{-# LANGUAGE CPP #-}
{-# LANGUAGE MonadComprehensions #-}
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
module GHC.HsToCore.Match
( match, matchEquations, matchWrapper, matchSimply
, matchSinglePat, matchSinglePatVar
)
where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Platform
import {-#SOURCE#-} GHC.HsToCore.Expr (dsLExpr, dsSyntaxExpr)
import GHC.Types.Basic ( Origin(..) )
import GHC.Driver.Session
import GHC.Hs
import GHC.Tc.Utils.Zonk
import GHC.Tc.Types.Evidence
import GHC.Tc.Utils.Monad
import GHC.HsToCore.PmCheck
import GHC.Core
import GHC.Types.Literal
import GHC.Core.Utils
import GHC.Core.Make
import GHC.HsToCore.Monad
import GHC.HsToCore.Binds
import GHC.HsToCore.GuardedRHSs
import GHC.HsToCore.Utils
import GHC.Types.Id
import GHC.Core.ConLike
import GHC.Core.DataCon
import GHC.Core.PatSyn
import GHC.HsToCore.Match.Constructor
import GHC.HsToCore.Match.Literal
import GHC.Core.Type
import GHC.Core.Coercion ( eqCoercion )
import GHC.Core.TyCon ( isNewTyCon )
import GHC.Core.Multiplicity
import GHC.Builtin.Types
import GHC.Types.SrcLoc
import GHC.Data.Maybe
import GHC.Utils.Misc
import GHC.Types.Name
import GHC.Utils.Outputable
import GHC.Types.Basic ( isGenerated, il_value, fl_value, Boxity(..) )
import GHC.Data.FastString
import GHC.Types.Unique
import GHC.Types.Unique.DFM
import Control.Monad( unless )
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NEL
import qualified Data.Map as Map
type MatchId = Id
match :: [MatchId]
-> Type
-> [EquationInfo]
-> DsM (MatchResult CoreExpr)
match :: [Id] -> Kind -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match [] Kind
ty [EquationInfo]
eqns
= ASSERT2( not (null eqns), ppr ty )
MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
forall (m :: * -> *) a. Monad m => a -> m a
return ((MatchResult CoreExpr
-> MatchResult CoreExpr -> MatchResult CoreExpr)
-> [MatchResult CoreExpr] -> MatchResult CoreExpr
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 MatchResult CoreExpr
-> MatchResult CoreExpr -> MatchResult CoreExpr
combineMatchResults [MatchResult CoreExpr]
match_results)
where
match_results :: [MatchResult CoreExpr]
match_results = [ ASSERT( null (eqn_pats eqn) )
EquationInfo -> MatchResult CoreExpr
eqn_rhs EquationInfo
eqn
| EquationInfo
eqn <- [EquationInfo]
eqns ]
match (Id
v:[Id]
vs) Kind
ty [EquationInfo]
eqns
= ASSERT2( all (isInternalName . idName) vars, ppr vars )
do { DynFlags
dflags <- IOEnv (Env DsGblEnv DsLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; let platform :: Platform
platform = DynFlags -> Platform
targetPlatform DynFlags
dflags
; ([DsWrapper]
aux_binds, [EquationInfo]
tidy_eqns) <- (EquationInfo
-> IOEnv (Env DsGblEnv DsLclEnv) (DsWrapper, EquationInfo))
-> [EquationInfo]
-> IOEnv (Env DsGblEnv DsLclEnv) ([DsWrapper], [EquationInfo])
forall (m :: * -> *) a b c.
Applicative m =>
(a -> m (b, c)) -> [a] -> m ([b], [c])
mapAndUnzipM (Id
-> EquationInfo
-> IOEnv (Env DsGblEnv DsLclEnv) (DsWrapper, EquationInfo)
tidyEqnInfo Id
v) [EquationInfo]
eqns
; let grouped :: [NonEmpty (PatGroup, EquationInfo)]
grouped = Platform -> [EquationInfo] -> [NonEmpty (PatGroup, EquationInfo)]
groupEquations Platform
platform [EquationInfo]
tidy_eqns
; DumpFlag
-> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall gbl lcl. DumpFlag -> TcRnIf gbl lcl () -> TcRnIf gbl lcl ()
whenDOptM DumpFlag
Opt_D_dump_view_pattern_commoning ([NonEmpty (PatGroup, EquationInfo)] -> TcRnIf DsGblEnv DsLclEnv ()
forall {t :: * -> *} {b}.
Foldable t =>
[t (PatGroup, b)] -> TcRnIf DsGblEnv DsLclEnv ()
debug [NonEmpty (PatGroup, EquationInfo)]
grouped)
; NonEmpty (MatchResult CoreExpr)
match_results <- [NonEmpty (PatGroup, EquationInfo)]
-> DsM (NonEmpty (MatchResult CoreExpr))
match_groups [NonEmpty (PatGroup, EquationInfo)]
grouped
; MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
forall (m :: * -> *) a. Monad m => a -> m a
return (MatchResult CoreExpr -> DsM (MatchResult CoreExpr))
-> MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
forall a b. (a -> b) -> a -> b
$ (DsWrapper -> DsWrapper -> DsWrapper)
-> DsWrapper -> [DsWrapper] -> DsWrapper
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr DsWrapper -> DsWrapper -> DsWrapper
forall b c a. (b -> c) -> (a -> b) -> a -> c
(.) DsWrapper
forall a. a -> a
id [DsWrapper]
aux_binds DsWrapper -> MatchResult CoreExpr -> MatchResult CoreExpr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
(MatchResult CoreExpr
-> MatchResult CoreExpr -> MatchResult CoreExpr)
-> NonEmpty (MatchResult CoreExpr) -> MatchResult CoreExpr
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 MatchResult CoreExpr
-> MatchResult CoreExpr -> MatchResult CoreExpr
combineMatchResults NonEmpty (MatchResult CoreExpr)
match_results
}
where
vars :: NonEmpty Id
vars = Id
v Id -> [Id] -> NonEmpty Id
forall a. a -> [a] -> NonEmpty a
:| [Id]
vs
dropGroup :: Functor f => f (PatGroup,EquationInfo) -> f EquationInfo
dropGroup :: forall (f :: * -> *).
Functor f =>
f (PatGroup, EquationInfo) -> f EquationInfo
dropGroup = ((PatGroup, EquationInfo) -> EquationInfo)
-> f (PatGroup, EquationInfo) -> f EquationInfo
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (PatGroup, EquationInfo) -> EquationInfo
forall a b. (a, b) -> b
snd
match_groups :: [NonEmpty (PatGroup,EquationInfo)] -> DsM (NonEmpty (MatchResult CoreExpr))
match_groups :: [NonEmpty (PatGroup, EquationInfo)]
-> DsM (NonEmpty (MatchResult CoreExpr))
match_groups [] = Id -> Kind -> DsM (NonEmpty (MatchResult CoreExpr))
matchEmpty Id
v Kind
ty
match_groups (NonEmpty (PatGroup, EquationInfo)
g:[NonEmpty (PatGroup, EquationInfo)]
gs) = (NonEmpty (PatGroup, EquationInfo) -> DsM (MatchResult CoreExpr))
-> NonEmpty (NonEmpty (PatGroup, EquationInfo))
-> DsM (NonEmpty (MatchResult CoreExpr))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM NonEmpty (PatGroup, EquationInfo) -> DsM (MatchResult CoreExpr)
match_group (NonEmpty (NonEmpty (PatGroup, EquationInfo))
-> DsM (NonEmpty (MatchResult CoreExpr)))
-> NonEmpty (NonEmpty (PatGroup, EquationInfo))
-> DsM (NonEmpty (MatchResult CoreExpr))
forall a b. (a -> b) -> a -> b
$ NonEmpty (PatGroup, EquationInfo)
g NonEmpty (PatGroup, EquationInfo)
-> [NonEmpty (PatGroup, EquationInfo)]
-> NonEmpty (NonEmpty (PatGroup, EquationInfo))
forall a. a -> [a] -> NonEmpty a
:| [NonEmpty (PatGroup, EquationInfo)]
gs
match_group :: NonEmpty (PatGroup,EquationInfo) -> DsM (MatchResult CoreExpr)
match_group :: NonEmpty (PatGroup, EquationInfo) -> DsM (MatchResult CoreExpr)
match_group eqns :: NonEmpty (PatGroup, EquationInfo)
eqns@((PatGroup
group,EquationInfo
_) :| [(PatGroup, EquationInfo)]
_)
= case PatGroup
group of
PgCon {} -> NonEmpty Id
-> Kind
-> NonEmpty (NonEmpty EquationInfo)
-> DsM (MatchResult CoreExpr)
matchConFamily NonEmpty Id
vars Kind
ty ([NonEmpty EquationInfo] -> NonEmpty (NonEmpty EquationInfo)
forall {a}. [a] -> NonEmpty a
ne ([NonEmpty EquationInfo] -> NonEmpty (NonEmpty EquationInfo))
-> [NonEmpty EquationInfo] -> NonEmpty (NonEmpty EquationInfo)
forall a b. (a -> b) -> a -> b
$ [(DataCon, EquationInfo)] -> [NonEmpty EquationInfo]
forall a.
Uniquable a =>
[(a, EquationInfo)] -> [NonEmpty EquationInfo]
subGroupUniq [(DataCon
c,EquationInfo
e) | (PgCon DataCon
c, EquationInfo
e) <- [(PatGroup, EquationInfo)]
eqns'])
PgSyn {} -> NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchPatSyn NonEmpty Id
vars Kind
ty (NonEmpty (PatGroup, EquationInfo) -> NonEmpty EquationInfo
forall (f :: * -> *).
Functor f =>
f (PatGroup, EquationInfo) -> f EquationInfo
dropGroup NonEmpty (PatGroup, EquationInfo)
eqns)
PgLit {} -> NonEmpty Id
-> Kind
-> NonEmpty (NonEmpty EquationInfo)
-> DsM (MatchResult CoreExpr)
matchLiterals NonEmpty Id
vars Kind
ty ([NonEmpty EquationInfo] -> NonEmpty (NonEmpty EquationInfo)
forall {a}. [a] -> NonEmpty a
ne ([NonEmpty EquationInfo] -> NonEmpty (NonEmpty EquationInfo))
-> [NonEmpty EquationInfo] -> NonEmpty (NonEmpty EquationInfo)
forall a b. (a -> b) -> a -> b
$ [(Literal, EquationInfo)] -> [NonEmpty EquationInfo]
forall a. Ord a => [(a, EquationInfo)] -> [NonEmpty EquationInfo]
subGroupOrd [(Literal
l,EquationInfo
e) | (PgLit Literal
l, EquationInfo
e) <- [(PatGroup, EquationInfo)]
eqns'])
PatGroup
PgAny -> NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchVariables NonEmpty Id
vars Kind
ty (NonEmpty (PatGroup, EquationInfo) -> NonEmpty EquationInfo
forall (f :: * -> *).
Functor f =>
f (PatGroup, EquationInfo) -> f EquationInfo
dropGroup NonEmpty (PatGroup, EquationInfo)
eqns)
PgN {} -> NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchNPats NonEmpty Id
vars Kind
ty (NonEmpty (PatGroup, EquationInfo) -> NonEmpty EquationInfo
forall (f :: * -> *).
Functor f =>
f (PatGroup, EquationInfo) -> f EquationInfo
dropGroup NonEmpty (PatGroup, EquationInfo)
eqns)
PgOverS {}-> NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchNPats NonEmpty Id
vars Kind
ty (NonEmpty (PatGroup, EquationInfo) -> NonEmpty EquationInfo
forall (f :: * -> *).
Functor f =>
f (PatGroup, EquationInfo) -> f EquationInfo
dropGroup NonEmpty (PatGroup, EquationInfo)
eqns)
PgNpK {} -> NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchNPlusKPats NonEmpty Id
vars Kind
ty (NonEmpty (PatGroup, EquationInfo) -> NonEmpty EquationInfo
forall (f :: * -> *).
Functor f =>
f (PatGroup, EquationInfo) -> f EquationInfo
dropGroup NonEmpty (PatGroup, EquationInfo)
eqns)
PatGroup
PgBang -> NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchBangs NonEmpty Id
vars Kind
ty (NonEmpty (PatGroup, EquationInfo) -> NonEmpty EquationInfo
forall (f :: * -> *).
