{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE BangPatterns #-}

-----------------------------------------------------------------------------
--
-- Stg to C-- code generation
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------

module GHC.StgToCmm ( codeGen ) where

#include "HsVersions.h"

import GHC.Prelude as Prelude

import GHC.StgToCmm.Prof (initCostCentres, ldvEnter)
import GHC.StgToCmm.Monad
import GHC.StgToCmm.Env
import GHC.StgToCmm.Bind
import GHC.StgToCmm.DataCon
import GHC.StgToCmm.Layout
import GHC.StgToCmm.Utils
import GHC.StgToCmm.Closure
import GHC.StgToCmm.Hpc
import GHC.StgToCmm.Ticky
import GHC.StgToCmm.Types (ModuleLFInfos)

import GHC.Cmm
import GHC.Cmm.Utils
import GHC.Cmm.CLabel

import GHC.Stg.Syntax
import GHC.Driver.Session
import GHC.Utils.Error

import GHC.Driver.Types
import GHC.Types.CostCentre
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.RepType
import GHC.Core.DataCon
import GHC.Core.TyCon
import GHC.Core.Multiplicity
import GHC.Unit.Module
import GHC.Utils.Outputable
import GHC.Data.Stream
import GHC.Types.Basic
import GHC.Types.Var.Set ( isEmptyDVarSet )
import GHC.SysTools.FileCleanup
import GHC.Types.Unique.FM
import GHC.Types.Name.Env

import GHC.Data.OrdList
import GHC.Cmm.Graph

import Data.IORef
import Control.Monad (when,void)
import GHC.Utils.Misc
import System.IO.Unsafe
import qualified Data.ByteString as BS

codeGen :: DynFlags
        -> Module
        -> [TyCon]
        -> CollectedCCs                -- (Local/global) cost-centres needing declaring/registering.
        -> [CgStgTopBinding]           -- Bindings to convert
        -> HpcInfo
        -> Stream IO CmmGroup ModuleLFInfos
                                       -- Output as a stream, so codegen can
                                       -- be interleaved with output

codeGen :: DynFlags
-> Module
-> [TyCon]
-> CollectedCCs
-> [CgStgTopBinding]
-> HpcInfo
-> Stream IO CmmGroup ModuleLFInfos
codeGen DynFlags
dflags Module
this_mod [TyCon]
data_tycons
        CollectedCCs
cost_centre_info [CgStgTopBinding]
stg_binds HpcInfo
hpc_info
  = do  {     -- cg: run the code generator, and yield the resulting CmmGroup
              -- Using an IORef to store the state is a bit crude, but otherwise
              -- we would need to add a state monad layer.
        ; IORef CgState
cgref <- IO (IORef CgState) -> Stream IO CmmGroup (IORef CgState)
forall a b. IO a -> Stream IO b a
liftIO (IO (IORef CgState) -> Stream IO CmmGroup (IORef CgState))
-> IO (IORef CgState) -> Stream IO CmmGroup (IORef CgState)
forall a b. (a -> b) -> a -> b
$ CgState -> IO (IORef CgState)
forall a. a -> IO (IORef a)
newIORef (CgState -> IO (IORef CgState)) -> IO CgState -> IO (IORef CgState)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< IO CgState
initC
        ; let cg :: FCode () -> Stream IO CmmGroup ()
              cg :: FCode () -> Stream IO CmmGroup ()
cg FCode ()
fcode = do
                CmmGroup
cmm <- IO CmmGroup -> Stream IO CmmGroup CmmGroup
forall a b. IO a -> Stream IO b a
liftIO (IO CmmGroup -> Stream IO CmmGroup CmmGroup)
-> (IO CmmGroup -> IO CmmGroup)
-> IO CmmGroup
-> Stream IO CmmGroup CmmGroup
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DynFlags -> SDoc -> (CmmGroup -> ()) -> IO CmmGroup -> IO CmmGroup
forall (m :: * -> *) a.
MonadIO m =>
DynFlags -> SDoc -> (a -> ()) -> m a -> m a
withTimingSilent DynFlags
dflags (String -> SDoc
text String
"STG -> Cmm") (CmmGroup -> () -> ()
`seq` ()) (IO CmmGroup -> Stream IO CmmGroup CmmGroup)
-> IO CmmGroup -> Stream IO CmmGroup CmmGroup
forall a b. (a -> b) -> a -> b
$ do
                         CgState
st <- IORef CgState -> IO CgState
forall a. IORef a -> IO a
readIORef IORef CgState
cgref
                         let (CmmGroup
a,CgState
st') = DynFlags
-> Module -> CgState -> FCode CmmGroup -> (CmmGroup, CgState)
forall a. DynFlags -> Module -> CgState -> FCode a -> (a, CgState)
runC DynFlags
dflags Module
this_mod CgState
st (FCode () -> FCode CmmGroup
getCmm FCode ()
fcode)

