                               (forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString String
") is outside of enumeration's range (0,")))
                               (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp
                                        (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
showsPrec_RDR)
                                        (forall (p :: Pass). Integer -> LHsExpr (GhcPass p)
nlHsIntLit Integer
0))
                                        (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
maxtag))
                                        (forall (p :: Pass). HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit (forall (p :: Pass). String -> HsLit (GhcPass p)
mkHsString String
")"))))))

parenify :: LHsExpr GhcPs -> LHsExpr GhcPs
parenify :: LHsExpr (GhcPass 'Parsed) -> LHsExpr (GhcPass 'Parsed)
parenify e :: LHsExpr (GhcPass 'Parsed)
e@(L SrcSpanAnnA
_ (HsVar XVar (GhcPass 'Parsed)
_ LIdP (GhcPass 'Parsed)
_)) = LHsExpr (GhcPass 'Parsed)
e
parenify LHsExpr (GhcPass 'Parsed)
e                   = forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
mkHsPar LHsExpr (GhcPass 'Parsed)
e

-- genOpApp wraps brackets round the operator application, so that the
-- renamer won't subsequently try to re-associate it.
genOpApp :: LHsExpr GhcPs -> RdrName -> LHsExpr GhcPs -> LHsExpr GhcPs
genOpApp :: LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genOpApp LHsExpr (GhcPass 'Parsed)
e1 RdrName
op LHsExpr (GhcPass 'Parsed)
e2 = forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar (LHsExpr (GhcPass 'Parsed)
-> IdP (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsOpApp LHsExpr (GhcPass 'Parsed)
e1 RdrName
op LHsExpr (GhcPass 'Parsed)
e2)

genPrimOpApp :: LHsExpr GhcPs -> RdrName -> LHsExpr GhcPs -> LHsExpr GhcPs
genPrimOpApp :: LHsExpr (GhcPass 'Parsed)
-> RdrName
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
genPrimOpApp LHsExpr (GhcPass 'Parsed)
e1 RdrName
op LHsExpr (GhcPass 'Parsed)
e2 = forall (id :: Pass). LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsPar (forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
tagToEnum_RDR) (LHsExpr (GhcPass 'Parsed)
-> IdP (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
-> LHsExpr (GhcPass 'Parsed)
nlHsOpApp LHsExpr (GhcPass 'Parsed)
e1 RdrName
op LHsExpr (GhcPass 'Parsed)
e2))

a_RDR, b_RDR, c_RDR, d_RDR, f_RDR, k_RDR, z_RDR, ah_RDR, bh_RDR, ch_RDR, dh_RDR
    :: RdrName
a_RDR :: RdrName
a_RDR           = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"a")
b_RDR :: RdrName
b_RDR           = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"b")
c_RDR :: RdrName
c_RDR           = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"c")
d_RDR :: RdrName
d_RDR           = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"d")
f_RDR :: RdrName
f_RDR           = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"f")
k_RDR :: RdrName
k_RDR           = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"k")
z_RDR :: RdrName
z_RDR           = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"z")
ah_RDR :: RdrName
ah_RDR          = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"a#")
bh_RDR :: RdrName
bh_RDR          = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"b#")
ch_RDR :: RdrName
ch_RDR          = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"c#")
dh_RDR :: RdrName
dh_RDR          = FastString -> RdrName
mkVarUnqual (String -> FastString
fsLit String
"d#")

as_RDRs, bs_RDRs, cs_RDRs :: [RdrName]
as_RDRs :: [RdrName]
as_RDRs         = [ FastString -> RdrName
mkVarUnqual (String -> FastString
mkFastString (String
"a"forall a. [a] -> [a] -> [a]
++forall a. Show a => a -> String
show Int
i)) | Int
i <- [(Int
1::Int) .. ] ]
bs_RDRs :: [RdrName]
bs_RDRs         = [ FastString -> RdrName
mkVarUnqual (String -> FastString
mkFastString (String
"b"forall a. [a] -> [a] -> [a]
++forall a. Show a => a -> String
show Int
i)) | Int
i <- [(Int
1::Int) .. ] ]
cs_RDRs :: [RdrName]
cs_RDRs         = [ FastString -> RdrName
mkVarUnqual (String -> FastString
mkFastString (String
"c"forall a. [a] -> [a] -> [a]
++forall a. Show a => a -> String
show Int
i)) | Int
i <- [(Int
1::Int) .. ] ]