Functor f =>
f (PatGroup, EquationInfo) -> f EquationInfo
dropGroup NonEmpty (PatGroup, EquationInfo)
eqns)
PgCo {} -> NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchCoercion NonEmpty Id
vars Kind
ty (NonEmpty (PatGroup, EquationInfo) -> NonEmpty EquationInfo
forall (f :: * -> *).
Functor f =>
f (PatGroup, EquationInfo) -> f EquationInfo
dropGroup NonEmpty (PatGroup, EquationInfo)
eqns)
PgView {} -> NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchView NonEmpty Id
vars Kind
ty (NonEmpty (PatGroup, EquationInfo) -> NonEmpty EquationInfo
forall (f :: * -> *).
Functor f =>
f (PatGroup, EquationInfo) -> f EquationInfo
dropGroup NonEmpty (PatGroup, EquationInfo)
eqns)
PatGroup
PgOverloadedList -> NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchOverloadedList NonEmpty Id
vars Kind
ty (NonEmpty (PatGroup, EquationInfo) -> NonEmpty EquationInfo
forall (f :: * -> *).
Functor f =>
f (PatGroup, EquationInfo) -> f EquationInfo
dropGroup NonEmpty (PatGroup, EquationInfo)
eqns)
where eqns' :: [(PatGroup, EquationInfo)]
eqns' = NonEmpty (PatGroup, EquationInfo) -> [(PatGroup, EquationInfo)]
forall a. NonEmpty a -> [a]
NEL.toList NonEmpty (PatGroup, EquationInfo)
eqns
ne :: [a] -> NonEmpty a
ne [a]
l = case [a] -> Maybe (NonEmpty a)
forall a. [a] -> Maybe (NonEmpty a)
NEL.nonEmpty [a]
l of
Just NonEmpty a
nel -> NonEmpty a
nel
Maybe (NonEmpty a)
Nothing -> String -> SDoc -> NonEmpty a
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"match match_group" (SDoc -> NonEmpty a) -> SDoc -> NonEmpty a
forall a b. (a -> b) -> a -> b
$ String -> SDoc
text String
"Empty result should be impossible since input was non-empty"
debug :: [t (PatGroup, b)] -> TcRnIf DsGblEnv DsLclEnv ()
debug [t (PatGroup, b)]
eqns =
let gs :: [[LHsExpr GhcTc]]
gs = (t (PatGroup, b) -> [LHsExpr GhcTc])
-> [t (PatGroup, b)] -> [[LHsExpr GhcTc]]
forall a b. (a -> b) -> [a] -> [b]
map (\t (PatGroup, b)
group -> ((PatGroup, b) -> [LHsExpr GhcTc] -> [LHsExpr GhcTc])
-> [LHsExpr GhcTc] -> t (PatGroup, b) -> [LHsExpr GhcTc]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\ (PatGroup
p,b
_) -> \[LHsExpr GhcTc]
acc ->
case PatGroup
p of PgView LHsExpr GhcTc
e Kind
_ -> LHsExpr GhcTc
eLHsExpr GhcTc -> [LHsExpr GhcTc] -> [LHsExpr GhcTc]
forall a. a -> [a] -> [a]
:[LHsExpr GhcTc]
acc
PatGroup
_ -> [LHsExpr GhcTc]
acc) [] t (PatGroup, b)
group) [t (PatGroup, b)]
eqns
maybeWarn :: [SDoc] -> TcRnIf DsGblEnv DsLclEnv ()
maybeWarn [] = () -> TcRnIf DsGblEnv DsLclEnv ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
maybeWarn [SDoc]
l = WarnReason -> SDoc -> TcRnIf DsGblEnv DsLclEnv ()
warnDs WarnReason
NoReason ([SDoc] -> SDoc
vcat [SDoc]
l)
in
[SDoc] -> TcRnIf DsGblEnv DsLclEnv ()
maybeWarn ([SDoc] -> TcRnIf DsGblEnv DsLclEnv ())
-> [SDoc] -> TcRnIf DsGblEnv DsLclEnv ()
forall a b. (a -> b) -> a -> b
$ (([LHsExpr GhcTc] -> SDoc) -> [[LHsExpr GhcTc]] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (\[LHsExpr GhcTc]
g -> String -> SDoc
text String
"Putting these view expressions into the same case:" SDoc -> SDoc -> SDoc
<+> ([LHsExpr GhcTc] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LHsExpr GhcTc]
g))
(([LHsExpr GhcTc] -> Bool) -> [[LHsExpr GhcTc]] -> [[LHsExpr GhcTc]]
forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not (Bool -> Bool)
-> ([LHsExpr GhcTc] -> Bool) -> [LHsExpr GhcTc] -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [LHsExpr GhcTc] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null) [[LHsExpr GhcTc]]
gs))
matchEmpty :: MatchId -> Type -> DsM (NonEmpty (MatchResult CoreExpr))
matchEmpty :: Id -> Kind -> DsM (NonEmpty (MatchResult CoreExpr))
matchEmpty Id
var Kind
res_ty
= NonEmpty (MatchResult CoreExpr)
-> DsM (NonEmpty (MatchResult CoreExpr))
forall (m :: * -> *) a. Monad m => a -> m a
return [(CoreExpr -> DsM CoreExpr) -> MatchResult CoreExpr
forall a. (CoreExpr -> DsM a) -> MatchResult a
MR_Fallible CoreExpr -> DsM CoreExpr
mk_seq]
where
mk_seq :: CoreExpr -> DsM CoreExpr
mk_seq CoreExpr
fail = CoreExpr -> DsM CoreExpr
forall (m :: * -> *) a. Monad m => a -> m a
return (CoreExpr -> DsM CoreExpr) -> CoreExpr -> DsM CoreExpr
forall a b. (a -> b) -> a -> b
$ CoreExpr -> Scaled Kind -> Kind -> [CoreAlt] -> CoreExpr
mkWildCase (Id -> CoreExpr
forall b. Id -> Expr b
Var Id
var) (Id -> Scaled Kind
idScaledType Id
var) Kind
res_ty
[(AltCon
DEFAULT, [], CoreExpr
fail)]
matchVariables :: NonEmpty MatchId -> Type -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchVariables :: NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchVariables (Id
_ :| [Id]
vars) Kind
ty NonEmpty EquationInfo
eqns = [Id] -> Kind -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match [Id]
vars Kind
ty ([EquationInfo] -> DsM (MatchResult CoreExpr))
-> [EquationInfo] -> DsM (MatchResult CoreExpr)
forall a b. (a -> b) -> a -> b
$ NonEmpty EquationInfo -> [EquationInfo]
forall a. NonEmpty a -> [a]
NEL.toList (NonEmpty EquationInfo -> [EquationInfo])
-> NonEmpty EquationInfo -> [EquationInfo]
forall a b. (a -> b) -> a -> b
$ NonEmpty EquationInfo -> NonEmpty EquationInfo
forall (f :: * -> *). Functor f => f EquationInfo -> f EquationInfo
shiftEqns NonEmpty EquationInfo
eqns
matchBangs :: NonEmpty MatchId -> Type -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchBangs :: NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchBangs (Id
var :| [Id]
vars) Kind
ty NonEmpty EquationInfo
eqns
= do { MatchResult CoreExpr
match_result <- [Id] -> Kind -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match (Id
varId -> [Id] -> [Id]
forall a. a -> [a] -> [a]
:[Id]
vars) Kind
ty ([EquationInfo] -> DsM (MatchResult CoreExpr))
-> [EquationInfo] -> DsM (MatchResult CoreExpr)
forall a b. (a -> b) -> a -> b
$ NonEmpty EquationInfo -> [EquationInfo]
forall a. NonEmpty a -> [a]
NEL.toList (NonEmpty EquationInfo -> [EquationInfo])
-> NonEmpty EquationInfo -> [EquationInfo]
forall a b. (a -> b) -> a -> b
$
(Pat GhcTc -> Pat GhcTc) -> EquationInfo -> EquationInfo
decomposeFirstPat Pat GhcTc -> Pat GhcTc
getBangPat (EquationInfo -> EquationInfo)
-> NonEmpty EquationInfo -> NonEmpty EquationInfo
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NonEmpty EquationInfo
eqns
; MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Id -> Kind -> MatchResult CoreExpr -> MatchResult CoreExpr
mkEvalMatchResult Id
var Kind
ty MatchResult CoreExpr
match_result) }
matchCoercion :: NonEmpty MatchId -> Type -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchCoercion :: NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchCoercion (Id
var :| [Id]
vars) Kind
ty (eqns :: NonEmpty EquationInfo
eqns@(EquationInfo
eqn1 :| [EquationInfo]
_))
= do { let XPat (CoPat HsWrapper
co Pat GhcTc
pat Kind
_) = EquationInfo -> Pat GhcTc
firstPat EquationInfo
eqn1
; let pat_ty' :: Kind
pat_ty' = Pat GhcTc -> Kind
hsPatType Pat GhcTc
pat
; Id
var' <- Id -> Kind -> Kind -> DsM Id
newUniqueId Id
var (Id -> Kind
idMult Id
var) Kind
pat_ty'
; MatchResult CoreExpr
match_result <- [Id] -> Kind -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match (Id
var'Id -> [Id] -> [Id]
forall a. a -> [a] -> [a]
:[Id]
vars) Kind
ty ([EquationInfo] -> DsM (MatchResult CoreExpr))
-> [EquationInfo] -> DsM (MatchResult CoreExpr)
forall a b. (a -> b) -> a -> b
$ NonEmpty EquationInfo -> [EquationInfo]
forall a. NonEmpty a -> [a]
NEL.toList (NonEmpty EquationInfo -> [EquationInfo])
-> NonEmpty EquationInfo -> [EquationInfo]
forall a b. (a -> b) -> a -> b
$
(Pat GhcTc -> Pat GhcTc) -> EquationInfo -> EquationInfo
decomposeFirstPat Pat GhcTc -> Pat GhcTc
getCoPat (EquationInfo -> EquationInfo)
-> NonEmpty EquationInfo -> NonEmpty EquationInfo
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NonEmpty EquationInfo
eqns
; DsWrapper
core_wrap <- HsWrapper -> DsM DsWrapper
dsHsWrapper HsWrapper
co
; let bind :: Bind Id
bind = Id -> CoreExpr -> Bind Id
forall b. b -> Expr b -> Bind b
NonRec Id
var' (DsWrapper
core_wrap (Id -> CoreExpr
forall b. Id -> Expr b
Var Id
var))
; MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bind Id -> MatchResult CoreExpr -> MatchResult CoreExpr
mkCoLetMatchResult Bind Id
bind MatchResult CoreExpr
match_result) }
matchView :: NonEmpty MatchId -> Type -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchView :: NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchView (Id
var :| [Id]
vars) Kind
ty (eqns :: NonEmpty EquationInfo
eqns@(EquationInfo
eqn1 :| [EquationInfo]
_))
= do {
let ViewPat XViewPat GhcTc
_ LHsExpr GhcTc
viewExpr (L SrcSpan
_ Pat GhcTc
pat) = EquationInfo -> Pat GhcTc
firstPat EquationInfo
eqn1
; let pat_ty' :: Kind
pat_ty' = Pat GhcTc -> Kind
hsPatType Pat GhcTc
pat
; Id
var' <- Id -> Kind -> Kind -> DsM Id
newUniqueId Id
var (Id -> Kind
idMult Id
var) Kind
pat_ty'
; MatchResult CoreExpr
match_result <- [Id] -> Kind -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match (Id
var'Id -> [Id] -> [Id]
forall a. a -> [a] -> [a]
:[Id]
vars) Kind
ty ([EquationInfo] -> DsM (MatchResult CoreExpr))
-> [EquationInfo] -> DsM (MatchResult CoreExpr)
forall a b. (a -> b) -> a -> b
$ NonEmpty EquationInfo -> [EquationInfo]
forall a. NonEmpty a -> [a]
NEL.toList (NonEmpty EquationInfo -> [EquationInfo])
-> NonEmpty EquationInfo -> [EquationInfo]
forall a b. (a -> b) -> a -> b
$
(Pat GhcTc -> Pat GhcTc) -> EquationInfo -> EquationInfo
decomposeFirstPat Pat GhcTc -> Pat GhcTc
