(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1999

Analysis functions over data types.  Specifically, detecting recursive types.

This stuff is only used for source-code decls; it's recorded in interface
files for imported data types.

{-# LANGUAGE TypeFamilies #-}

module TcTyDecls(

        -- * Implicits
        tcAddImplicits, mkDefaultMethodType,

        -- * Record selectors
        mkRecSelBinds, mkOneRecordSelector
    ) where

#include "HsVersions.h"

import GhcPrelude

import TcRnMonad
import TcEnv
import TcBinds( tcRecSelBinds )
import TyCoRep( Type(..), Coercion(..), UnivCoProvenance(..) )
import TcType
import TysWiredIn( unitTy )
import MkCore( rEC_SEL_ERROR_ID )
import HsSyn
import Class
import Type
import HscTypes
import TyCon
import ConLike
import DataCon
import Name
import NameEnv
import NameSet hiding (unitFV)
import RdrName ( mkVarUnqual )
import Id
import IdInfo
import VarEnv
import VarSet
import Coercion ( ltRole )
import BasicTypes
import SrcLoc
import Unique ( mkBuiltinUnique )
import Outputable
import Util
import Maybes
import Bag
import FastString
import FV
import Module

import Control.Monad

*                                                                      *
        Cycles in type synonym declarations
*                                                                      *

synonymTyConsOfType :: Type -> [TyCon]
-- Does not look through type synonyms at all
-- Return a list of synonym tycons
-- Keep this synchronized with 'expandTypeSynonyms'
synonymTyConsOfType ty
  = nameEnvElts (go ty)
     go :: Type -> NameEnv TyCon  -- The NameEnv does duplicate elim
     go (TyConApp tc tys)         = go_tc tc `plusNameEnv` go_s tys
     go (LitTy _)                 = emptyNameEnv
     go (TyVarTy _)               = emptyNameEnv
     go (AppTy a b)               = go a `plusNameEnv` go b
     go (FunTy a b)               = go a `plusNameEnv` go b
     go (ForAllTy _ ty)           = go ty
     go (CastTy ty co)            = go ty `plusNameEnv` go_co co
     go (CoercionTy co)           = go_co co

     -- Note [TyCon cycles through coercions?!]
     -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     -- Although, in principle, it's possible for a type synonym loop
     -- could go through a coercion (since a coercion can refer to
     -- a TyCon or Type), it doesn't seem possible to actually construct
     -- a Haskell program which tickles this case.  Here is an example
     -- program which causes a coercion:
     --   type family Star where
     --       Star = Type
     --   data T :: Star -> Type
     --   data S :: forall (a :: Type). T a -> Type
     -- Here, the application 'T a' must first coerce a :: Type to a :: Star,
     -- witnessed by the type family.  But if we now try to make Type refer
     -- to a type synonym which in turn refers to Star, we'll run into
     -- trouble: we're trying to define and use the type constructor
     -- in the same recursive group.  Possibly this restriction will be
     -- lifted in the future but for now, this code is "just for completeness
     -- sake".
     go_co (Refl _ ty)            = go ty
     go_co (TyConAppCo _ tc cs)   = go_tc tc `plusNameEnv` go_co_s cs
     go_co (AppCo co co')         = go_co co `plusNameEnv` go_co co'
     go_co (ForAllCo _ co co')    = go_co co `plusNameEnv` go_co co'
     go_co (FunCo _ co co')       = go_co co `plusNameEnv` go_co co'
     go_co (CoVarCo _)            = emptyNameEnv
     go_co (HoleCo {})            = emptyNameEnv
     go_co (AxiomInstCo _ _ cs)   = go_co_s cs
     go_co (UnivCo p _ ty ty')    = go_prov p `plusNameEnv` go ty `plusNameEnv` go ty'
     go_co (SymCo co)             = go_co co
     go_co (TransCo co co')       = go_co co `plusNameEnv` go_co co'
     go_co (NthCo _ co)           = go_co co
     go_co (LRCo _ co)            = go_co co
     go_co (InstCo co co')        = go_co co `plusNameEnv` go_co co'
     go_co (CoherenceCo co co')   = go_co co `plusNameEnv` go_co co'
     go_co (KindCo co)            = go_co co
     go_co (SubCo co)             = go_co co
     go_co (AxiomRuleCo _ cs)     = go_co_s cs

     go_prov UnsafeCoerceProv     = emptyNameEnv
     go_prov (PhantomProv co)     = go_co co
     go_prov (ProofIrrelProv co)  = go_co co
     go_prov (PluginProv _)       = emptyNameEnv

     go_tc tc | isTypeSynonymTyCon tc = unitNameEnv (tyConName tc) tc
              | otherwise             = emptyNameEnv
     go_s tys = foldr (plusNameEnv . go) emptyNameEnv tys
     go_co_s cos = foldr (plusNameEnv . go_co) emptyNameEnv cos