a_Expr, b_Expr, c_Expr, z_Expr, ltTag_Expr, eqTag_Expr, gtTag_Expr, false_Expr,
    true_Expr, pure_Expr, unsafeCodeCoerce_Expr :: LHsExpr GhcPs
a_Expr :: LHsExpr (GhcPass 'Parsed)
a_Expr                = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
a_RDR
b_Expr :: LHsExpr (GhcPass 'Parsed)
b_Expr                = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
b_RDR
c_Expr :: LHsExpr (GhcPass 'Parsed)
c_Expr                = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
c_RDR
z_Expr :: LHsExpr (GhcPass 'Parsed)
z_Expr                = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
z_RDR
ltTag_Expr :: LHsExpr (GhcPass 'Parsed)
ltTag_Expr            = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
ltTag_RDR
eqTag_Expr :: LHsExpr (GhcPass 'Parsed)
eqTag_Expr            = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
eqTag_RDR
gtTag_Expr :: LHsExpr (GhcPass 'Parsed)
gtTag_Expr            = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
gtTag_RDR
false_Expr :: LHsExpr (GhcPass 'Parsed)
false_Expr            = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
false_RDR
true_Expr :: LHsExpr (GhcPass 'Parsed)
true_Expr             = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
true_RDR
pure_Expr :: LHsExpr (GhcPass 'Parsed)
pure_Expr             = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
pure_RDR
unsafeCodeCoerce_Expr :: LHsExpr (GhcPass 'Parsed)
unsafeCodeCoerce_Expr = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar RdrName
unsafeCodeCoerce_RDR

a_Pat, b_Pat, c_Pat, d_Pat, k_Pat, z_Pat :: LPat GhcPs
a_Pat :: LPat (GhcPass 'Parsed)
a_Pat           = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
a_RDR
b_Pat :: LPat (GhcPass 'Parsed)
b_Pat           = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
b_RDR
c_Pat :: LPat (GhcPass 'Parsed)
c_Pat           = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
c_RDR
d_Pat :: LPat (GhcPass 'Parsed)
d_Pat           = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
d_RDR
k_Pat :: LPat (GhcPass 'Parsed)
k_Pat           = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
k_RDR
z_Pat :: LPat (GhcPass 'Parsed)
z_Pat           = forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat RdrName
z_RDR

minusInt_RDR, tagToEnum_RDR :: RdrName
minusInt_RDR :: RdrName
minusInt_RDR  = forall thing. NamedThing thing => thing -> RdrName
getRdrName (PrimOp -> Id
primOpId PrimOp
IntSubOp   )
tagToEnum_RDR :: RdrName
tagToEnum_RDR = forall thing. NamedThing thing => thing -> RdrName
getRdrName (PrimOp -> Id
primOpId PrimOp
TagToEnumOp)

new_tag2con_rdr_name, new_maxtag_rdr_name
  :: SrcSpan -> TyCon -> TcM RdrName
-- Generates Exact RdrNames, for the binding positions
new_tag2con_rdr_name :: SrcSpan -> TyCon -> TcM RdrName
new_tag2con_rdr_name SrcSpan
dflags TyCon
tycon = SrcSpan -> TyCon -> (OccName -> OccName) -> TcM RdrName
new_tc_deriv_rdr_name SrcSpan
dflags TyCon
tycon OccName -> OccName
mkTag2ConOcc
new_maxtag_rdr_name :: SrcSpan -> TyCon -> TcM RdrName
new_maxtag_rdr_name  SrcSpan
dflags TyCon
tycon = SrcSpan -> TyCon -> (OccName -> OccName) -> TcM RdrName
new_tc_deriv_rdr_name SrcSpan
dflags TyCon
tycon OccName -> OccName
mkMaxTagOcc

new_dataT_rdr_name :: SrcSpan -> TyCon -> TcM RdrName
new_dataT_rdr_name :: SrcSpan -> TyCon -> TcM RdrName
new_dataT_rdr_name SrcSpan
dflags TyCon
tycon = SrcSpan -> TyCon -> (OccName -> OccName) -> TcM RdrName
new_tc_deriv_rdr_name SrcSpan
dflags TyCon
tycon OccName -> OccName
mkDataTOcc

new_dataC_rdr_name :: SrcSpan -> DataCon -> TcM RdrName
new_dataC_rdr_name :: SrcSpan -> DataCon -> TcM RdrName
new_dataC_rdr_name SrcSpan
dflags DataCon
dc = SrcSpan -> DataCon -> (OccName -> OccName) -> TcM RdrName
new_dc_deriv_rdr_name SrcSpan
dflags DataCon
dc OccName -> OccName
mkDataCOcc