getViewPat (EquationInfo -> EquationInfo)
-> NonEmpty EquationInfo -> NonEmpty EquationInfo
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NonEmpty EquationInfo
eqns
; CoreExpr
viewExpr' <- LHsExpr GhcTc -> DsM CoreExpr
dsLExpr LHsExpr GhcTc
viewExpr
; MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Id -> CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr
mkViewMatchResult Id
var'
(SDoc -> CoreExpr -> DsWrapper
mkCoreAppDs (String -> SDoc
text String
"matchView") CoreExpr
viewExpr' (Id -> CoreExpr
forall b. Id -> Expr b
Var Id
var))
MatchResult CoreExpr
match_result) }
matchOverloadedList :: NonEmpty MatchId -> Type -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchOverloadedList :: NonEmpty Id
-> Kind -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchOverloadedList (Id
var :| [Id]
vars) Kind
ty (eqns :: NonEmpty EquationInfo
eqns@(EquationInfo
eqn1 :| [EquationInfo]
_))
= do { let ListPat (ListPatTc Kind
elt_ty (Just (Kind
_,SyntaxExpr GhcTc
e))) [LPat GhcTc]
_ = EquationInfo -> Pat GhcTc
firstPat EquationInfo
eqn1
; Id
var' <- Id -> Kind -> Kind -> DsM Id
newUniqueId Id
var (Id -> Kind
idMult Id
var) (Kind -> Kind
mkListTy Kind
elt_ty)
; MatchResult CoreExpr
match_result <- [Id] -> Kind -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match (Id
var'Id -> [Id] -> [Id]
forall a. a -> [a] -> [a]
:[Id]
vars) Kind
ty ([EquationInfo] -> DsM (MatchResult CoreExpr))
-> [EquationInfo] -> DsM (MatchResult CoreExpr)
forall a b. (a -> b) -> a -> b
$ NonEmpty EquationInfo -> [EquationInfo]
forall a. NonEmpty a -> [a]
NEL.toList (NonEmpty EquationInfo -> [EquationInfo])
-> NonEmpty EquationInfo -> [EquationInfo]
forall a b. (a -> b) -> a -> b
$
(Pat GhcTc -> Pat GhcTc) -> EquationInfo -> EquationInfo
decomposeFirstPat Pat GhcTc -> Pat GhcTc
getOLPat (EquationInfo -> EquationInfo)
-> NonEmpty EquationInfo -> NonEmpty EquationInfo
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NonEmpty EquationInfo
eqns
; CoreExpr
e' <- SyntaxExpr GhcTc -> [CoreExpr] -> DsM CoreExpr
dsSyntaxExpr SyntaxExpr GhcTc
e [Id -> CoreExpr
forall b. Id -> Expr b
Var Id
var]
; MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Id -> CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr
mkViewMatchResult Id
var' CoreExpr
e' MatchResult CoreExpr
match_result)
}
decomposeFirstPat :: (Pat GhcTc -> Pat GhcTc) -> EquationInfo -> EquationInfo
decomposeFirstPat :: (Pat GhcTc -> Pat GhcTc) -> EquationInfo -> EquationInfo
decomposeFirstPat Pat GhcTc -> Pat GhcTc
extractpat (eqn :: EquationInfo
eqn@(EqnInfo { eqn_pats :: EquationInfo -> [Pat GhcTc]
eqn_pats = Pat GhcTc
pat : [Pat GhcTc]
pats }))
= EquationInfo
eqn { eqn_pats :: [Pat GhcTc]
eqn_pats = Pat GhcTc -> Pat GhcTc
extractpat Pat GhcTc
pat Pat GhcTc -> [Pat GhcTc] -> [Pat GhcTc]
forall a. a -> [a] -> [a]
: [Pat GhcTc]
pats}
decomposeFirstPat Pat GhcTc -> Pat GhcTc
_ EquationInfo
_ = String -> EquationInfo
forall a. String -> a
panic String
"decomposeFirstPat"
getCoPat, getBangPat, getViewPat, getOLPat :: Pat GhcTc -> Pat GhcTc
getCoPat :: Pat GhcTc -> Pat GhcTc
getCoPat (XPat (CoPat HsWrapper
_ Pat GhcTc
pat Kind
_)) = Pat GhcTc
pat
getCoPat Pat GhcTc
_ = String -> Pat GhcTc
forall a. String -> a
panic String
"getCoPat"
getBangPat :: Pat GhcTc -> Pat GhcTc
getBangPat (BangPat XBangPat GhcTc
_ LPat GhcTc
pat ) = GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
LPat GhcTc
pat
getBangPat Pat GhcTc
_ = String -> Pat GhcTc
forall a. String -> a
panic String
"getBangPat"
getViewPat :: Pat GhcTc -> Pat GhcTc
getViewPat (ViewPat XViewPat GhcTc
_ LHsExpr GhcTc
_ LPat GhcTc
pat) = GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
LPat GhcTc
pat
getViewPat Pat GhcTc
_ = String -> Pat GhcTc
forall a. String -> a
panic String
"getViewPat"
getOLPat :: Pat GhcTc -> Pat GhcTc
getOLPat (ListPat (ListPatTc Kind
ty (Just (Kind, SyntaxExpr GhcTc)
_)) [LPat GhcTc]
pats)
= XListPat GhcTc -> [LPat GhcTc] -> Pat GhcTc
forall p. XListPat p -> [LPat p] -> Pat p
ListPat (Kind -> Maybe (Kind, SyntaxExpr GhcTc) -> ListPatTc
ListPatTc Kind
ty Maybe (Kind, SyntaxExpr GhcTc)
forall a. Maybe a
Nothing) [LPat GhcTc]
pats
getOLPat Pat GhcTc
_ = String -> Pat GhcTc
forall a. String -> a
panic String
"getOLPat"
tidyEqnInfo :: Id -> EquationInfo
-> DsM (DsWrapper, EquationInfo)
tidyEqnInfo :: Id
-> EquationInfo
-> IOEnv (Env DsGblEnv DsLclEnv) (DsWrapper, EquationInfo)
tidyEqnInfo Id
_ (EqnInfo { eqn_pats :: EquationInfo -> [Pat GhcTc]
eqn_pats = [] })
= String -> IOEnv (Env DsGblEnv DsLclEnv) (DsWrapper, EquationInfo)
forall a. String -> a
panic String
"tidyEqnInfo"
tidyEqnInfo Id
v eqn :: EquationInfo
eqn@(EqnInfo { eqn_pats :: EquationInfo -> [Pat GhcTc]
eqn_pats = Pat GhcTc
pat : [Pat GhcTc]
pats, eqn_orig :: EquationInfo -> Origin
eqn_orig = Origin
orig })
= do { (DsWrapper
wrap, Pat GhcTc
pat') <- Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
orig Pat GhcTc
pat
; (DsWrapper, EquationInfo)
-> IOEnv (Env DsGblEnv DsLclEnv) (DsWrapper, EquationInfo)
forall (m :: * -> *) a. Monad m => a -> m a
return (DsWrapper
wrap, EquationInfo
eqn { eqn_pats :: [Pat GhcTc]
eqn_pats = do Pat GhcTc
pat' Pat GhcTc -> [Pat GhcTc] -> [Pat GhcTc]
forall a. a -> [a] -> [a]
: [Pat GhcTc]
pats }) }
tidy1 :: Id
-> Origin
-> Pat GhcTc
-> DsM (DsWrapper,
Pat GhcTc)
tidy1 :: Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o (ParPat XParPat GhcTc
_ LPat GhcTc
pat) = Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o (GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
LPat GhcTc
pat)
tidy1 Id
v Origin
o (SigPat XSigPat GhcTc
_ LPat GhcTc
pat HsPatSigType (NoGhcTc GhcTc)
_) = Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o (GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
LPat GhcTc
pat)
tidy1 Id
_ Origin
_ (WildPat XWildPat GhcTc
ty) = (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (DsWrapper
idDsWrapper, XWildPat GhcTc -> Pat GhcTc
forall p. XWildPat p -> Pat p
WildPat XWildPat GhcTc
ty)
tidy1 Id
v Origin
o (BangPat XBangPat GhcTc
_ (L SrcSpan
l Pat GhcTc
p)) = Id -> Origin -> SrcSpan -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy_bang_pat Id
v Origin
o SrcSpan
l Pat GhcTc
p
tidy1 Id
v Origin
_ (VarPat XVarPat GhcTc
_ (L SrcSpan
_ IdP GhcTc
var))
= (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (Id -> Id -> DsWrapper
wrapBind Id
IdP GhcTc
var Id
v, XWildPat GhcTc -> Pat GhcTc
forall p. XWildPat p -> Pat p
WildPat (Id -> Kind
idType Id
IdP GhcTc
var))
tidy1 Id
v Origin
o (AsPat XAsPat GhcTc
_ (L SrcSpan
_ IdP GhcTc
var) LPat GhcTc
pat)
= do { (DsWrapper
wrap, Pat GhcTc
pat') <- Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o (GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
LPat GhcTc
pat)
; (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (Id -> Id -> DsWrapper
wrapBind Id
IdP GhcTc
var Id
v DsWrapper -> DsWrapper -> DsWrapper
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DsWrapper
wrap, Pat GhcTc
pat') }
tidy1 Id
v Origin
_ (LazyPat XLazyPat GhcTc
_ LPat GhcTc
pat)
= do { let unlifted_bndrs :: [Id]
unlifted_bndrs = (Id -> Bool) -> [Id] -> [Id]
forall a. (a -> Bool) -> [a] -> [a]
filter (HasDebugCallStack => Kind -> Bool
Kind -> Bool
isUnliftedType (Kind -> Bool) -> (Id -> Kind) -> Id -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Id -> Kind
idType) (LPat GhcTc -> [IdP GhcTc]
forall p. CollectPass p => LPat p -> [IdP p]
collectPatBinders LPat GhcTc
pat)
; Bool -> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless ([Id] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Id]
unlifted_bndrs) (TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ())
-> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall a b. (a -> b) -> a -> b
$
SrcSpan
-> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall a. SrcSpan -> DsM a -> DsM a
putSrcSpanDs (GenLocated SrcSpan (Pat GhcTc) -> SrcSpan
forall l e. GenLocated l e -> l
getLoc GenLocated SrcSpan (Pat GhcTc)
LPat GhcTc
pat) (TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ())
-> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall a b. (a -> b) -> a -> b
$
SDoc -> TcRnIf DsGblEnv DsLclEnv ()
errDs (SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"A lazy (~) pattern cannot bind variables of unlifted type." SDoc -> SDoc -> SDoc
$$
String -> SDoc
text String
"Unlifted variables:")
Int
2 ([SDoc] -> SDoc
vcat ((Id -> SDoc) -> [Id] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (\Id
id -> Id -> SDoc
forall a. Outputable a => a -> SDoc
ppr Id
id SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> Kind -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Id -> Kind
idType Id
id))
[Id]
unlifted_bndrs)))
; (Id
_,[(Id, CoreExpr)]
sel_prs) <- [[Tickish Id]]
-> LPat GhcTc -> CoreExpr -> DsM (Id, [(Id, CoreExpr)])
mkSelectorBinds [] LPat GhcTc
pat (Id -> CoreExpr
forall b. Id -> Expr b
Var Id
v)
; let sel_binds :: [Bind Id]
sel_binds = [Id -> CoreExpr -> Bind Id
forall b. b -> Expr b -> Bind b
NonRec Id
b CoreExpr
rhs | (Id
b,CoreExpr
rhs) <- [(Id, CoreExpr)]
sel_prs]
; (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return ([Bind Id] -> DsWrapper
mkCoreLets [Bind Id]
sel_binds, XWildPat GhcTc -> Pat GhcTc
forall p. XWildPat p -> Pat p
WildPat (Id -> Kind
idType Id
v)) }
tidy1 Id
_ Origin
_ (ListPat (ListPatTc Kind
ty Maybe (Kind, SyntaxExpr GhcTc)
Nothing) [LPat GhcTc]
pats )
= (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (DsWrapper