-- | A monad for type synonym cycle checking, which keeps
-- track of the TyCons which are known to be acyclic, or
-- a failure message reporting that a cycle was found.
newtype SynCycleM a = SynCycleM {
    runSynCycleM :: SynCycleState -> Either (SrcSpan, SDoc) (a, SynCycleState) }

type SynCycleState = NameSet

instance Functor SynCycleM where
    fmap = liftM

instance Applicative SynCycleM where
    pure x = SynCycleM $ \state -> Right (x, state)
    (<*>) = ap

instance Monad SynCycleM where
    m >>= f = SynCycleM $ \state ->
        case runSynCycleM m state of
            Right (x, state') ->
                runSynCycleM (f x) state'
            Left err -> Left err

failSynCycleM :: SrcSpan -> SDoc -> SynCycleM ()
failSynCycleM loc err = SynCycleM $ \_ -> Left (loc, err)

-- | Test if a 'Name' is acyclic, short-circuiting if we've
-- seen it already.
checkNameIsAcyclic :: Name -> SynCycleM () -> SynCycleM ()
checkNameIsAcyclic n m = SynCycleM $ \s ->
    if n `elemNameSet` s
        then Right ((), s) -- short circuit
        else case runSynCycleM m s of
                Right ((), s') -> Right ((), extendNameSet s' n)
                Left err -> Left err

-- | Checks if any of the passed in 'TyCon's have cycles.
-- Takes the 'UnitId' of the home package (as we can avoid
-- checking those TyCons: cycles never go through foreign packages) and
-- the corresponding @LTyClDecl Name@ for each 'TyCon', so we
-- can give better error messages.
checkSynCycles :: UnitId -> [TyCon] -> [LTyClDecl GhcRn] -> TcM ()
checkSynCycles this_uid tcs tyclds = do
    case runSynCycleM (mapM_ (go emptyNameSet []) tcs) emptyNameSet of
        Left (loc, err) -> setSrcSpan loc $ failWithTc err
        Right _  -> return ()
    -- Try our best to print the LTyClDecl for locally defined things
    lcl_decls = mkNameEnv (zip (map tyConName tcs) tyclds)

    -- Short circuit if we've already seen this Name and concluded
    -- it was acyclic.
    go :: NameSet -> [TyCon] -> TyCon -> SynCycleM ()
    go so_far seen_tcs tc =
        checkNameIsAcyclic (tyConName tc) $ go' so_far seen_tcs tc

    -- Expand type synonyms, complaining if you find the same
    -- type synonym a second time.
    go' :: NameSet -> [TyCon] -> TyCon -> SynCycleM ()
    go' so_far seen_tcs tc
        | n `elemNameSet` so_far
            = failSynCycleM (getSrcSpan (head seen_tcs)) $
                  sep [ text "Cycle in type synonym declarations:"
                      , nest 2 (vcat (map ppr_decl seen_tcs)) ]
        -- Optimization: we don't allow cycles through external packages,
        -- so once we find a non-local name we are guaranteed to not
        -- have a cycle.
        -- This won't hold once we get recursive packages with Backpack,
        -- but for now it's fine.
        | not (isHoleModule mod ||
               moduleUnitId mod == this_uid ||
               isInteractiveModule mod)
            = return ()
        | Just ty <- synTyConRhs_maybe tc =
            go_ty (extendNameSet so_far (tyConName tc)) (tc:seen_tcs) ty
        | otherwise = return ()
        n = tyConName tc
        mod = nameModule n
        ppr_decl tc =
          case lookupNameEnv lcl_decls n of
            Just (L loc decl) -> ppr loc <> colon <+> ppr decl
            Nothing -> ppr (getSrcSpan n) <> colon <+> ppr n <+> text "from external module"
          n = tyConName tc

    go_ty :: NameSet -> [TyCon] -> Type -> SynCycleM ()
    go_ty so_far seen_tcs ty =
        mapM_ (go so_far seen_tcs) (synonymTyConsOfType ty)

{- Note [Superclass cycle check]
The superclass cycle check for C decides if we can statically
guarantee that expanding C's superclass cycles transitively is
guaranteed to terminate.  This is a Haskell98 requirement,
but one that we lift with -XUndecidableSuperClasses.