new_tc_deriv_rdr_name :: SrcSpan -> TyCon -> (OccName -> OccName) -> TcM RdrName
new_tc_deriv_rdr_name :: SrcSpan -> TyCon -> (OccName -> OccName) -> TcM RdrName
new_tc_deriv_rdr_name SrcSpan
loc TyCon
tycon OccName -> OccName
occ_fun
  = SrcSpan -> Name -> (OccName -> OccName) -> TcM RdrName
newAuxBinderRdrName SrcSpan
loc (TyCon -> Name
tyConName TyCon
tycon) OccName -> OccName
occ_fun

new_dc_deriv_rdr_name :: SrcSpan -> DataCon -> (OccName -> OccName) -> TcM RdrName
new_dc_deriv_rdr_name :: SrcSpan -> DataCon -> (OccName -> OccName) -> TcM RdrName
new_dc_deriv_rdr_name SrcSpan
loc DataCon
dc OccName -> OccName
occ_fun
  = SrcSpan -> Name -> (OccName -> OccName) -> TcM RdrName
newAuxBinderRdrName SrcSpan
loc (DataCon -> Name
dataConName DataCon
dc) OccName -> OccName
occ_fun

-- | Generate the name for an auxiliary binding, giving it a fresh 'Unique'.
-- Returns an 'Exact' 'RdrName' with an underlying 'System' 'Name'.
-- See @Note [Auxiliary binders]@.
newAuxBinderRdrName :: SrcSpan -> Name -> (OccName -> OccName) -> TcM RdrName
newAuxBinderRdrName :: SrcSpan -> Name -> (OccName -> OccName) -> TcM RdrName
newAuxBinderRdrName SrcSpan
loc Name
parent OccName -> OccName
occ_fun = do
  Unique
uniq <- forall gbl lcl. TcRnIf gbl lcl Unique
newUnique
  forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ Name -> RdrName
Exact forall a b. (a -> b) -> a -> b
$ Unique -> OccName -> SrcSpan -> Name
mkSystemNameAt Unique
uniq (OccName -> OccName
occ_fun (Name -> OccName
nameOccName Name
parent)) SrcSpan
loc

-- | @getPossibleDataCons tycon tycon_args@ returns the constructors of @tycon@
-- whose return types match when checked against @tycon_args@.
--
-- See Note [Filter out impossible GADT data constructors]
getPossibleDataCons :: TyCon -> [Type] -> [DataCon]
getPossibleDataCons :: TyCon -> [Type] -> [DataCon]
getPossibleDataCons TyCon
tycon [Type]
tycon_args = forall a. (a -> Bool) -> [a] -> [a]
filter DataCon -> Bool
isPossible forall a b. (a -> b) -> a -> b
$ TyCon -> [DataCon]
tyConDataCons TyCon
tycon
  where
    isPossible :: DataCon -> Bool
isPossible = Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Type] -> DataCon -> Bool
dataConCannotMatch (TyCon -> [Type] -> [Type]
tyConInstArgTys TyCon
tycon [Type]
tycon_args)

-- | Given a type constructor @tycon@ of arity /n/ and a list of argument types
-- @tycon_args@ of length /m/,
--
-- @
-- tyConInstArgTys tycon tycon_args
-- @
--
-- returns
--
-- @
-- [tycon_arg_{1}, tycon_arg_{2}, ..., tycon_arg_{m}, extra_arg_{m+1}, ..., extra_arg_{n}]
-- @
--
-- where @extra_args@ are distinct type variables.
--
-- Examples:
--
-- * Given @tycon: Foo a b@ and @tycon_args: [Int, Bool]@, return @[Int, Bool]@.
--
-- * Given @tycon: Foo a b@ and @tycon_args: [Int]@, return @[Int, b]@.
tyConInstArgTys :: TyCon -> [Type] -> [Type]
tyConInstArgTys :: TyCon -> [Type] -> [Type]
tyConInstArgTys TyCon
tycon [Type]
tycon_args = forall a. [a] -> [a] -> [a]
chkAppend [Type]
tycon_args forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map Id -> Type
mkTyVarTy [Id]
tycon_args_suffix
  where
    tycon_args_suffix :: [Id]
tycon_args_suffix = forall a. Int -> [a] -> [a]
drop (forall (t :: * -> *) a. Foldable t => t a -> Int
length [Type]
tycon_args) forall a b. (a -> b) -> a -> b
$ TyCon -> [Id]
tyConTyVars TyCon
tycon