idDsWrapper, GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
list_ConPat)
where
list_ConPat :: GenLocated SrcSpan (Pat GhcTc)
list_ConPat = (GenLocated SrcSpan (Pat GhcTc)
-> GenLocated SrcSpan (Pat GhcTc)
-> GenLocated SrcSpan (Pat GhcTc))
-> GenLocated SrcSpan (Pat GhcTc)
-> [GenLocated SrcSpan (Pat GhcTc)]
-> GenLocated SrcSpan (Pat GhcTc)
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\ GenLocated SrcSpan (Pat GhcTc)
x GenLocated SrcSpan (Pat GhcTc)
y -> DataCon -> [LPat GhcTc] -> [Kind] -> LPat GhcTc
mkPrefixConPat DataCon
consDataCon [Item [GenLocated SrcSpan (Pat GhcTc)]
GenLocated SrcSpan (Pat GhcTc)
x, Item [GenLocated SrcSpan (Pat GhcTc)]
GenLocated SrcSpan (Pat GhcTc)
y] [Item [Kind]
Kind
ty])
(Kind -> LPat GhcTc
mkNilPat Kind
ty)
[GenLocated SrcSpan (Pat GhcTc)]
[LPat GhcTc]
pats
tidy1 Id
_ Origin
_ (TuplePat XTuplePat GhcTc
tys [LPat GhcTc]
pats Boxity
boxity)
= (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (DsWrapper
idDsWrapper, GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
LPat GhcTc
tuple_ConPat)
where
arity :: Int
arity = [GenLocated SrcSpan (Pat GhcTc)] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [GenLocated SrcSpan (Pat GhcTc)]
[LPat GhcTc]
pats
tuple_ConPat :: LPat GhcTc
tuple_ConPat = DataCon -> [LPat GhcTc] -> [Kind] -> LPat GhcTc
mkPrefixConPat (Boxity -> Int -> DataCon
tupleDataCon Boxity
boxity Int
arity) [LPat GhcTc]
pats [Kind]
tys'
tys' :: [Kind]
tys' = case Boxity
boxity of
Boxity
Unboxed -> (Kind -> Kind) -> [Kind] -> [Kind]
forall a b. (a -> b) -> [a] -> [b]
map HasDebugCallStack => Kind -> Kind
Kind -> Kind
getRuntimeRep [Kind]
XTuplePat GhcTc
tys [Kind] -> [Kind] -> [Kind]
forall a. [a] -> [a] -> [a]
++ [Kind]
XTuplePat GhcTc
tys
Boxity
Boxed -> [Kind]
XTuplePat GhcTc
tys
tidy1 Id
_ Origin
_ (SumPat XSumPat GhcTc
tys LPat GhcTc
pat Int
alt Int
arity)
= (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (DsWrapper
idDsWrapper, GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
LPat GhcTc
sum_ConPat)
where
sum_ConPat :: LPat GhcTc
sum_ConPat = DataCon -> [LPat GhcTc] -> [Kind] -> LPat GhcTc
mkPrefixConPat (Int -> Int -> DataCon
sumDataCon Int
alt Int
arity) [Item [GenLocated SrcSpan (Pat GhcTc)]
LPat GhcTc
pat] ((Kind -> Kind) -> [Kind] -> [Kind]
forall a b. (a -> b) -> [a] -> [b]
map HasDebugCallStack => Kind -> Kind
Kind -> Kind
getRuntimeRep [Kind]
XSumPat GhcTc
tys [Kind] -> [Kind] -> [Kind]
forall a. [a] -> [a] -> [a]
++ [Kind]
XSumPat GhcTc
tys)
tidy1 Id
_ Origin
o (LitPat XLitPat GhcTc
_ HsLit GhcTc
lit)
= do { Bool -> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Origin -> Bool
isGenerated Origin
o) (TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ())
-> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall a b. (a -> b) -> a -> b
$
HsLit GhcTc -> TcRnIf DsGblEnv DsLclEnv ()
warnAboutOverflowedLit HsLit GhcTc
lit
; (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (DsWrapper
idDsWrapper, HsLit GhcTc -> Pat GhcTc
tidyLitPat HsLit GhcTc
lit) }
tidy1 Id
_ Origin
o (NPat XNPat GhcTc
ty (L SrcSpan
_ lit :: HsOverLit GhcTc
lit@OverLit { ol_val :: forall p. HsOverLit p -> OverLitVal
ol_val = OverLitVal
v }) Maybe (SyntaxExpr GhcTc)
mb_neg SyntaxExpr GhcTc
eq)
= do { Bool -> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Origin -> Bool
isGenerated Origin
o) (TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ())
-> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall a b. (a -> b) -> a -> b
$
let lit' :: HsOverLit GhcTc
lit' | Just SyntaxExpr GhcTc
_ <- Maybe (SyntaxExpr GhcTc)
mb_neg = HsOverLit GhcTc
lit{ ol_val :: OverLitVal
ol_val = OverLitVal -> OverLitVal
negateOverLitVal OverLitVal
v }
| Bool
otherwise = HsOverLit GhcTc
lit
in HsOverLit GhcTc -> TcRnIf DsGblEnv DsLclEnv ()
warnAboutOverflowedOverLit HsOverLit GhcTc
lit'
; (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (DsWrapper
idDsWrapper, HsOverLit GhcTc
-> Maybe (SyntaxExpr GhcTc)
-> SyntaxExpr GhcTc
-> Kind
-> Pat GhcTc
tidyNPat HsOverLit GhcTc
lit Maybe (SyntaxExpr GhcTc)
mb_neg SyntaxExpr GhcTc
eq Kind
XNPat GhcTc
ty) }
tidy1 Id
_ Origin
o n :: Pat GhcTc
n@(NPlusKPat XNPlusKPat GhcTc
_ GenLocated SrcSpan (IdP GhcTc)
_ (L SrcSpan
_ HsOverLit GhcTc
lit1) HsOverLit GhcTc
lit2 SyntaxExpr GhcTc
_ SyntaxExpr GhcTc
_)
= do { Bool -> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Origin -> Bool
isGenerated Origin
o) (TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ())
-> TcRnIf DsGblEnv DsLclEnv () -> TcRnIf DsGblEnv DsLclEnv ()
forall a b. (a -> b) -> a -> b
$ do
HsOverLit GhcTc -> TcRnIf DsGblEnv DsLclEnv ()
warnAboutOverflowedOverLit HsOverLit GhcTc
lit1
HsOverLit GhcTc -> TcRnIf DsGblEnv DsLclEnv ()
warnAboutOverflowedOverLit HsOverLit GhcTc
lit2
; (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (DsWrapper
idDsWrapper, Pat GhcTc
n) }
tidy1 Id
_ Origin
_ Pat GhcTc
non_interesting_pat
= (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (DsWrapper
idDsWrapper, Pat GhcTc
non_interesting_pat)
tidy_bang_pat :: Id -> Origin -> SrcSpan -> Pat GhcTc
-> DsM (DsWrapper, Pat GhcTc)
tidy_bang_pat :: Id -> Origin -> SrcSpan -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy_bang_pat Id
v Origin
o SrcSpan
_ (ParPat XParPat GhcTc
_ (L SrcSpan
l Pat GhcTc
p)) = Id -> Origin -> SrcSpan -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy_bang_pat Id
v Origin
o SrcSpan
l Pat GhcTc
p
tidy_bang_pat Id
v Origin
o SrcSpan
_ (SigPat XSigPat GhcTc
_ (L SrcSpan
l Pat GhcTc
p) HsPatSigType (NoGhcTc GhcTc)
_) = Id -> Origin -> SrcSpan -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy_bang_pat Id
v Origin
o SrcSpan
l Pat GhcTc
p
tidy_bang_pat Id
v Origin
o SrcSpan
l (AsPat XAsPat GhcTc
x GenLocated SrcSpan (IdP GhcTc)
v' LPat GhcTc
p)
= Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o (XAsPat GhcTc
-> GenLocated SrcSpan (IdP GhcTc) -> LPat GhcTc -> Pat GhcTc
forall p. XAsPat p -> Located (IdP p) -> LPat p -> Pat p
AsPat XAsPat GhcTc
x GenLocated SrcSpan (IdP GhcTc)
v' (SrcSpan -> Pat GhcTc -> GenLocated SrcSpan (Pat GhcTc)
forall l e. l -> e -> GenLocated l e
L SrcSpan
l (XBangPat GhcTc -> LPat GhcTc -> Pat GhcTc
forall p. XBangPat p -> LPat p -> Pat p
BangPat NoExtField
XBangPat GhcTc
noExtField LPat GhcTc
p)))
tidy_bang_pat Id
v Origin
o SrcSpan
l (XPat (CoPat HsWrapper
w Pat GhcTc
p Kind
t))
= Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o (XXPat GhcTc -> Pat GhcTc
forall p. XXPat p -> Pat p
XPat (XXPat GhcTc -> Pat GhcTc) -> XXPat GhcTc -> Pat GhcTc
forall a b. (a -> b) -> a -> b
$ HsWrapper -> Pat GhcTc -> Kind -> CoPat
CoPat HsWrapper
w (XBangPat GhcTc -> LPat GhcTc -> Pat GhcTc
forall p. XBangPat p -> LPat p -> Pat p
BangPat NoExtField
XBangPat GhcTc
noExtField (SrcSpan -> Pat GhcTc -> GenLocated SrcSpan (Pat GhcTc)
forall l e. l -> e -> GenLocated l e
L SrcSpan
l Pat GhcTc
p)) Kind
t)
tidy_bang_pat Id
v Origin
o SrcSpan
_ p :: Pat GhcTc
p@(LitPat {}) = Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o Pat GhcTc
p
tidy_bang_pat Id
v Origin
o SrcSpan
_ p :: Pat GhcTc
p@(ListPat {}) = Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o Pat GhcTc
p
tidy_bang_pat Id
v Origin
o SrcSpan
_ p :: Pat GhcTc
p@(TuplePat {}) = Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o Pat GhcTc
p
tidy_bang_pat Id
v Origin
o SrcSpan
_ p :: Pat GhcTc
p@(SumPat {}) = Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o Pat GhcTc
p
tidy_bang_pat Id
v Origin
o SrcSpan
l p :: Pat GhcTc
p@(ConPat { pat_con :: forall p. Pat p -> Located (ConLikeP p)
pat_con = L SrcSpan
_ (RealDataCon DataCon
dc)
, pat_args :: forall p. Pat p -> HsConPatDetails p
pat_args = HsConPatDetails GhcTc
args
, pat_con_ext :: forall p. Pat p -> XConPat p
pat_con_ext = ConPatTc
{ cpt_arg_tys :: ConPatTc -> [Kind]
cpt_arg_tys = [Kind]
arg_tys
}
})
=
if TyCon -> Bool
isNewTyCon (DataCon -> TyCon
dataConTyCon DataCon
dc)
then Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o (Pat GhcTc
p { pat_args :: HsConPatDetails GhcTc
pat_args = SrcSpan -> Kind -> HsConPatDetails GhcTc -> HsConPatDetails GhcTc
push_bang_into_newtype_arg SrcSpan
l (Scaled Kind -> Kind
forall a. Scaled a -> a
scaledThing Scaled Kind
ty) HsConPatDetails GhcTc
args })
else Id -> Origin -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
tidy1 Id
v Origin
o Pat GhcTc
p
where
(Scaled Kind
ty:[Scaled Kind]
_) = DataCon -> [Kind] -> [Scaled Kind]
dataConInstArgTys DataCon
dc [Kind]
arg_tys
tidy_bang_pat Id
_ Origin
_ SrcSpan
l Pat GhcTc
p = (DsWrapper, Pat GhcTc) -> DsM (DsWrapper, Pat GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (DsWrapper
idDsWrapper, XBangPat GhcTc -> LPat GhcTc -> Pat GhcTc
forall p. XBangPat p -> LPat p -> Pat p
BangPat NoExtField
XBangPat GhcTc
noExtField (SrcSpan -> Pat GhcTc -> GenLocated SrcSpan (Pat GhcTc)
forall l e. l -> e -> GenLocated l e
L SrcSpan
l Pat GhcTc
p))
push_bang_into_newtype_arg :: SrcSpan
-> Type
-> HsConPatDetails GhcTc -> HsConPatDetails GhcTc
push_bang_into_newtype_arg :: SrcSpan -> Kind -> HsConPatDetails GhcTc -> HsConPatDetails GhcTc
push_bang_into_newtype_arg SrcSpan
l Kind
_ty (PrefixCon (LPat GhcTc
arg:[LPat GhcTc]
args))
= ASSERT( null args)
[GenLocated SrcSpan (Pat GhcTc)]
-> HsConDetails
(GenLocated SrcSpan (Pat GhcTc))
(HsRecFields GhcTc (GenLocated SrcSpan (Pat GhcTc)))
forall arg rec. [arg] -> HsConDetails arg rec
PrefixCon [SrcSpan -> Pat GhcTc -> GenLocated SrcSpan (Pat GhcTc)