                         -- NB. stub-out cgs_tops and cgs_stmts.  This fixes
                         -- a big space leak.  DO NOT REMOVE!
                         IORef CgState -> CgState -> IO ()
forall a. IORef a -> a -> IO ()
writeIORef IORef CgState
cgref (CgState -> IO ()) -> CgState -> IO ()
forall a b. (a -> b) -> a -> b
$! CgState
st'{ cgs_tops :: OrdList CmmDecl
cgs_tops = OrdList CmmDecl
forall a. OrdList a
nilOL,
                                                  cgs_stmts :: CmmAGraph
cgs_stmts = CmmAGraph
mkNop }
                         CmmGroup -> IO CmmGroup
forall (m :: * -> *) a. Monad m => a -> m a
return CmmGroup
a
                CmmGroup -> Stream IO CmmGroup ()
forall (m :: * -> *) a. Monad m => a -> Stream m a ()
yield CmmGroup
cmm

               -- Note [codegen-split-init] the cmm_init block must come
               -- FIRST.  This is because when -split-objs is on we need to
               -- combine this block with its initialisation routines; see
               -- Note [pipeline-split-init].
        ; FCode () -> Stream IO CmmGroup ()
cg (CollectedCCs -> Module -> HpcInfo -> FCode ()
mkModuleInit CollectedCCs
cost_centre_info Module
this_mod HpcInfo
hpc_info)

        ; (CgStgTopBinding -> Stream IO CmmGroup ())
-> [CgStgTopBinding] -> Stream IO CmmGroup ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (FCode () -> Stream IO CmmGroup ()
cg (FCode () -> Stream IO CmmGroup ())
-> (CgStgTopBinding -> FCode ())
-> CgStgTopBinding
-> Stream IO CmmGroup ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DynFlags -> CgStgTopBinding -> FCode ()
cgTopBinding DynFlags
dflags) [CgStgTopBinding]
stg_binds

                -- Put datatype_stuff after code_stuff, because the
                -- datatype closure table (for enumeration types) to
                -- (say) PrelBase_True_closure, which is defined in
                -- code_stuff
        ; let do_tycon :: TyCon -> Stream IO CmmGroup ()
do_tycon TyCon
tycon = do
                -- Generate a table of static closures for an
                -- enumeration type Note that the closure pointers are
                -- tagged.
                 Bool -> Stream IO CmmGroup () -> Stream IO CmmGroup ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (TyCon -> Bool
isEnumerationTyCon TyCon
tycon) (Stream IO CmmGroup () -> Stream IO CmmGroup ())
-> Stream IO CmmGroup () -> Stream IO CmmGroup ()
forall a b. (a -> b) -> a -> b
$ FCode () -> Stream IO CmmGroup ()
cg (TyCon -> FCode ()
cgEnumerationTyCon TyCon
tycon)
                 (DataCon -> Stream IO CmmGroup ())
-> [DataCon] -> Stream IO CmmGroup ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (FCode () -> Stream IO CmmGroup ()
cg (FCode () -> Stream IO CmmGroup ())
-> (DataCon -> FCode ()) -> DataCon -> Stream IO CmmGroup ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DataCon -> FCode ()
cgDataCon) (TyCon -> [DataCon]
tyConDataCons TyCon
tycon)