{-
Note [Auxiliary binders]
~~~~~~~~~~~~~~~~~~~~~~~~
We often want to make top-level auxiliary bindings in derived instances.
For example, derived Ix instances sometimes generate code like this:

  data T = ...
  deriving instance Ix T

  ==>

  instance Ix T where
    range (a, b) = map tag2con_T [dataToTag# a .. dataToTag# b]

  $tag2con_T :: Int -> T
  $tag2con_T = ...code....

Note that multiple instances of the same type might need to use the same sort
of auxiliary binding. For example, $tag2con is used not only in derived Ix
instances, but also in derived Enum instances:

  deriving instance Enum T

  ==>

  instance Enum T where
    toEnum i = tag2con_T i

  $tag2con_T :: Int -> T
  $tag2con_T = ...code....

How do we ensure that the two usages of $tag2con_T do not conflict with each
other? We do so by generating a separate $tag2con_T definition for each
instance, giving each definition an Exact RdrName with a separate Unique to
avoid name clashes:

  instance Ix T where
    range (a, b) = map tag2con_T{Uniq2} [dataToTag# a .. dataToTag# b]

  instance Enum T where
    toEnum a = $tag2con_T{Uniq2} a

   -- $tag2con_T{Uniq1} and $tag2con_T{Uniq2} are Exact RdrNames with
   -- underlying System Names

   $tag2con_T{Uniq1} :: Int -> T
   $tag2con_T{Uniq1} = ...code....

   $tag2con_T{Uniq2} :: Int -> T
   $tag2con_T{Uniq2} = ...code....

Note that:

* This is /precisely/ the same mechanism that we use for
  Template Haskell–generated code.
  See Note [Binders in Template Haskell] in GHC.ThToHs.
  There we explain why we use a 'System' flavour of the Name we generate.

* See "Wrinkle: Reducing code duplication" for how we can avoid generating
  lots of duplicated code in common situations.

* See "Wrinkle: Why we sometimes do generated duplicate code" for why this
  de-duplication mechanism isn't perfect, so we fall back to CSE
  (which is very effective within a single module).

* Note that the "_T" part of "$tag2con_T" is just for debug-printing
  purposes. We could call them all "$tag2con", or even just "aux".
  The Unique is enough to keep them separate.

  This is important: we might be generating an Eq instance for two
  completely-distinct imported type constructors T.

At first glance, it might appear that this plan is infeasible, as it would
require generating multiple top-level declarations with the same OccName. But
what if auxiliary bindings /weren't/ top-level? Conceptually, we could imagine
that auxiliary bindings are /local/ to the instance declarations in which they
are used. Using some hypothetical Haskell syntax, it might look like this:

  let {
    $tag2con_T{Uniq1} :: Int -> T
    $tag2con_T{Uniq1} = ...code....

    $tag2con_T{Uniq2} :: Int -> T
    $tag2con_T{Uniq2} = ...code....
  } in {
    instance Ix T where
      range (a, b) = map tag2con_T{Uniq2} [dataToTag# a .. dataToTag# b]

    instance Enum T where
      toEnum a = $tag2con_T{Uniq2} a
  }

Making auxiliary bindings local is key to making this work, since GHC will
not reject local bindings with duplicate names provided that:

* Each binding has a distinct unique, and
* Each binding has an Exact RdrName with a System Name.

Even though the hypothetical Haskell syntax above does not exist, we can
accomplish the same end result through some sleight of hand in renameDeriv:
we rename auxiliary bindings with rnLocalValBindsLHS. (If we had used
rnTopBindsLHS instead, then GHC would spuriously reject auxiliary bindings
with the same OccName as duplicates.) Luckily, no special treatment is needed
to typecheck them; we can typecheck them as normal top-level bindings
(using tcTopBinds) without danger.

-----
-- Wrinkle: Reducing code duplication
-----

While the approach of generating copies of each sort of auxiliary binder per
derived instance is simpler, it can lead to code bloat if done naïvely.
Consider this example:

  data T = ...
  deriving instance Eq T
  deriving instance Ord T

  ==>

  instance Ix T where
    range (a, b) = map tag2con_T{Uniq2} [dataToTag# a .. dataToTag# b]

  instance Enum T where
    toEnum a = $tag2con_T{Uniq2} a

  $tag2con_T{Uniq1} :: Int -> T
  $tag2con_T{Uniq1} = ...code....

  $tag2con_T{Uniq2} :: Int -> T
  $tag2con_T{Uniq2} = ...code....

$tag2con_T{Uniq1} and $tag2con_T{Uniq2} are blatant duplicates of each other,
which is not ideal. Surely GHC can do better than that at the very least! And
indeed it does. Within the genAuxBinds function, GHC performs a small CSE-like
pass to define duplicate auxiliary binders in terms of the original one. On