forall l e. l -> e -> GenLocated l e
L SrcSpan
l (XBangPat GhcTc -> LPat GhcTc -> Pat GhcTc
forall p. XBangPat p -> LPat p -> Pat p
BangPat NoExtField
XBangPat GhcTc
noExtField LPat GhcTc
arg)]
push_bang_into_newtype_arg SrcSpan
l Kind
_ty (RecCon HsRecFields GhcTc (LPat GhcTc)
rf)
| HsRecFields { rec_flds :: forall p arg. HsRecFields p arg -> [LHsRecField p arg]
rec_flds = L SrcSpan
lf HsRecField GhcTc (LPat GhcTc)
fld : [LHsRecField GhcTc (LPat GhcTc)]
flds } <- HsRecFields GhcTc (LPat GhcTc)
rf
, HsRecField { hsRecFieldArg :: forall id arg. HsRecField' id arg -> arg
hsRecFieldArg = LPat GhcTc
arg } <- HsRecField GhcTc (LPat GhcTc)
fld
= ASSERT( null flds)
HsRecFields GhcTc (GenLocated SrcSpan (Pat GhcTc))
-> HsConDetails
(GenLocated SrcSpan (Pat GhcTc))
(HsRecFields GhcTc (GenLocated SrcSpan (Pat GhcTc)))
forall arg rec. rec -> HsConDetails arg rec
RecCon (HsRecFields GhcTc (GenLocated SrcSpan (Pat GhcTc))
HsRecFields GhcTc (LPat GhcTc)
rf { rec_flds :: [LHsRecField GhcTc (GenLocated SrcSpan (Pat GhcTc))]
rec_flds = [SrcSpan
-> HsRecField' (FieldOcc GhcTc) (GenLocated SrcSpan (Pat GhcTc))
-> LHsRecField GhcTc (GenLocated SrcSpan (Pat GhcTc))
forall l e. l -> e -> GenLocated l e
L SrcSpan
lf (HsRecField' (FieldOcc GhcTc) (GenLocated SrcSpan (Pat GhcTc))
HsRecField GhcTc (LPat GhcTc)
fld { hsRecFieldArg :: GenLocated SrcSpan (Pat GhcTc)
hsRecFieldArg
= SrcSpan -> Pat GhcTc -> GenLocated SrcSpan (Pat GhcTc)
forall l e. l -> e -> GenLocated l e
L SrcSpan
l (XBangPat GhcTc -> LPat GhcTc -> Pat GhcTc
forall p. XBangPat p -> LPat p -> Pat p
BangPat NoExtField
XBangPat GhcTc
noExtField LPat GhcTc
arg) })] })
push_bang_into_newtype_arg SrcSpan
l Kind
ty (RecCon HsRecFields GhcTc (LPat GhcTc)
rf)
| HsRecFields { rec_flds :: forall p arg. HsRecFields p arg -> [LHsRecField p arg]
rec_flds = [] } <- HsRecFields GhcTc (LPat GhcTc)
rf
= [GenLocated SrcSpan (Pat GhcTc)]
-> HsConDetails
(GenLocated SrcSpan (Pat GhcTc))
(HsRecFields GhcTc (GenLocated SrcSpan (Pat GhcTc)))
forall arg rec. [arg] -> HsConDetails arg rec
PrefixCon [SrcSpan -> Pat GhcTc -> GenLocated SrcSpan (Pat GhcTc)
forall l e. l -> e -> GenLocated l e
L SrcSpan
l (XBangPat GhcTc -> LPat GhcTc -> Pat GhcTc
forall p. XBangPat p -> LPat p -> Pat p
BangPat NoExtField
XBangPat GhcTc
noExtField (Pat GhcTc -> GenLocated SrcSpan (Pat GhcTc)
forall e. e -> Located e
noLoc (XWildPat GhcTc -> Pat GhcTc
forall p. XWildPat p -> Pat p
WildPat Kind
XWildPat GhcTc
ty)))]
push_bang_into_newtype_arg SrcSpan
_ Kind
_ HsConPatDetails GhcTc
cd
= String
-> SDoc
-> HsConDetails
(GenLocated SrcSpan (Pat GhcTc))
(HsRecFields GhcTc (GenLocated SrcSpan (Pat GhcTc)))
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"push_bang_into_newtype_arg" (HsConPatDetails GhcTc -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsConPatDetails (GhcPass p) -> SDoc
pprConArgs HsConPatDetails GhcTc
cd)
matchWrapper
:: HsMatchContext GhcRn
-> Maybe (LHsExpr GhcTc)
-> MatchGroup GhcTc (LHsExpr GhcTc)
-> DsM ([Id], CoreExpr)
matchWrapper :: HsMatchContext GhcRn
-> Maybe (LHsExpr GhcTc)
-> MatchGroup GhcTc (LHsExpr GhcTc)
-> DsM ([Id], CoreExpr)
matchWrapper HsMatchContext GhcRn
ctxt Maybe (LHsExpr GhcTc)
mb_scr (MG { mg_alts :: forall p body. MatchGroup p body -> Located [LMatch p body]
mg_alts = L SrcSpan
_ [GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
matches
, mg_ext :: forall p body. MatchGroup p body -> XMG p body
mg_ext = MatchGroupTc [Scaled Kind]
arg_tys Kind
rhs_ty
, mg_origin :: forall p body. MatchGroup p body -> Origin
mg_origin = Origin
origin })
= do { DynFlags
dflags <- IOEnv (Env DsGblEnv DsLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; SrcSpan
locn <- DsM SrcSpan
getSrcSpanDs
; [Id]
new_vars <- case [GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
matches of
[] -> [Scaled Kind] -> IOEnv (Env DsGblEnv DsLclEnv) [Id]
newSysLocalsDsNoLP [Scaled Kind]
arg_tys
(GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))
m:[GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
_) ->
[(Kind, Pat GhcTc)] -> IOEnv (Env DsGblEnv DsLclEnv) [Id]
selectMatchVars (String
-> (Scaled Kind
-> GenLocated SrcSpan (Pat GhcTc) -> (Kind, Pat GhcTc))
-> [Scaled Kind]
-> [GenLocated SrcSpan (Pat GhcTc)]
-> [(Kind, Pat GhcTc)]
forall a b c. String -> (a -> b -> c) -> [a] -> [b] -> [c]
zipWithEqual String
"matchWrapper"
(\Scaled Kind
a GenLocated SrcSpan (Pat GhcTc)
b -> (Scaled Kind -> Kind
forall a. Scaled a -> Kind
scaledMult Scaled Kind
a, GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
b))
[Scaled Kind]
arg_tys
(GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc)) -> [LPat GhcTc]
forall (id :: Pass) body.
LMatch (GhcPass id) body -> [LPat (GhcPass id)]
hsLMatchPats GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))
m))
; [Deltas]
rhss_deltas <- if DynFlags -> Origin -> HsMatchContext GhcRn -> Bool
forall id. DynFlags -> Origin -> HsMatchContext id -> Bool
isMatchContextPmChecked DynFlags
dflags Origin
origin HsMatchContext GhcRn
ctxt
then Maybe (LHsExpr GhcTc) -> [Id] -> DsM [Deltas] -> DsM [Deltas]
forall a. Maybe (LHsExpr GhcTc) -> [Id] -> DsM a -> DsM a
addScrutTmCs Maybe (LHsExpr GhcTc)
mb_scr [Id]
new_vars (DsM [Deltas] -> DsM [Deltas]) -> DsM [Deltas] -> DsM [Deltas]
forall a b. (a -> b) -> a -> b
$
DsMatchContext
-> [Id]
-> [GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
-> DsM [Deltas]
checkMatches (HsMatchContext GhcRn -> SrcSpan -> DsMatchContext
DsMatchContext HsMatchContext GhcRn
ctxt SrcSpan
locn) [Id]
new_vars [GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
matches
else [Deltas] -> DsM [Deltas]
forall (f :: * -> *) a. Applicative f => a -> f a
pure []
; [EquationInfo]
eqns_info <- [GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
-> [Deltas] -> IOEnv (Env DsGblEnv DsLclEnv) [EquationInfo]
mk_eqn_infos [GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
matches [Deltas]
rhss_deltas
; CoreExpr
result_expr <- DsM CoreExpr -> DsM CoreExpr
handleWarnings (DsM CoreExpr -> DsM CoreExpr) -> DsM CoreExpr -> DsM CoreExpr
forall a b. (a -> b) -> a -> b
$
HsMatchContext GhcRn
-> [Id] -> [EquationInfo] -> Kind -> DsM CoreExpr
matchEquations HsMatchContext GhcRn
ctxt [Id]
new_vars [EquationInfo]
eqns_info Kind
rhs_ty
; ([Id], CoreExpr) -> DsM ([Id], CoreExpr)
forall (m :: * -> *) a. Monad m => a -> m a
return ([Id]
new_vars, CoreExpr
result_expr) }
where
mk_eqn_infos :: [GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
-> [Deltas] -> IOEnv (Env DsGblEnv DsLclEnv) [EquationInfo]
mk_eqn_infos (L SrcSpan
_ Match GhcTc (LHsExpr GhcTc)
match : [GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
matches) [Deltas]
rhss_deltas
= do { (EquationInfo
info, [Deltas]
rhss_deltas') <- Match GhcTc (LHsExpr GhcTc)
-> [Deltas]
-> IOEnv (Env DsGblEnv DsLclEnv) (EquationInfo, [Deltas])
mk_eqn_info Match GhcTc (LHsExpr GhcTc)
match [Deltas]
rhss_deltas
; [EquationInfo]
infos <- [GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
-> [Deltas] -> IOEnv (Env DsGblEnv DsLclEnv) [EquationInfo]
mk_eqn_infos [GenLocated SrcSpan (Match GhcTc (LHsExpr GhcTc))]
matches [Deltas]
rhss_deltas'
; [EquationInfo] -> IOEnv (Env DsGblEnv DsLclEnv) [EquationInfo]
forall (m :: * -> *) a. Monad m => a -> m a
return (EquationInfo
infoEquationInfo -> [EquationInfo] -> [EquationInfo]
forall a. a -> [a] -> [a]
:[EquationInfo]
infos) }
mk_eqn_infos [] [Deltas]
_ = [EquationInfo] -> IOEnv (Env DsGblEnv DsLclEnv) [EquationInfo]
forall (m :: * -> *) a. Monad m => a -> m a
return []
mk_eqn_info :: Match GhcTc (LHsExpr GhcTc)
-> [Deltas]
-> IOEnv (Env DsGblEnv DsLclEnv) (EquationInfo, [Deltas])
mk_eqn_info (Match { m_pats :: forall p body. Match p body -> [LPat p]
m_pats = [LPat GhcTc]
pats, m_grhss :: forall p body. Match p body -> GRHSs p body
m_grhss = GRHSs GhcTc (LHsExpr GhcTc)
grhss }) [Deltas]
rhss_deltas
| GRHSs XCGRHSs GhcTc (LHsExpr GhcTc)
_ [LGRHS GhcTc (LHsExpr GhcTc)]
grhss' LHsLocalBinds GhcTc
_ <- GRHSs GhcTc (LHsExpr GhcTc)
grhss, let n_grhss :: Int
n_grhss = [LGRHS GhcTc (LHsExpr GhcTc)] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [LGRHS GhcTc (LHsExpr GhcTc)]
grhss'
= do { DynFlags
dflags <- IOEnv (Env DsGblEnv DsLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; let upats :: [Pat GhcTc]
upats = (GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc)
-> [GenLocated SrcSpan (Pat GhcTc)] -> [Pat GhcTc]
forall a b. (a -> b) -> [a] -> [b]
map (GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc (GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc)
-> (GenLocated SrcSpan (Pat GhcTc)
-> GenLocated SrcSpan (Pat GhcTc))
-> GenLocated SrcSpan (Pat GhcTc)
-> Pat GhcTc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DynFlags -> LPat GhcTc -> LPat GhcTc
decideBangHood DynFlags
dflags) [GenLocated SrcSpan (Pat GhcTc)]
[LPat GhcTc]
pats
; let ([Deltas]
match_deltas, [Deltas]
rhss_deltas') = Int -> [Deltas] -> ([Deltas], [Deltas])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
n_grhss [Deltas]
rhss_deltas
; MatchResult CoreExpr
match_result <- HsMatchContext GhcRn
-> GRHSs GhcTc (LHsExpr GhcTc)
-> Kind
-> Maybe (NonEmpty Deltas)
-> DsM (MatchResult CoreExpr)
dsGRHSs HsMatchContext GhcRn
ctxt GRHSs GhcTc (LHsExpr GhcTc)
grhss Kind
rhs_ty ([Deltas] -> Maybe (NonEmpty Deltas)
forall a. [a] -> Maybe (NonEmpty a)
NEL.nonEmpty [Deltas]
match_deltas)
; (EquationInfo, [Deltas])