        ; (TyCon -> Stream IO CmmGroup ())
-> [TyCon] -> Stream IO CmmGroup ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ TyCon -> Stream IO CmmGroup ()
do_tycon [TyCon]
data_tycons

        ; CgBindings
cg_id_infos <- CgState -> CgBindings
cgs_binds (CgState -> CgBindings)
-> Stream IO CmmGroup CgState -> Stream IO CmmGroup CgBindings
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> IO CgState -> Stream IO CmmGroup CgState
forall a b. IO a -> Stream IO b a
liftIO (IORef CgState -> IO CgState
forall a. IORef a -> IO a
readIORef IORef CgState
cgref)

          -- See Note [Conveying CAF-info and LFInfo between modules] in
          -- GHC.StgToCmm.Types
        ; let extractInfo :: CgIdInfo -> (Name, LambdaFormInfo)
extractInfo CgIdInfo
info = (Name
name, LambdaFormInfo
lf)
                where
                  !name :: Name
name = Id -> Name
idName (CgIdInfo -> Id
cg_id CgIdInfo
info)
                  !lf :: LambdaFormInfo
lf = CgIdInfo -> LambdaFormInfo
cg_lf CgIdInfo
info

              !generatedInfo :: ModuleLFInfos
generatedInfo
                | GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_OmitInterfacePragmas DynFlags
dflags
                = ModuleLFInfos
forall a. NameEnv a
emptyNameEnv
                | Bool
otherwise
                = [(Name, LambdaFormInfo)] -> ModuleLFInfos
forall a. [(Name, a)] -> NameEnv a
mkNameEnv ((CgIdInfo -> (Name, LambdaFormInfo))
-> [CgIdInfo] -> [(Name, LambdaFormInfo)]
forall a b. (a -> b) -> [a] -> [b]
Prelude.map CgIdInfo -> (Name, LambdaFormInfo)
extractInfo (CgBindings -> [CgIdInfo]
forall key elt. UniqFM key elt -> [elt]
eltsUFM CgBindings
cg_id_infos))

        ; ModuleLFInfos -> Stream IO CmmGroup ModuleLFInfos
forall (m :: * -> *) a. Monad m => a -> m a
return ModuleLFInfos
generatedInfo
        }

---------------------------------------------------------------
--      Top-level bindings
---------------------------------------------------------------

{- 'cgTopBinding' is only used for top-level bindings, since they need
to be allocated statically (not in the heap) and need to be labelled.
No unboxed bindings can happen at top level.

In the code below, the static bindings are accumulated in the
@MkCgState@, and transferred into the ``statics'' slot by @forkStatics@.
This is so that we can write the top level processing in a compositional
style, with the increasing static environment being plumbed as a state
variable. -}

cgTopBinding :: DynFlags -> CgStgTopBinding -> FCode ()
cgTopBinding :: DynFlags -> CgStgTopBinding -> FCode ()
cgTopBinding DynFlags
dflags (StgTopLifted (StgNonRec BinderP 'CodeGen
id GenStgRhs 'CodeGen
rhs))
  = do  { let (CgIdInfo
info, FCode ()
fcode) = DynFlags
-> RecFlag -> Id -> GenStgRhs 'CodeGen -> (CgIdInfo, FCode ())
cgTopRhs DynFlags
dflags RecFlag
NonRecursive Id
BinderP 'CodeGen
id GenStgRhs 'CodeGen
rhs
        ; FCode ()
fcode
        ; CgIdInfo -> FCode ()
addBindC CgIdInfo
info
        }