The worry is that a superclass cycle could make the type checker loop.
More precisely, with a constraint (Given or Wanted)
    C ty1 .. tyn
one approach is to instantiate all of C's superclasses, transitively.
We can only do so if that set is finite.

This potential loop occurs only through superclasses.  This, for
example, is fine
  class C a where
    op :: C b => a -> b -> b
even though C's full definition uses C.

Making the check static also makes it conservative.  Eg
  type family F a
  class F a => C a
Here an instance of (F a) might mention C:
  type instance F [a] = C a
and now we'd have a loop.

The static check works like this, starting with C
  * Look at C's superclass predicates
  * If any is a type-function application,
    or is headed by a type variable, fail
  * If any has C at the head, fail
  * If any has a type class D at the head,
    make the same test with D

A tricky point is: what if there is a type variable at the head?
Consider this:
   class f (C f) => C f
   class c       => Id c
and now expand superclasses for constraint (C Id):
     C Id
 --> Id (C Id)
 --> C Id
 --> ....
Each step expands superclasses one layer, and clearly does not terminate.

checkClassCycles :: Class -> Maybe SDoc
-- Nothing  <=> ok
-- Just err <=> possible cycle error
checkClassCycles cls
  = do { (definite_cycle, err) <- go (unitNameSet (getName cls))
                                     cls (mkTyVarTys (classTyVars cls))
       ; let herald | definite_cycle = text "Superclass cycle for"
                    | otherwise      = text "Potential superclass cycle for"
       ; return (vcat [ herald <+> quotes (ppr cls)
                      , nest 2 err, hint]) }
    hint = text "Use UndecidableSuperClasses to accept this"

    -- Expand superclasses starting with (C a b), complaining
    -- if you find the same class a second time, or a type function
    -- or predicate headed by a type variable
    -- NB: this code duplicates TcType.transSuperClasses, but
    --     with more error message generation clobber
    -- Make sure the two stay in sync.
    go :: NameSet -> Class -> [Type] -> Maybe (Bool, SDoc)
    go so_far cls tys = firstJusts $
                        map (go_pred so_far) $
                        immSuperClasses cls tys

    go_pred :: NameSet -> PredType -> Maybe (Bool, SDoc)
       -- Nothing <=> ok
       -- Just (True, err)  <=> definite cycle
       -- Just (False, err) <=> possible cycle
    go_pred so_far pred  -- NB: tcSplitTyConApp looks through synonyms
       | Just (tc, tys) <- tcSplitTyConApp_maybe pred
       = go_tc so_far pred tc tys
       | hasTyVarHead pred
       = Just (False, hang (text "one of whose superclass constraints is headed by a type variable:")
                         2 (quotes (ppr pred)))
       | otherwise
       = Nothing

    go_tc :: NameSet -> PredType -> TyCon -> [Type] -> Maybe (Bool, SDoc)
    go_tc so_far pred tc tys
      | isFamilyTyCon tc
      = Just (False, hang (text "one of whose superclass constraints is headed by a type family:")
                        2 (quotes (ppr pred)))
      | Just cls <- tyConClass_maybe tc
      = go_cls so_far cls tys
      | otherwise   -- Equality predicate, for example
      = Nothing

    go_cls :: NameSet -> Class -> [Type] -> Maybe (Bool, SDoc)
    go_cls so_far cls tys
       | cls_nm `elemNameSet` so_far
       = Just (True, text "one of whose superclasses is" <+> quotes (ppr cls))
       | isCTupleClass cls
       = go so_far cls tys
       | otherwise
       = do { (b,err) <- go  (so_far `extendNameSet` cls_nm) cls tys
          ; return (b, text "one of whose superclasses is" <+> quotes (ppr cls)
                       $$ err) }
         cls_nm = getName cls

*                                                                      *
        Role inference
*                                                                      *

Note [Role inference]
The role inference algorithm datatype definitions to infer the roles on the
parameters. Although these roles are stored in the tycons, we can perform this
algorithm on the built tycons, as long as we don't peek at an as-yet-unknown
roles field! Ah, the magic of laziness.