the example above, that would look like this:

  $tag2con_T{Uniq1} :: Int -> T
  $tag2con_T{Uniq1} = ...code....

  $tag2con_T{Uniq2} :: Int -> T
  $tag2con_T{Uniq2} = $tag2con_T{Uniq1}

(Note that this pass does not cover all possible forms of code duplication.
See "Wrinkle: Why we sometimes do generate duplicate code" for situations
where genAuxBinds does not deduplicate code.)

To start, genAuxBinds is given a list of AuxBindSpecs, which describe the sort
of auxiliary bindings that must be generates along with their RdrNames. As
genAuxBinds processes this list, it marks the first occurrence of each sort of
auxiliary binding as the "original". For example, if genAuxBinds sees a
DerivCon2Tag for the first time (with the RdrName $tag2con_T{Uniq1}), then it
will generate the full code for a $tag2con binding:

  $tag2con_T{Uniq1} :: Int -> T
  $tag2con_T{Uniq1} = ...code....

Later, if genAuxBinds sees any additional DerivCon2Tag values, it will treat
them as duplicates. For example, if genAuxBinds later sees a DerivCon2Tag with
the RdrName $tag2con_T{Uniq2}, it will generate this code, which is much more
compact:

  $tag2con_T{Uniq2} :: Int -> T
  $tag2con_T{Uniq2} = $tag2con_T{Uniq1}

An alternative approach would be /not/ performing any kind of deduplication in
genAuxBinds at all and simply relying on GHC's simplifier to perform this kind
of CSE. But this is a more expensive analysis in general, while genAuxBinds can
accomplish the same result with a simple check.

-----
-- Wrinkle: Why we sometimes do generate duplicate code
-----

It is worth noting that deduplicating auxiliary binders is difficult in the
general case. Here are two particular examples where GHC cannot easily remove
duplicate copies of an auxiliary binding:

1. When derived instances are contained in different modules, as in the
   following example:

     module A where
       data T = ...
     module B where
       import A
       deriving instance Ix T
     module C where
       import B
       deriving instance Enum T

   The derived Eq and Enum instances for T make use of $tag2con_T, and since
   they are defined in separate modules, each module must produce its own copy
   of $tag2con_T.

2. When derived instances are separated by TH splices (#18321), as in the
   following example:

     module M where

     data T = ...
     deriving instance Ix T
     $(pure [])
     deriving instance Enum T

   Due to the way that GHC typechecks TyClGroups, genAuxBinds will run twice
   in this program: once for all the declarations before the TH splice, and
   once again for all the declarations after the TH splice. As a result,
   $tag2con_T will be generated twice, since genAuxBinds will be unable to
   recognize the presence of duplicates.

These situations are much rarer, so we do not spend any effort to deduplicate
auxiliary bindings there. Instead, we focus on the common case of multiple
derived instances within the same module, not separated by any TH splices.
(This is the case described in "Wrinkle: Reducing code duplication".) In
situation (1), we can at least fall back on GHC's simplifier to pick up
genAuxBinds' slack.

Note [Filter out impossible GADT data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Some stock-derivable classes will filter out impossible GADT data constructors,
to rule out problematic constructors when deriving instances. e.g.

```
data Foo a where
  X :: Foo Int
  Y :: (Bool -> Bool) -> Foo Bool
```

when deriving an instance on `Foo Int`, `Y` should be treated as if it didn't
exist in the first place. For instance, if we write

```
deriving instance Eq (Foo Int)
```

it should generate:

```
instance Eq (Foo Int) where
  X == X = True
```

Classes that filter constructors:

* Eq
* Ord
* Show
* Lift
* Functor
* Foldable
* Traversable

Classes that do not filter constructors:

* Enum: doesn't make sense for GADTs in the first place
* Bounded: only makes sense for GADTs with a single constructor
* Ix: only makes sense for GADTs with a single constructor
* Read: `Read a` returns `a` instead of consumes `a`, so filtering data
  constructors would make this function _more_ partial instead of less
* Data: derived implementations of gunfold rely on a constructor-indexing
  scheme that wouldn't work if certain constructors were filtered out
* Generic/Generic1: doesn't make sense for GADTs

Classes that do not currently filter constructors may do so in the future, if
there is a valid use-case and we have requirements for how they should work.

See #16341 and the T16341.hs test case.
-}