cgTopBinding DynFlags
dflags (StgTopLifted (StgRec [(BinderP 'CodeGen, GenStgRhs 'CodeGen)]
pairs))
  = do  { let ([Id]
bndrs, [GenStgRhs 'CodeGen]
rhss) = [(Id, GenStgRhs 'CodeGen)] -> ([Id], [GenStgRhs 'CodeGen])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Id, GenStgRhs 'CodeGen)]
[(BinderP 'CodeGen, GenStgRhs 'CodeGen)]
pairs
        ; let pairs' :: [(Id, GenStgRhs 'CodeGen)]
pairs' = [Id] -> [GenStgRhs 'CodeGen] -> [(Id, GenStgRhs 'CodeGen)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
bndrs [GenStgRhs 'CodeGen]
rhss
              r :: [(CgIdInfo, FCode ())]
r = (Id -> GenStgRhs 'CodeGen -> (CgIdInfo, FCode ()))
-> [(Id, GenStgRhs 'CodeGen)] -> [(CgIdInfo, FCode ())]
forall a b c. (a -> b -> c) -> [(a, b)] -> [c]
unzipWith (DynFlags
-> RecFlag -> Id -> GenStgRhs 'CodeGen -> (CgIdInfo, FCode ())
cgTopRhs DynFlags
dflags RecFlag
Recursive) [(Id, GenStgRhs 'CodeGen)]
pairs'
              ([CgIdInfo]
infos, [FCode ()]
fcodes) = [(CgIdInfo, FCode ())] -> ([CgIdInfo], [FCode ()])
forall a b. [(a, b)] -> ([a], [b])
unzip [(CgIdInfo, FCode ())]
r
        ; [CgIdInfo] -> FCode ()
addBindsC [CgIdInfo]
infos
        ; [FCode ()] -> FCode ()
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, Monad m) =>
t (m a) -> m ()
sequence_ [FCode ()]
fcodes
        }

cgTopBinding DynFlags
dflags (StgTopStringLit Id
id ByteString
str) = do
  let label :: CLabel
label = Name -> CLabel
mkBytesLabel (Id -> Name
idName Id
id)
  -- emit either a CmmString literal or dump the string in a file and emit a
  -- CmmFileEmbed literal.
  -- See Note [Embedding large binary blobs] in GHC.CmmToAsm.Ppr
  let isNCG :: Bool
isNCG    = DynFlags -> HscTarget
hscTarget DynFlags
dflags HscTarget -> HscTarget -> Bool
forall a. Eq a => a -> a -> Bool
== HscTarget
HscAsm
      isSmall :: Bool
isSmall  = Int -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral (ByteString -> Int
BS.length ByteString
str) Word -> Word -> Bool
forall a. Ord a => a -> a -> Bool
<= DynFlags -> Word
binBlobThreshold DynFlags
dflags
      asString :: Bool
asString = DynFlags -> Word
binBlobThreshold DynFlags
dflags Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
== Word
0 Bool -> Bool -> Bool
|| Bool
isSmall

      (CmmLit
lit,GenCmmDecl (GenCmmStatics raw) info stmt
decl) = if Bool -> Bool
not Bool
isNCG Bool -> Bool -> Bool
|| Bool
asString
        then CLabel
-> ByteString -> (CmmLit, GenCmmDecl (GenCmmStatics raw) info stmt)
forall (raw :: Bool) info stmt.
CLabel
-> ByteString -> (CmmLit, GenCmmDecl (GenCmmStatics raw) info stmt)
mkByteStringCLit CLabel
label ByteString
str
        else CLabel
-> String -> (CmmLit, GenCmmDecl (GenCmmStatics raw) info stmt)
forall (raw :: Bool) info stmt.
CLabel
-> String -> (CmmLit, GenCmmDecl (GenCmmStatics raw) info stmt)
mkFileEmbedLit CLabel
label (String -> (CmmLit, GenCmmDecl (GenCmmStatics raw) info stmt))
-> String -> (CmmLit, GenCmmDecl (GenCmmStatics raw) info stmt)
forall a b. (a -> b) -> a -> b
$ IO String -> String
forall a. IO a -> a
unsafePerformIO (IO String -> String) -> IO String -> String
forall a b. (a -> b) -> a -> b
$ do
               String
bFile <- DynFlags -> TempFileLifetime -> String -> IO String
newTempName DynFlags
dflags TempFileLifetime
TFL_CurrentModule String
".dat"
               String -> ByteString -> IO ()
BS.writeFile String
bFile ByteString
str
               String -> IO String
forall (m :: * -> *) a. Monad m => a -> m a
return String
bFile
  CmmDecl -> FCode ()
emitDecl CmmDecl
forall {raw :: Bool} {info} {stmt}.
GenCmmDecl (GenCmmStatics raw) info stmt
decl
  CgIdInfo -> FCode ()
addBindC (DynFlags -> Id -> LambdaFormInfo -> CmmLit -> CgIdInfo
litIdInfo DynFlags
dflags Id
id LambdaFormInfo
mkLFStringLit CmmLit
lit)