-> IOEnv (Env DsGblEnv DsLclEnv) (EquationInfo, [Deltas])
forall (m :: * -> *) a. Monad m => a -> m a
return ( EqnInfo :: [Pat GhcTc] -> Origin -> MatchResult CoreExpr -> EquationInfo
EqnInfo { eqn_pats :: [Pat GhcTc]
eqn_pats = [Pat GhcTc]
upats
, eqn_orig :: Origin
eqn_orig = Origin
FromSource
, eqn_rhs :: MatchResult CoreExpr
eqn_rhs = MatchResult CoreExpr
match_result }
, [Deltas]
rhss_deltas' ) }
handleWarnings :: DsM CoreExpr -> DsM CoreExpr
handleWarnings = if Origin -> Bool
isGenerated Origin
origin
then DsM CoreExpr -> DsM CoreExpr
forall a. DsM a -> DsM a
discardWarningsDs
else DsM CoreExpr -> DsM CoreExpr
forall a. a -> a
id
matchEquations :: HsMatchContext GhcRn
-> [MatchId] -> [EquationInfo] -> Type
-> DsM CoreExpr
matchEquations :: HsMatchContext GhcRn
-> [Id] -> [EquationInfo] -> Kind -> DsM CoreExpr
matchEquations HsMatchContext GhcRn
ctxt [Id]
vars [EquationInfo]
eqns_info Kind
rhs_ty
= do { let error_doc :: SDoc
error_doc = HsMatchContext GhcRn -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsMatchContext (GhcPass p) -> SDoc
matchContextErrString HsMatchContext GhcRn
ctxt
; MatchResult CoreExpr
match_result <- [Id] -> Kind -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match [Id]
vars Kind
rhs_ty [EquationInfo]
eqns_info
; CoreExpr
fail_expr <- Id -> Kind -> SDoc -> DsM CoreExpr
mkErrorAppDs Id
pAT_ERROR_ID Kind
rhs_ty SDoc
error_doc
; MatchResult CoreExpr -> CoreExpr -> DsM CoreExpr
extractMatchResult MatchResult CoreExpr
match_result CoreExpr
fail_expr }
matchSimply :: CoreExpr
-> HsMatchContext GhcRn
-> LPat GhcTc
-> CoreExpr
-> CoreExpr
-> DsM CoreExpr
matchSimply :: CoreExpr
-> HsMatchContext GhcRn
-> LPat GhcTc
-> CoreExpr
-> CoreExpr
-> DsM CoreExpr
matchSimply CoreExpr
scrut HsMatchContext GhcRn
hs_ctx LPat GhcTc
pat CoreExpr
result_expr CoreExpr
fail_expr = do
let
match_result :: MatchResult CoreExpr
match_result = CoreExpr -> MatchResult CoreExpr
cantFailMatchResult CoreExpr
result_expr
rhs_ty :: Kind
rhs_ty = CoreExpr -> Kind
exprType CoreExpr
fail_expr
MatchResult CoreExpr
match_result' <- CoreExpr
-> HsMatchContext GhcRn
-> LPat GhcTc
-> Kind
-> MatchResult CoreExpr
-> DsM (MatchResult CoreExpr)
matchSinglePat CoreExpr
scrut HsMatchContext GhcRn
hs_ctx LPat GhcTc
pat Kind
rhs_ty MatchResult CoreExpr
match_result
MatchResult CoreExpr -> CoreExpr -> DsM CoreExpr
extractMatchResult MatchResult CoreExpr
match_result' CoreExpr
fail_expr
matchSinglePat :: CoreExpr -> HsMatchContext GhcRn -> LPat GhcTc
-> Type -> MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
matchSinglePat :: CoreExpr
-> HsMatchContext GhcRn
-> LPat GhcTc
-> Kind
-> MatchResult CoreExpr
-> DsM (MatchResult CoreExpr)
matchSinglePat (Var Id
var) HsMatchContext GhcRn
ctx LPat GhcTc
pat Kind
ty MatchResult CoreExpr
match_result
| Bool -> Bool
not (Name -> Bool
isExternalName (Id -> Name
idName Id
var))
= Id
-> HsMatchContext GhcRn
-> LPat GhcTc
-> Kind
-> MatchResult CoreExpr
-> DsM (MatchResult CoreExpr)
matchSinglePatVar Id
var HsMatchContext GhcRn
ctx LPat GhcTc
pat Kind
ty MatchResult CoreExpr
match_result
matchSinglePat CoreExpr
scrut HsMatchContext GhcRn
hs_ctx LPat GhcTc
pat Kind
ty MatchResult CoreExpr
match_result
= do { Id
var <- Kind -> LPat GhcTc -> DsM Id
selectSimpleMatchVarL Kind
Many LPat GhcTc
pat
; MatchResult CoreExpr
match_result' <- Id
-> HsMatchContext GhcRn
-> LPat GhcTc
-> Kind
-> MatchResult CoreExpr
-> DsM (MatchResult CoreExpr)
matchSinglePatVar Id
var HsMatchContext GhcRn
hs_ctx LPat GhcTc
pat Kind
ty MatchResult CoreExpr
match_result
; MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
forall (m :: * -> *) a. Monad m => a -> m a
return (MatchResult CoreExpr -> DsM (MatchResult CoreExpr))
-> MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
forall a b. (a -> b) -> a -> b
$ Id -> CoreExpr -> DsWrapper
bindNonRec Id
var CoreExpr
scrut DsWrapper -> MatchResult CoreExpr -> MatchResult CoreExpr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MatchResult CoreExpr
match_result'
}
matchSinglePatVar :: Id
-> HsMatchContext GhcRn -> LPat GhcTc
-> Type -> MatchResult CoreExpr -> DsM (MatchResult CoreExpr)
matchSinglePatVar :: Id
-> HsMatchContext GhcRn
-> LPat GhcTc
-> Kind
-> MatchResult CoreExpr
-> DsM (MatchResult CoreExpr)
matchSinglePatVar Id
var HsMatchContext GhcRn
ctx LPat GhcTc
pat Kind
ty MatchResult CoreExpr
match_result
= ASSERT2( isInternalName (idName var), ppr var )
do { DynFlags
dflags <- IOEnv (Env DsGblEnv DsLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; SrcSpan
locn <- DsM SrcSpan
getSrcSpanDs
; if DynFlags -> Origin -> HsMatchContext GhcRn -> Bool
forall id. DynFlags -> Origin -> HsMatchContext id -> Bool
isMatchContextPmChecked DynFlags
dflags Origin
FromSource HsMatchContext GhcRn
ctx
then DynFlags
-> DsMatchContext -> Id -> Pat GhcTc -> TcRnIf DsGblEnv DsLclEnv ()
checkSingle DynFlags
dflags (HsMatchContext GhcRn -> SrcSpan -> DsMatchContext
DsMatchContext HsMatchContext GhcRn
ctx SrcSpan
locn) Id
var (GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
LPat GhcTc
pat)
else () -> TcRnIf DsGblEnv DsLclEnv ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
; let eqn_info :: EquationInfo
eqn_info = EqnInfo :: [Pat GhcTc] -> Origin -> MatchResult CoreExpr -> EquationInfo
EqnInfo { eqn_pats :: [Pat GhcTc]
eqn_pats = [GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc (DynFlags -> LPat GhcTc -> LPat GhcTc
decideBangHood DynFlags
dflags LPat GhcTc
pat)]
, eqn_orig :: Origin
eqn_orig = Origin
FromSource
, eqn_rhs :: MatchResult CoreExpr
eqn_rhs = MatchResult CoreExpr
match_result }
; [Id] -> Kind -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match [Item [Id]
Id
var] Kind
ty [Item [EquationInfo]
EquationInfo
eqn_info] }
data PatGroup
= PgAny
| PgCon DataCon
| PgSyn PatSyn [Type]
| PgLit Literal
| PgN Rational
| PgOverS FastString
| PgNpK Integer
| PgBang
| PgCo Type
| PgView (LHsExpr GhcTc)
Type
| PgOverloadedList
groupEquations :: Platform -> [EquationInfo] -> [NonEmpty (PatGroup, EquationInfo)]
groupEquations :: Platform -> [EquationInfo] -> [NonEmpty (PatGroup, EquationInfo)]
groupEquations Platform
platform [EquationInfo]
eqns
= ((PatGroup, EquationInfo) -> (PatGroup, EquationInfo) -> Bool)
-> [(PatGroup, EquationInfo)]
-> [NonEmpty (PatGroup, EquationInfo)]
forall (f :: * -> *) a.
Foldable f =>
(a -> a -> Bool) -> f a -> [NonEmpty a]
NEL.groupBy (PatGroup, EquationInfo) -> (PatGroup, EquationInfo) -> Bool
same_gp ([(PatGroup, EquationInfo)] -> [NonEmpty (PatGroup, EquationInfo)])
-> [(PatGroup, EquationInfo)]
-> [NonEmpty (PatGroup, EquationInfo)]
forall a b. (a -> b) -> a -> b
$ [(Platform -> Pat GhcTc -> PatGroup
patGroup Platform
platform (EquationInfo -> Pat GhcTc
firstPat EquationInfo
eqn), EquationInfo
eqn) | EquationInfo
eqn <- [EquationInfo]
eqns]
where
same_gp :: (PatGroup,EquationInfo) -> (PatGroup,EquationInfo) -> Bool
(PatGroup
pg1,EquationInfo
_) same_gp :: (PatGroup, EquationInfo) -> (PatGroup, EquationInfo) -> Bool
`same_gp` (PatGroup
pg2,EquationInfo
_) = PatGroup
pg1 PatGroup -> PatGroup -> Bool
`sameGroup` PatGroup
pg2
subGroup :: (m -> [NonEmpty EquationInfo])
-> m
-> (a -> m -> Maybe (NonEmpty EquationInfo))
-> (a -> NonEmpty EquationInfo -> m -> m)
-> [(a, EquationInfo)] -> [NonEmpty EquationInfo]
subGroup :: forall m a.
(m -> [NonEmpty EquationInfo])
-> m
-> (a -> m -> Maybe (NonEmpty EquationInfo))
-> (a -> NonEmpty EquationInfo -> m -> m)
-> [(a, EquationInfo)]
-> [NonEmpty EquationInfo]
subGroup m -> [NonEmpty EquationInfo]
elems m
empty a -> m -> Maybe (NonEmpty EquationInfo)
lookup a -> NonEmpty EquationInfo -> m -> m
insert [(a, EquationInfo)]
group
= (NonEmpty EquationInfo -> NonEmpty EquationInfo)
-> [NonEmpty EquationInfo] -> [NonEmpty EquationInfo]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap NonEmpty EquationInfo -> NonEmpty EquationInfo
forall a. NonEmpty a -> NonEmpty a
NEL.reverse ([NonEmpty EquationInfo] -> [NonEmpty EquationInfo])
-> [NonEmpty EquationInfo] -> [NonEmpty EquationInfo]
forall a b. (a -> b) -> a -> b
$ m -> [NonEmpty EquationInfo]
elems (m -> [NonEmpty EquationInfo]) -> m -> [NonEmpty EquationInfo]
forall a b. (a -> b) -> a -> b
$ (m -> (a, EquationInfo) -> m) -> m -> [(a, EquationInfo)] -> m
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' m -> (a, EquationInfo) -> m
accumulate m
empty [(a, EquationInfo)]
group
where
accumulate :: m -> (a, EquationInfo) -> m
accumulate m
pg_map (a
pg, EquationInfo
eqn)
= case a -> m -> Maybe (NonEmpty EquationInfo)
lookup a
pg m
pg_map of
Just NonEmpty EquationInfo
eqns -> a -> NonEmpty EquationInfo -> m -> m
insert a
pg (EquationInfo -> NonEmpty EquationInfo -> NonEmpty EquationInfo
forall a. a -> NonEmpty a -> NonEmpty a
NEL.cons EquationInfo
eqn NonEmpty EquationInfo
eqns) m
pg_map
Maybe (NonEmpty EquationInfo)
Nothing -> a -> NonEmpty EquationInfo -> m -> m
insert a
pg [Item (NonEmpty EquationInfo)
EquationInfo
eqn] m
pg_map
subGroupOrd :: Ord a => [(a, EquationInfo)] -> [NonEmpty EquationInfo]
subGroupOrd :: forall a. Ord a => [(a, EquationInfo)] -> [NonEmpty EquationInfo]
subGroupOrd = (Map a (NonEmpty EquationInfo) -> [NonEmpty EquationInfo])
-> Map a (NonEmpty EquationInfo)
-> (a
-> Map a (NonEmpty EquationInfo) -> Maybe (NonEmpty EquationInfo))
-> (a
-> NonEmpty EquationInfo
-> Map a (NonEmpty EquationInfo)
-> Map a (NonEmpty EquationInfo))
-> [(a, EquationInfo)]
-> [NonEmpty EquationInfo]
forall m a.