First, we choose appropriate initial roles. For families and classes, roles
(including initial roles) are N. For datatypes, we start with the role in the
role annotation (if any), or otherwise use Phantom. This is done in

The function irGroup then propagates role information until it reaches a
fixpoint, preferring N over (R or P) and R over P. To aid in this, we have a
monad RoleM, which is a combination reader and state monad. In its state are
the current RoleEnv, which gets updated by role propagation, and an update
bit, which we use to know whether or not we've reached the fixpoint. The
environment of RoleM contains the tycon whose parameters we are inferring, and
a VarEnv from parameters to their positions, so we can update the RoleEnv.
Between tycons, this reader information is missing; it is added by

There are two kinds of tycons to consider: algebraic ones (excluding classes)
and type synonyms. (Remember, families don't participate -- all their parameters
are N.) An algebraic tycon processes each of its datacons, in turn. Note that
a datacon's universally quantified parameters might be different from the parent
tycon's parameters, so we use the datacon's univ parameters in the mapping from
vars to positions. Note also that we don't want to infer roles for existentials
(they're all at N, too), so we put them in the set of local variables. As an
optimisation, we skip any tycons whose roles are already all Nominal, as there
nowhere else for them to go. For synonyms, we just analyse their right-hand sides.

irType walks through a type, looking for uses of a variable of interest and
propagating role information. Because anything used under a phantom position
is at phantom and anything used under a nominal position is at nominal, the
irType function can assume that anything it sees is at representational. (The
other possibilities are pruned when they're encountered.)

The rest of the code is just plumbing.

How do we know that this algorithm is correct? It should meet the following

Let Z be a role context -- a mapping from variables to roles. The following
rules define the property (Z |- t : r), where t is a type and r is a role:

Z(a) = r'        r' <= r
------------------------- RCVar
Z |- a : r

---------- RCConst
Z |- T : r               -- T is a type constructor

Z |- t1 : r
Z |- t2 : N
-------------- RCApp
Z |- t1 t2 : r

forall i<=n. (r_i is R or N) implies Z |- t_i : r_i
roles(T) = r_1 .. r_n
---------------------------------------------------- RCDApp
Z |- T t_1 .. t_n : R

Z, a:N |- t : r
---------------------- RCAll
Z |- forall a:k.t : r

We also have the following rules:

For all datacon_i in type T, where a_1 .. a_n are universally quantified
and b_1 .. b_m are existentially quantified, and the arguments are t_1 .. t_p,
then if forall j<=p, a_1 : r_1 .. a_n : r_n, b_1 : N .. b_m : N |- t_j : R,
then roles(T) = r_1 .. r_n

roles(->) = R, R
roles(~#) = N, N

With -dcore-lint on, the output of this algorithm is checked in checkValidRoles,
called from checkValidTycon.

Note [Role-checking data constructor arguments]
  data T a where
    MkT :: Eq b => F a -> (a->a) -> T (G a)

Then we want to check the roles at which 'a' is used
in MkT's type.  We want to work on the user-written type,
so we need to take into account
  * the arguments:   (F a) and (a->a)
  * the context:     C a b
  * the result type: (G a)   -- this is in the eq_spec

Note [Coercions in role inference]
Is (t |> co1) representationally equal to (t |> co2)? Of course they are! Changing
the kind of a type is totally irrelevant to the representation of that type. So,
we want to totally ignore coercions when doing role inference. This includes omitting
any type variables that appear in nominal positions but only within coercions.