cgTopRhs :: DynFlags -> RecFlag -> Id -> CgStgRhs -> (CgIdInfo, FCode ())
        -- The Id is passed along for setting up a binding...

cgTopRhs :: DynFlags
-> RecFlag -> Id -> GenStgRhs 'CodeGen -> (CgIdInfo, FCode ())
cgTopRhs DynFlags
dflags RecFlag
_rec Id
bndr (StgRhsCon CostCentreStack
_cc DataCon
con [StgArg]
args)
  = DynFlags
-> Id -> DataCon -> [NonVoid StgArg] -> (CgIdInfo, FCode ())
cgTopRhsCon DynFlags
dflags Id
bndr DataCon
con ([StgArg] -> [NonVoid StgArg]
assertNonVoidStgArgs [StgArg]
args)
      -- con args are always non-void,
      -- see Note [Post-unarisation invariants] in GHC.Stg.Unarise

cgTopRhs DynFlags
dflags RecFlag
rec Id
bndr (StgRhsClosure XRhsClosure 'CodeGen
fvs CostCentreStack
cc UpdateFlag
upd_flag [BinderP 'CodeGen]
args GenStgExpr 'CodeGen
body)
  = ASSERT(isEmptyDVarSet fvs)    -- There should be no free variables
    DynFlags
-> RecFlag
-> Id
-> CostCentreStack
-> UpdateFlag
-> [Id]
-> GenStgExpr 'CodeGen
-> (CgIdInfo, FCode ())
cgTopRhsClosure DynFlags
dflags RecFlag
rec Id
bndr CostCentreStack
cc UpdateFlag
upd_flag [Id]
[BinderP 'CodeGen]
args GenStgExpr 'CodeGen
body


---------------------------------------------------------------
--      Module initialisation code
---------------------------------------------------------------

mkModuleInit
        :: CollectedCCs         -- cost centre info
        -> Module
        -> HpcInfo
        -> FCode ()

mkModuleInit :: CollectedCCs -> Module -> HpcInfo -> FCode ()
mkModuleInit CollectedCCs
cost_centre_info Module
this_mod HpcInfo
hpc_info
  = do  { Module -> HpcInfo -> FCode ()
initHpc Module
this_mod HpcInfo
hpc_info
        ; CollectedCCs -> FCode ()
initCostCentres CollectedCCs
cost_centre_info
        }


---------------------------------------------------------------
--      Generating static stuff for algebraic data types
---------------------------------------------------------------


cgEnumerationTyCon :: TyCon -> FCode ()
cgEnumerationTyCon :: TyCon -> FCode ()
cgEnumerationTyCon TyCon
tycon
  = do DynFlags
dflags <- FCode DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       CLabel -> [CmmLit] -> FCode ()
emitRODataLits (Name -> CafInfo -> CLabel
mkLocalClosureTableLabel (TyCon -> Name
tyConName TyCon
tycon) CafInfo
NoCafRefs)
             [ CLabel -> Int -> CmmLit
CmmLabelOff (Name -> CafInfo -> CLabel
mkLocalClosureLabel (DataCon -> Name
dataConName DataCon
con) CafInfo
NoCafRefs)
                           (DynFlags -> DataCon -> Int
tagForCon DynFlags
dflags DataCon
con)
             | DataCon
con <- TyCon -> [DataCon]
tyConDataCons TyCon
tycon]