(m -> [NonEmpty EquationInfo])
-> m
-> (a -> m -> Maybe (NonEmpty EquationInfo))
-> (a -> NonEmpty EquationInfo -> m -> m)
-> [(a, EquationInfo)]
-> [NonEmpty EquationInfo]
subGroup Map a (NonEmpty EquationInfo) -> [NonEmpty EquationInfo]
forall k a. Map k a -> [a]
Map.elems Map a (NonEmpty EquationInfo)
forall k a. Map k a
Map.empty a -> Map a (NonEmpty EquationInfo) -> Maybe (NonEmpty EquationInfo)
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup a
-> NonEmpty EquationInfo
-> Map a (NonEmpty EquationInfo)
-> Map a (NonEmpty EquationInfo)
forall k a. Ord k => k -> a -> Map k a -> Map k a
Map.insert
subGroupUniq :: Uniquable a => [(a, EquationInfo)] -> [NonEmpty EquationInfo]
subGroupUniq :: forall a.
Uniquable a =>
[(a, EquationInfo)] -> [NonEmpty EquationInfo]
subGroupUniq =
(UniqDFM a (NonEmpty EquationInfo) -> [NonEmpty EquationInfo])
-> UniqDFM a (NonEmpty EquationInfo)
-> (a
-> UniqDFM a (NonEmpty EquationInfo)
-> Maybe (NonEmpty EquationInfo))
-> (a
-> NonEmpty EquationInfo
-> UniqDFM a (NonEmpty EquationInfo)
-> UniqDFM a (NonEmpty EquationInfo))
-> [(a, EquationInfo)]
-> [NonEmpty EquationInfo]
forall m a.
(m -> [NonEmpty EquationInfo])
-> m
-> (a -> m -> Maybe (NonEmpty EquationInfo))
-> (a -> NonEmpty EquationInfo -> m -> m)
-> [(a, EquationInfo)]
-> [NonEmpty EquationInfo]
subGroup UniqDFM a (NonEmpty EquationInfo) -> [NonEmpty EquationInfo]
forall key elt. UniqDFM key elt -> [elt]
eltsUDFM UniqDFM a (NonEmpty EquationInfo)
forall key elt. UniqDFM key elt
emptyUDFM ((UniqDFM a (NonEmpty EquationInfo)
-> a -> Maybe (NonEmpty EquationInfo))
-> a
-> UniqDFM a (NonEmpty EquationInfo)
-> Maybe (NonEmpty EquationInfo)
forall a b c. (a -> b -> c) -> b -> a -> c
flip UniqDFM a (NonEmpty EquationInfo)
-> a -> Maybe (NonEmpty EquationInfo)
forall key elt.
Uniquable key =>
UniqDFM key elt -> key -> Maybe elt
lookupUDFM) (\a
k NonEmpty EquationInfo
v UniqDFM a (NonEmpty EquationInfo)
m -> UniqDFM a (NonEmpty EquationInfo)
-> a -> NonEmpty EquationInfo -> UniqDFM a (NonEmpty EquationInfo)
forall key elt.
Uniquable key =>
UniqDFM key elt -> key -> elt -> UniqDFM key elt
addToUDFM UniqDFM a (NonEmpty EquationInfo)
m a
k NonEmpty EquationInfo
v)
sameGroup :: PatGroup -> PatGroup -> Bool
sameGroup :: PatGroup -> PatGroup -> Bool
sameGroup PatGroup
PgAny PatGroup
PgAny = Bool
True
sameGroup PatGroup
PgBang PatGroup
PgBang = Bool
True
sameGroup (PgCon DataCon
_) (PgCon DataCon
_) = Bool
True
sameGroup (PgSyn PatSyn
p1 [Kind]
t1) (PgSyn PatSyn
p2 [Kind]
t2) = PatSyn
p1PatSyn -> PatSyn -> Bool
forall a. Eq a => a -> a -> Bool
==PatSyn
p2 Bool -> Bool -> Bool
&& [Kind] -> [Kind] -> Bool
eqTypes [Kind]
t1 [Kind]
t2
sameGroup (PgLit Literal
_) (PgLit Literal
_) = Bool
True
sameGroup (PgN Rational
l1) (PgN Rational
l2) = Rational
l1Rational -> Rational -> Bool
forall a. Eq a => a -> a -> Bool
==Rational
l2
sameGroup (PgOverS FastString
s1) (PgOverS FastString
s2) = FastString
s1FastString -> FastString -> Bool
forall a. Eq a => a -> a -> Bool
==FastString
s2
sameGroup (PgNpK Integer
l1) (PgNpK Integer
l2) = Integer
l1Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
==Integer
l2
sameGroup (PgCo Kind
t1) (PgCo Kind
t2) = Kind
t1 Kind -> Kind -> Bool
`eqType` Kind
t2
sameGroup (PgView LHsExpr GhcTc
e1 Kind
t1) (PgView LHsExpr GhcTc
e2 Kind
t2) = (LHsExpr GhcTc, Kind) -> (LHsExpr GhcTc, Kind) -> Bool
viewLExprEq (LHsExpr GhcTc
e1,Kind
t1) (LHsExpr GhcTc
e2,Kind
t2)
sameGroup PatGroup
_ PatGroup
_ = Bool
False
viewLExprEq :: (LHsExpr GhcTc,Type) -> (LHsExpr GhcTc,Type) -> Bool
viewLExprEq :: (LHsExpr GhcTc, Kind) -> (LHsExpr GhcTc, Kind) -> Bool
viewLExprEq (LHsExpr GhcTc
e1,Kind
_) (LHsExpr GhcTc
e2,Kind
_) = LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e1 LHsExpr GhcTc
e2
where
lexp :: LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp :: LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e LHsExpr GhcTc
e' = HsExpr GhcTc -> HsExpr GhcTc -> Bool
exp (LHsExpr GhcTc -> HsExpr GhcTc
forall l e. GenLocated l e -> e
unLoc LHsExpr GhcTc
e) (LHsExpr GhcTc -> HsExpr GhcTc
forall l e. GenLocated l e -> e
unLoc LHsExpr GhcTc
e')
exp :: HsExpr GhcTc -> HsExpr GhcTc -> Bool
exp :: HsExpr GhcTc -> HsExpr GhcTc -> Bool
exp (HsPar XPar GhcTc
_ (L SrcSpan
_ HsExpr GhcTc
e)) HsExpr GhcTc
e' = HsExpr GhcTc -> HsExpr GhcTc -> Bool
exp HsExpr GhcTc
e HsExpr GhcTc
e'
exp HsExpr GhcTc
e (HsPar XPar GhcTc
_ (L SrcSpan
_ HsExpr GhcTc
e')) = HsExpr GhcTc -> HsExpr GhcTc -> Bool
exp HsExpr GhcTc
e HsExpr GhcTc
e'
exp (XExpr (WrapExpr (HsWrap HsWrapper
h HsExpr GhcTc
e))) (XExpr (WrapExpr (HsWrap HsWrapper
h' HsExpr GhcTc
e'))) =
HsWrapper -> HsWrapper -> Bool
wrap HsWrapper
h HsWrapper
h' Bool -> Bool -> Bool
&& HsExpr GhcTc -> HsExpr GhcTc -> Bool
exp HsExpr GhcTc
e HsExpr GhcTc
e'
exp (XExpr (ExpansionExpr (HsExpanded HsExpr GhcRn
_ HsExpr GhcTc
b))) (XExpr (ExpansionExpr (HsExpanded HsExpr GhcRn
_ HsExpr GhcTc
b'))) =
HsExpr GhcTc -> HsExpr GhcTc -> Bool
exp HsExpr GhcTc
b HsExpr GhcTc
b'
exp (HsVar XVar GhcTc
_ GenLocated SrcSpan (IdP GhcTc)
i) (HsVar XVar GhcTc
_ GenLocated SrcSpan (IdP GhcTc)
i') = Located Id
GenLocated SrcSpan (IdP GhcTc)
i Located Id -> Located Id -> Bool
forall a. Eq a => a -> a -> Bool
== Located Id
GenLocated SrcSpan (IdP GhcTc)
i'
exp (HsConLikeOut XConLikeOut GhcTc
_ ConLike
c) (HsConLikeOut XConLikeOut GhcTc
_ ConLike
c') = ConLike
c ConLike -> ConLike -> Bool
forall a. Eq a => a -> a -> Bool
== ConLike
c'
exp (HsIPVar XIPVar GhcTc
_ HsIPName
i) (HsIPVar XIPVar GhcTc
_ HsIPName
i') = HsIPName
i HsIPName -> HsIPName -> Bool
forall a. Eq a => a -> a -> Bool
== HsIPName
i'
exp (HsOverLabel XOverLabel GhcTc
_ Maybe (IdP GhcTc)
l FastString
x) (HsOverLabel XOverLabel GhcTc
_ Maybe (IdP GhcTc)
l' FastString
x') = Maybe Id
Maybe (IdP GhcTc)
l Maybe Id -> Maybe Id -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe Id
Maybe (IdP GhcTc)
l' Bool -> Bool -> Bool
&& FastString
x FastString -> FastString -> Bool
forall a. Eq a => a -> a -> Bool
== FastString
x'
exp (HsOverLit XOverLitE GhcTc
_ HsOverLit GhcTc
l) (HsOverLit XOverLitE GhcTc
_ HsOverLit GhcTc
l') =
Kind -> Kind -> Bool
eqType (HsOverLit GhcTc -> Kind
overLitType HsOverLit GhcTc
l) (HsOverLit GhcTc -> Kind
overLitType HsOverLit GhcTc
l') Bool -> Bool -> Bool
&& HsOverLit GhcTc
l HsOverLit GhcTc -> HsOverLit GhcTc -> Bool
forall a. Eq a => a -> a -> Bool
== HsOverLit GhcTc
l'
exp (HsApp XApp GhcTc
_ LHsExpr GhcTc
e1 LHsExpr GhcTc
e2) (HsApp XApp GhcTc
_ LHsExpr GhcTc
e1' LHsExpr GhcTc
e2') = LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e1 LHsExpr GhcTc
e1' Bool -> Bool -> Bool
&& LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e2 LHsExpr GhcTc
e2'
exp (OpApp XOpApp GhcTc
_ LHsExpr GhcTc
l LHsExpr GhcTc
o LHsExpr GhcTc
ri) (OpApp XOpApp GhcTc
_ LHsExpr GhcTc
l' LHsExpr GhcTc
o' LHsExpr GhcTc
ri') =
LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
l LHsExpr GhcTc
l' Bool -> Bool -> Bool
&& LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
o LHsExpr GhcTc
o' Bool -> Bool -> Bool
&& LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
ri LHsExpr GhcTc
ri'
exp (NegApp XNegApp GhcTc
_ LHsExpr GhcTc
e SyntaxExpr GhcTc
n) (NegApp XNegApp GhcTc
_ LHsExpr GhcTc
e' SyntaxExpr GhcTc
n') = LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e LHsExpr GhcTc
e' Bool -> Bool -> Bool
&& SyntaxExpr GhcTc -> SyntaxExpr GhcTc -> Bool
syn_exp SyntaxExpr GhcTc
n SyntaxExpr GhcTc
n'
exp (SectionL XSectionL GhcTc
_ LHsExpr GhcTc
e1 LHsExpr GhcTc
e2) (SectionL XSectionL GhcTc
_ LHsExpr GhcTc
e1' LHsExpr GhcTc
e2') =
LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e1 LHsExpr GhcTc
e1' Bool -> Bool -> Bool
&& LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e2 LHsExpr GhcTc
e2'
exp (SectionR XSectionR GhcTc
_ LHsExpr GhcTc
e1 LHsExpr GhcTc
e2) (SectionR XSectionR GhcTc
_ LHsExpr GhcTc
e1' LHsExpr GhcTc
e2') =
LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e1 LHsExpr GhcTc
e1' Bool -> Bool -> Bool
&& LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e2 LHsExpr GhcTc
e2'
exp (ExplicitTuple XExplicitTuple GhcTc
_ [LHsTupArg GhcTc]
es1 Boxity
_) (ExplicitTuple XExplicitTuple GhcTc
_ [LHsTupArg GhcTc]
es2 Boxity
_) =
(LHsTupArg GhcTc -> LHsTupArg GhcTc -> Bool)
-> [LHsTupArg GhcTc] -> [LHsTupArg GhcTc] -> Bool
forall a. (a -> a -> Bool) -> [a] -> [a] -> Bool
eq_list LHsTupArg GhcTc -> LHsTupArg GhcTc -> Bool
forall {l} {l}.