type RolesInfo = Name -> [Role]

type RoleEnv = NameEnv [Role]        -- from tycon names to roles

-- This, and any of the functions it calls, must *not* look at the roles
-- field of a tycon we are inferring roles about!
-- See Note [Role inference]
inferRoles :: HscSource -> RoleAnnotEnv -> [TyCon] -> Name -> [Role]
inferRoles hsc_src annots tycons
  = let role_env  = initialRoleEnv hsc_src annots tycons
        role_env' = irGroup role_env tycons in
    \name -> case lookupNameEnv role_env' name of
      Just roles -> roles
      Nothing    -> pprPanic "inferRoles" (ppr name)

initialRoleEnv :: HscSource -> RoleAnnotEnv -> [TyCon] -> RoleEnv
initialRoleEnv hsc_src annots = extendNameEnvList emptyNameEnv .
                                map (initialRoleEnv1 hsc_src annots)

initialRoleEnv1 :: HscSource -> RoleAnnotEnv -> TyCon -> (Name, [Role])
initialRoleEnv1 hsc_src annots_env tc
  | isFamilyTyCon tc      = (name, map (const Nominal) bndrs)
  | isAlgTyCon tc         = (name, default_roles)
  | isTypeSynonymTyCon tc = (name, default_roles)
  | otherwise             = pprPanic "initialRoleEnv1" (ppr tc)
  where name         = tyConName tc
        bndrs        = tyConBinders tc
        argflags     = map tyConBinderArgFlag bndrs
        num_exps     = count isVisibleArgFlag argflags

          -- if the number of annotations in the role annotation decl
          -- is wrong, just ignore it. We check this in the validity check.
          = case lookupRoleAnnot annots_env name of
              Just (L _ (RoleAnnotDecl _ annots))
                | annots `lengthIs` num_exps -> map unLoc annots
              _                              -> replicate num_exps Nothing
        default_roles = build_default_roles argflags role_annots

        build_default_roles (argf : argfs) (m_annot : ras)
          | isVisibleArgFlag argf
          = (m_annot `orElse` default_role) : build_default_roles argfs ras
        build_default_roles (_argf : argfs) ras
          = Nominal : build_default_roles argfs ras
        build_default_roles [] [] = []
        build_default_roles _ _ = pprPanic "initialRoleEnv1 (2)"
                                           (vcat [ppr tc, ppr role_annots])

          | isClassTyCon tc               = Nominal
          -- Note [Default roles for abstract TyCons in hs-boot/hsig]
          | HsBootFile <- hsc_src
          , isAbstractTyCon tc            = Representational
          | HsigFile   <- hsc_src
          , isAbstractTyCon tc            = Nominal
          | otherwise                     = Phantom

-- Note [Default roles for abstract TyCons in hs-boot/hsig]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- What should the default role for an abstract TyCon be?
-- Originally, we inferred phantom role for abstract TyCons
-- in hs-boot files, because the type variables were never used.
-- This was silly, because the role of the abstract TyCon
-- was required to match the implementation, and the roles of
-- data types are almost never phantom.  Thus, in ticket #9204,
-- the default was changed so be representational (the most common case).  If
-- the implementing data type was actually nominal, you'd get an easy
-- to understand error, and add the role annotation yourself.
-- Then Backpack was added, and with it we added role *subtyping*
-- the matching judgment: if an abstract TyCon has a nominal
-- parameter, it's OK to implement it with a representational
-- parameter.  But now, the representational default is not a good
-- one, because you should *only* request representational if
-- you're planning to do coercions. To be maximally flexible
-- with what data types you will accept, you want the default
-- for hsig files is nominal.  We don't allow role subtyping
-- with hs-boot files (it's good practice to give an exactly
-- accurate role here, because any types that use the abstract
-- type will propagate the role information.)

irGroup :: RoleEnv -> [TyCon] -> RoleEnv
irGroup env tcs
  = let (env', update) = runRoleM env $ mapM_ irTyCon tcs in
    if update
    then irGroup env' tcs
    else env'

irTyCon :: TyCon -> RoleM ()
irTyCon tc
  | isAlgTyCon tc
  = do { old_roles <- lookupRoles tc
       ; unless (all (== Nominal) old_roles) $  -- also catches data families,
                                                -- which don't want or need role inference
         irTcTyVars tc $
         do { mapM_ (irType emptyVarSet) (tyConStupidTheta tc)  -- See #8958
            ; whenIsJust (tyConClass_maybe tc) irClass
            ; mapM_ irDataCon (visibleDataCons $ algTyConRhs tc) }}

  | Just ty <- synTyConRhs_maybe tc
  = irTcTyVars tc $
    irType emptyVarSet ty

  | otherwise
  = return ()