cgDataCon :: DataCon -> FCode ()
-- Generate the entry code, info tables, and (for niladic constructor)
-- the static closure, for a constructor.
cgDataCon :: DataCon -> FCode ()
cgDataCon DataCon
data_con
  = do  { DynFlags
dflags <- FCode DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
        ; Platform
platform <- FCode Platform
getPlatform
        ; let
            (Int
tot_wds, --  #ptr_wds + #nonptr_wds
             Int
ptr_wds) --  #ptr_wds
              = DynFlags -> [NonVoid PrimRep] -> (Int, Int)
mkVirtConstrSizes DynFlags
dflags [NonVoid PrimRep]
arg_reps

            nonptr_wds :: Int
nonptr_wds   = Int
tot_wds Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
ptr_wds

            dyn_info_tbl :: CmmInfoTable
dyn_info_tbl =
              DynFlags -> DataCon -> Bool -> Int -> Int -> CmmInfoTable
mkDataConInfoTable DynFlags
dflags DataCon
data_con Bool
False Int
ptr_wds Int
nonptr_wds

            -- We're generating info tables, so we don't know and care about
            -- what the actual arguments are. Using () here as the place holder.
            arg_reps :: [NonVoid PrimRep]
            arg_reps :: [NonVoid PrimRep]
arg_reps = [ PrimRep -> NonVoid PrimRep
forall a. a -> NonVoid a
NonVoid PrimRep
rep_ty
                       | Scaled Type
ty <- DataCon -> [Scaled Type]
dataConRepArgTys DataCon
data_con
                       , PrimRep
rep_ty <- HasDebugCallStack => Type -> [PrimRep]
Type -> [PrimRep]
typePrimRep (Scaled Type -> Type
forall a. Scaled a -> a
scaledThing Scaled Type
ty)
                       , Bool -> Bool
not (PrimRep -> Bool
isVoidRep PrimRep
rep_ty) ]

        ; CmmInfoTable -> Convention -> [LocalReg] -> FCode () -> FCode ()
emitClosureAndInfoTable CmmInfoTable
dyn_info_tbl Convention
NativeDirectCall [] (FCode () -> FCode ()) -> FCode () -> FCode ()
forall a b. (a -> b) -> a -> b
$
            -- NB: the closure pointer is assumed *untagged* on
            -- entry to a constructor.  If the pointer is tagged,
            -- then we should not be entering it.  This assumption
            -- is used in ldvEnter and when tagging the pointer to
            -- return it.
            -- NB 2: We don't set CC when entering data (WDP 94/06)
            do { FCode ()
tickyEnterDynCon
               ; CmmExpr -> FCode ()
ldvEnter (CmmReg -> CmmExpr
CmmReg CmmReg
nodeReg)
               ; Int -> FCode ()
tickyReturnOldCon ([NonVoid PrimRep] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [NonVoid PrimRep]
arg_reps)
               ; FCode ReturnKind -> FCode ()
forall (f :: * -> *) a. Functor f => f a -> f ()
void (FCode ReturnKind -> FCode ()) -> FCode ReturnKind -> FCode ()
forall a b. (a -> b) -> a -> b
$ [CmmExpr] -> FCode ReturnKind
emitReturn [Platform -> CmmExpr -> Int -> CmmExpr
cmmOffsetB Platform
platform (CmmReg -> CmmExpr
CmmReg CmmReg
nodeReg) (DynFlags -> DataCon -> Int
tagForCon DynFlags
dflags DataCon
data_con)]
               }
                    -- The case continuation code expects a tagged pointer
        }