GenLocated l (HsTupArg GhcTc)
-> GenLocated l (HsTupArg GhcTc) -> Bool
tup_arg [LHsTupArg GhcTc]
es1 [LHsTupArg GhcTc]
es2
exp (ExplicitSum XExplicitSum GhcTc
_ Int
_ Int
_ LHsExpr GhcTc
e) (ExplicitSum XExplicitSum GhcTc
_ Int
_ Int
_ LHsExpr GhcTc
e') = LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e LHsExpr GhcTc
e'
exp (HsIf XIf GhcTc
_ LHsExpr GhcTc
e LHsExpr GhcTc
e1 LHsExpr GhcTc
e2) (HsIf XIf GhcTc
_ LHsExpr GhcTc
e' LHsExpr GhcTc
e1' LHsExpr GhcTc
e2') =
LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e LHsExpr GhcTc
e' Bool -> Bool -> Bool
&& LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e1 LHsExpr GhcTc
e1' Bool -> Bool -> Bool
&& LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e2 LHsExpr GhcTc
e2'
exp HsExpr GhcTc
_ HsExpr GhcTc
_ = Bool
False
syn_exp :: SyntaxExpr GhcTc -> SyntaxExpr GhcTc -> Bool
syn_exp :: SyntaxExpr GhcTc -> SyntaxExpr GhcTc -> Bool
syn_exp (SyntaxExprTc { syn_expr :: SyntaxExprTc -> HsExpr GhcTc
syn_expr = HsExpr GhcTc
expr1
, syn_arg_wraps :: SyntaxExprTc -> [HsWrapper]
syn_arg_wraps = [HsWrapper]
arg_wraps1
, syn_res_wrap :: SyntaxExprTc -> HsWrapper
syn_res_wrap = HsWrapper
res_wrap1 })
(SyntaxExprTc { syn_expr :: SyntaxExprTc -> HsExpr GhcTc
syn_expr = HsExpr GhcTc
expr2
, syn_arg_wraps :: SyntaxExprTc -> [HsWrapper]
syn_arg_wraps = [HsWrapper]
arg_wraps2
, syn_res_wrap :: SyntaxExprTc -> HsWrapper
syn_res_wrap = HsWrapper
res_wrap2 })
= HsExpr GhcTc -> HsExpr GhcTc -> Bool
exp HsExpr GhcTc
expr1 HsExpr GhcTc
expr2 Bool -> Bool -> Bool
&&
[Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and (String
-> (HsWrapper -> HsWrapper -> Bool)
-> [HsWrapper]
-> [HsWrapper]
-> [Bool]
forall a b c. String -> (a -> b -> c) -> [a] -> [b] -> [c]
zipWithEqual String
"viewLExprEq" HsWrapper -> HsWrapper -> Bool
wrap [HsWrapper]
arg_wraps1 [HsWrapper]
arg_wraps2) Bool -> Bool -> Bool
&&
HsWrapper -> HsWrapper -> Bool
wrap HsWrapper
res_wrap1 HsWrapper
res_wrap2
syn_exp SyntaxExpr GhcTc
SyntaxExprTc
NoSyntaxExprTc SyntaxExpr GhcTc
SyntaxExprTc
NoSyntaxExprTc = Bool
True
syn_exp SyntaxExpr GhcTc
_ SyntaxExpr GhcTc
_ = Bool
False
tup_arg :: GenLocated l (HsTupArg GhcTc)
-> GenLocated l (HsTupArg GhcTc) -> Bool
tup_arg (L l
_ (Present XPresent GhcTc
_ LHsExpr GhcTc
e1)) (L l
_ (Present XPresent GhcTc
_ LHsExpr GhcTc
e2)) = LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp LHsExpr GhcTc
e1 LHsExpr GhcTc
e2
tup_arg (L l
_ (Missing (Scaled Kind
_ Kind
t1))) (L l
_ (Missing (Scaled Kind
_ Kind
t2))) = Kind -> Kind -> Bool
eqType Kind
t1 Kind
t2
tup_arg GenLocated l (HsTupArg GhcTc)
_ GenLocated l (HsTupArg GhcTc)
_ = Bool
False
wrap :: HsWrapper -> HsWrapper -> Bool
wrap :: HsWrapper -> HsWrapper -> Bool
wrap HsWrapper
WpHole HsWrapper
WpHole = Bool
True
wrap (WpCompose HsWrapper
w1 HsWrapper
w2) (WpCompose HsWrapper
w1' HsWrapper
w2') = HsWrapper -> HsWrapper -> Bool
wrap HsWrapper
w1 HsWrapper
w1' Bool -> Bool -> Bool
&& HsWrapper -> HsWrapper -> Bool
wrap HsWrapper
w2 HsWrapper
w2'
wrap (WpFun HsWrapper
w1 HsWrapper
w2 Scaled Kind
_ SDoc
_) (WpFun HsWrapper
w1' HsWrapper
w2' Scaled Kind
_ SDoc
_) = HsWrapper -> HsWrapper -> Bool
wrap HsWrapper
w1 HsWrapper
w1' Bool -> Bool -> Bool
&& HsWrapper -> HsWrapper -> Bool
wrap HsWrapper
w2 HsWrapper
w2'
wrap (WpCast TcCoercionR
co) (WpCast TcCoercionR
co') = TcCoercionR
co TcCoercionR -> TcCoercionR -> Bool
`eqCoercion` TcCoercionR
co'
wrap (WpEvApp EvTerm
et1) (WpEvApp EvTerm
et2) = EvTerm
et1 EvTerm -> EvTerm -> Bool
`ev_term` EvTerm
et2
wrap (WpTyApp Kind
t) (WpTyApp Kind
t') = Kind -> Kind -> Bool
eqType Kind
t Kind
t'
wrap HsWrapper
_ HsWrapper
_ = Bool
False
ev_term :: EvTerm -> EvTerm -> Bool
ev_term :: EvTerm -> EvTerm -> Bool
ev_term (EvExpr (Var Id
a)) (EvExpr (Var Id
b)) = Id
aId -> Id -> Bool
forall a. Eq a => a -> a -> Bool
==Id
b
ev_term (EvExpr (Coercion TcCoercionR
a)) (EvExpr (Coercion TcCoercionR
b)) = TcCoercionR
a TcCoercionR -> TcCoercionR -> Bool
`eqCoercion` TcCoercionR
b
ev_term EvTerm
_ EvTerm
_ = Bool
False
eq_list :: (a->a->Bool) -> [a] -> [a] -> Bool
eq_list :: forall a. (a -> a -> Bool) -> [a] -> [a] -> Bool
eq_list a -> a -> Bool
_ [] [] = Bool
True
eq_list a -> a -> Bool
_ [] (a
_:[a]
_) = Bool
False
eq_list a -> a -> Bool
_ (a
_:[a]
_) [] = Bool
False
eq_list a -> a -> Bool
eq (a
x:[a]
xs) (a
y:[a]
ys) = a -> a -> Bool
eq a
x a
y Bool -> Bool -> Bool
&& (a -> a -> Bool) -> [a] -> [a] -> Bool
forall a. (a -> a -> Bool) -> [a] -> [a] -> Bool
eq_list a -> a -> Bool
eq [a]
xs [a]
ys
patGroup :: Platform -> Pat GhcTc -> PatGroup
patGroup :: Platform -> Pat GhcTc -> PatGroup
patGroup Platform
_ (ConPat { pat_con :: forall p. Pat p -> Located (ConLikeP p)
pat_con = L SrcSpan
_ ConLikeP GhcTc
con
, pat_con_ext :: forall p. Pat p -> XConPat p
pat_con_ext = ConPatTc { cpt_arg_tys :: ConPatTc -> [Kind]
cpt_arg_tys = [Kind]
tys }
})
| RealDataCon DataCon
dcon <- ConLikeP GhcTc
con = DataCon -> PatGroup
PgCon DataCon
dcon
| PatSynCon PatSyn
psyn <- ConLikeP GhcTc
con = PatSyn -> [Kind] -> PatGroup
PgSyn PatSyn
psyn [Kind]
tys
patGroup Platform
_ (WildPat {}) = PatGroup
PgAny
patGroup Platform
_ (BangPat {}) = PatGroup
PgBang
patGroup Platform
_ (NPat XNPat GhcTc
_ (L SrcSpan
_ (OverLit {ol_val :: forall p. HsOverLit p -> OverLitVal
ol_val=OverLitVal
oval})) Maybe (SyntaxExpr GhcTc)
mb_neg SyntaxExpr GhcTc
_) =
case (OverLitVal
oval, Maybe SyntaxExprTc -> Bool
forall a. Maybe a -> Bool
isJust Maybe (SyntaxExpr GhcTc)
Maybe SyntaxExprTc
mb_neg) of
(HsIntegral IntegralLit
i, Bool
False) -> Rational -> PatGroup
PgN (Integer -> Rational
forall a. Num a => Integer -> a
fromInteger (IntegralLit -> Integer
il_value IntegralLit
i))
(HsIntegral IntegralLit
i, Bool
True ) -> Rational -> PatGroup
PgN (-Integer -> Rational
forall a. Num a => Integer -> a
fromInteger (IntegralLit -> Integer
il_value IntegralLit
i))
(HsFractional FractionalLit
r, Bool
False) -> Rational -> PatGroup
PgN (FractionalLit -> Rational
fl_value FractionalLit
r)
(HsFractional FractionalLit
r, Bool
True ) -> Rational -> PatGroup
PgN (-FractionalLit -> Rational
fl_value FractionalLit
r)
(HsIsString SourceText
_ FastString
s, Bool
_) -> ASSERT(isNothing mb_neg)
FastString -> PatGroup
PgOverS FastString
s
patGroup Platform
_ (NPlusKPat XNPlusKPat GhcTc
_ GenLocated SrcSpan (IdP GhcTc)
_ (L SrcSpan
_ (OverLit {ol_val :: forall p. HsOverLit p -> OverLitVal
ol_val=OverLitVal
oval})) HsOverLit GhcTc
_ SyntaxExpr GhcTc
_ SyntaxExpr GhcTc
_) =
case OverLitVal
oval of
HsIntegral IntegralLit
i -> Integer -> PatGroup
PgNpK (IntegralLit -> Integer
il_value IntegralLit
i)
OverLitVal
_ -> String -> SDoc -> PatGroup
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"patGroup NPlusKPat" (OverLitVal -> SDoc
forall a. Outputable a => a -> SDoc
ppr OverLitVal
oval)
patGroup Platform
_ (XPat (CoPat HsWrapper
_ Pat GhcTc
p Kind
_)) = Kind -> PatGroup
PgCo (Pat GhcTc -> Kind
hsPatType Pat GhcTc
p)
patGroup Platform
_ (ViewPat XViewPat GhcTc
_ LHsExpr GhcTc
expr LPat GhcTc
p) = LHsExpr GhcTc -> Kind -> PatGroup
PgView LHsExpr GhcTc
expr (Pat GhcTc -> Kind
hsPatType (GenLocated SrcSpan (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (Pat GhcTc)
LPat GhcTc
p))
patGroup Platform
_ (ListPat (ListPatTc Kind
_ (Just (Kind, SyntaxExpr GhcTc)
_)) [LPat GhcTc]
_) = PatGroup
PgOverloadedList
patGroup Platform
platform (LitPat XLitPat GhcTc
_ HsLit GhcTc
lit) = Literal -> PatGroup
PgLit (Platform -> HsLit GhcTc -> Literal
hsLitKey Platform
platform HsLit GhcTc
lit)
patGroup Platform
_ Pat GhcTc
pat = String -> SDoc -> PatGroup
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"patGroup" (Pat GhcTc -> SDoc
forall a. Outputable a => a -> SDoc
ppr Pat GhcTc
pat)