-- any type variable used in an associated type must be Nominal
irClass :: Class -> RoleM ()
irClass cls
  = mapM_ ir_at (classATs cls)
    cls_tvs    = classTyVars cls
    cls_tv_set = mkVarSet cls_tvs

    ir_at at_tc
      = mapM_ (updateRole Nominal) nvars
      where nvars = filter (`elemVarSet` cls_tv_set) $ tyConTyVars at_tc

-- See Note [Role inference]
irDataCon :: DataCon -> RoleM ()
irDataCon datacon
  = setRoleInferenceVars univ_tvs $
    irExTyVars ex_tvs $ \ ex_var_set ->
    mapM_ (irType ex_var_set)
          (map tyVarKind ex_tvs ++ eqSpecPreds eq_spec ++ theta ++ arg_tys)
      -- See Note [Role-checking data constructor arguments]
    (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _res_ty)
      = dataConFullSig datacon

irType :: VarSet -> Type -> RoleM ()
irType = go
    go lcls ty                 | Just ty' <- coreView ty -- #14101
                               = go lcls ty'
    go lcls (TyVarTy tv)       = unless (tv `elemVarSet` lcls) $
                                 updateRole Representational tv
    go lcls (AppTy t1 t2)      = go lcls t1 >> markNominal lcls t2
    go lcls (TyConApp tc tys)  = do { roles <- lookupRolesX tc
                                    ; zipWithM_ (go_app lcls) roles tys }
    go lcls (ForAllTy tvb ty)  = do { let tv = binderVar tvb
                                          lcls' = extendVarSet lcls tv
                                    ; markNominal lcls (tyVarKind tv)
                                    ; go lcls' ty }
    go lcls (FunTy arg res)    = go lcls arg >> go lcls res
    go _    (LitTy {})         = return ()
      -- See Note [Coercions in role inference]
    go lcls (CastTy ty _)      = go lcls ty
    go _    (CoercionTy _)     = return ()

    go_app _ Phantom _ = return ()                 -- nothing to do here
    go_app lcls Nominal ty = markNominal lcls ty  -- all vars below here are N
    go_app lcls Representational ty = go lcls ty

irTcTyVars :: TyCon -> RoleM a -> RoleM a
irTcTyVars tc thing
  = setRoleInferenceTc (tyConName tc) $ go (tyConTyVars tc)
    go []       = thing
    go (tv:tvs) = do { markNominal emptyVarSet (tyVarKind tv)
                     ; addRoleInferenceVar tv $ go tvs }

irExTyVars :: [TyVar] -> (TyVarSet -> RoleM a) -> RoleM a
irExTyVars orig_tvs thing = go emptyVarSet orig_tvs
    go lcls []       = thing lcls
    go lcls (tv:tvs) = do { markNominal lcls (tyVarKind tv)
                          ; go (extendVarSet lcls tv) tvs }

markNominal :: TyVarSet   -- local variables
            -> Type -> RoleM ()
markNominal lcls ty = let nvars = fvVarList (FV.delFVs lcls $ get_ty_vars ty) in
                      mapM_ (updateRole Nominal) nvars
     -- get_ty_vars gets all the tyvars (no covars!) from a type *without*
     -- recurring into coercions. Recall: coercions are totally ignored during
     -- role inference. See [Coercions in role inference]
    get_ty_vars :: Type -> FV
    get_ty_vars (TyVarTy tv)      = unitFV tv
    get_ty_vars (AppTy t1 t2)     = get_ty_vars t1 `unionFV` get_ty_vars t2
    get_ty_vars (FunTy t1 t2)     = get_ty_vars t1 `unionFV` get_ty_vars t2
    get_ty_vars (TyConApp _ tys)  = mapUnionFV get_ty_vars tys
    get_ty_vars (ForAllTy tvb ty) = tyCoFVsBndr tvb (get_ty_vars ty)
    get_ty_vars (LitTy {})        = emptyFV
    get_ty_vars (CastTy ty _)     = get_ty_vars ty
    get_ty_vars (CoercionTy _)    = emptyFV

-- like lookupRoles, but with Nominal tags at the end for oversaturated TyConApps
lookupRolesX :: TyCon -> RoleM [Role]
lookupRolesX tc
  = do { roles <- lookupRoles tc
       ; return $ roles ++ repeat Nominal }

-- gets the roles either from the environment or the tycon
lookupRoles :: TyCon -> RoleM [Role]
lookupRoles tc
  = do { env <- getRoleEnv
       ; case lookupNameEnv env (tyConName tc) of
           Just roles -> return roles
           Nothing    -> return $ tyConRoles tc }

-- tries to update a role; won't ever update a role "downwards"
updateRole :: Role -> TyVar -> RoleM ()
updateRole role tv
  = do { var_ns <- getVarNs
       ; name <- getTyConName
       ; case lookupVarEnv var_ns tv of
           Nothing -> pprPanic "updateRole" (ppr name $$ ppr tv $$ ppr var_ns)
           Just n  -> updateRoleEnv name n role }

-- the state in the RoleM monad
data RoleInferenceState = RIS { role_env  :: RoleEnv
                              , update    :: Bool }

-- the environment in the RoleM monad
type VarPositions = VarEnv Int

-- See [Role inference]
newtype RoleM a = RM { unRM :: Maybe Name -- of the tycon
                            -> VarPositions
                            -> Int          -- size of VarPositions
                            -> RoleInferenceState
                            -> (a, RoleInferenceState) }

instance Functor RoleM where
    fmap = liftM

instance Applicative RoleM where
    pure x = RM $ \_ _ _ state -> (x, state)
    (<*>) = ap

instance Monad RoleM where
  a >>= f  = RM $ \m_info vps nvps state ->
                  let (a', state') = unRM a m_info vps nvps state in
                  unRM (f a') m_info vps nvps state'

runRoleM :: RoleEnv -> RoleM () -> (RoleEnv, Bool)
runRoleM env thing = (env', update)
  where RIS { role_env = env', update = update }
          = snd $ unRM thing Nothing emptyVarEnv 0 state
        state = RIS { role_env  = env
                    , update    = False }

setRoleInferenceTc :: Name -> RoleM a -> RoleM a
setRoleInferenceTc name thing = RM $ \m_name vps nvps state ->
                                ASSERT( isNothing m_name )
                                ASSERT( isEmptyVarEnv vps )
                                ASSERT( nvps == 0 )
                                unRM thing (Just name) vps nvps state

addRoleInferenceVar :: TyVar -> RoleM a -> RoleM a
addRoleInferenceVar tv thing
  = RM $ \m_name vps nvps state ->
    ASSERT( isJust m_name )
    unRM thing m_name (extendVarEnv vps tv nvps) (nvps+1) state

setRoleInferenceVars :: [TyVar] -> RoleM a -> RoleM a
setRoleInferenceVars tvs thing
  = RM $ \m_name _vps _nvps state ->
    ASSERT( isJust m_name )
    unRM thing m_name (mkVarEnv (zip tvs [0..])) (panic "setRoleInferenceVars")

getRoleEnv :: RoleM RoleEnv
getRoleEnv = RM $ \_ _ _ state@(RIS { role_env = env }) -> (env, state)

getVarNs :: RoleM VarPositions
getVarNs = RM $ \_ vps _ state -> (vps, state)

getTyConName :: RoleM Name
getTyConName = RM $ \m_name _ _ state ->
                    case m_name of
                      Nothing   -> panic "getTyConName"
                      Just name -> (name, state)

updateRoleEnv :: Name -> Int -> Role -> RoleM ()
updateRoleEnv name n role
  = RM $ \_ _ _ state@(RIS { role_env = role_env }) -> ((),
         case lookupNameEnv role_env name of
           Nothing -> pprPanic "updateRoleEnv" (ppr name)
           Just roles -> let (before, old_role : after) = splitAt n roles in
                         if role `ltRole` old_role
                         then let roles' = before ++ role : after
                                  role_env' = extendNameEnv role_env name roles' in
                              RIS { role_env = role_env', update = True }
                         else state )

{- *********************************************************************
*                                                                      *
                Building implicits
*                                                                      *
********************************************************************* -}

tcAddImplicits :: [TyCon] -> TcM TcGblEnv
-- Given a [TyCon], add to the TcGblEnv
--   * extend the TypeEnv with their implicitTyThings
--   * extend the TypeEnv with any default method Ids
--   * add bindings for record selectors
--   * add bindings for type representations for the TyThings
tcAddImplicits tycons
  = discardWarnings $
    tcExtendGlobalEnvImplicit implicit_things  $
    tcExtendGlobalValEnv def_meth_ids          $
    do { traceTc "tcAddImplicits" $ vcat
            [ text "tycons" <+> ppr tycons
            , text "implicits" <+> ppr implicit_things ]
       ; tcRecSelBinds (mkRecSelBinds tycons) }
   implicit_things = concatMap implicitTyConThings tycons
   def_meth_ids    = mkDefaultMethodIds tycons

mkDefaultMethodIds :: [TyCon] -> [Id]
-- We want to put the default-method Ids (both vanilla and generic)
-- into the type environment so that they are found when we typecheck
-- the filled-in default methods of each instance declaration
-- See Note [Default method Ids and Template Haskell]
mkDefaultMethodIds tycons
  = [ mkExportedVanillaId dm_name (mkDefaultMethodType cls sel_id dm_spec)
    | tc <- tycons
    , Just cls <- [tyConClass_maybe tc]
    , (sel_id, Just (dm_name, dm_spec)) <- classOpItems cls ]

mkDefaultMethodType :: Class -> Id -> DefMethSpec Type -> Type
-- Returns the top-level type of the default method
mkDefaultMethodType _ sel_id VanillaDM        = idType sel_id
mkDefaultMethodType cls _   (GenericDM dm_ty) = mkSigmaTy tv_bndrs [pred] dm_ty
     pred      = mkClassPred cls (mkTyVarTys (binderVars cls_bndrs))
     cls_bndrs = tyConBinders (classTyCon cls)
     tv_bndrs  = tyConTyVarBinders cls_bndrs
     -- NB: the Class doesn't have TyConBinders; we reach into its
     --     TyCon to get those.  We /do/ need the TyConBinders because
     --     we need the correct visibility: these default methods are
     --     used in code generated by the the fill-in for missing
     --     methods in instances (TcInstDcls.mkDefMethBind), and
     --     then typechecked.  So we need the right visibilty info
     --     (Trac #13998)

*                                                                      *
                Building record selectors
*                                                                      *

Note [Default method Ids and Template Haskell]
Consider this (Trac #4169):
   class Numeric a where
     fromIntegerNum :: a
     fromIntegerNum = ...

   ast :: Q [Dec]
   ast = [d| instance Numeric Int |]

When we typecheck 'ast' we have done the first pass over the class decl
(in tcTyClDecls), but we have not yet typechecked the default-method
declarations (because they can mention value declarations).  So we
must bring the default method Ids into scope first (so they can be seen
when typechecking the [d| .. |] quote, and typecheck them later.

*                                                                      *
                Building record selectors
*                                                                      *

mkRecSelBinds :: [TyCon] -> HsValBinds GhcRn
-- NB We produce *un-typechecked* bindings, rather like 'deriving'
--    This makes life easier, because the later type checking will add
--    all necessary type abstractions and applications
mkRecSelBinds tycons
  = ValBindsOut binds sigs
    (sigs, binds) = unzip rec_sels
    rec_sels = map mkRecSelBind [ (tc,fld)
                                | tc <- tycons
                                , fld <- tyConFieldLabels tc ]

mkRecSelBind :: (TyCon, FieldLabel) -> (LSig GhcRn, (RecFlag, LHsBinds GhcRn))
mkRecSelBind (tycon, fl)
  = mkOneRecordSelector all_cons (RecSelData tycon) fl
    all_cons = map RealDataCon (tyConDataCons tycon)

mkOneRecordSelector :: [ConLike] -> RecSelParent -> FieldLabel
                    -> (LSig GhcRn, (RecFlag, LHsBinds GhcRn))
mkOneRecordSelector all_cons idDetails fl
  = (L loc (IdSig sel_id), (NonRecursive, unitBag (L loc sel_bind)))
    loc    = getSrcSpan sel_name
    lbl      = flLabel fl
    sel_name = flSelector fl

    sel_id = mkExportedLocalId rec_details sel_name sel_ty
    rec_details = RecSelId { sel_tycon = idDetails, sel_naughty = is_naughty }

    -- Find a representative constructor, con1
    cons_w_field = conLikesWithFields all_cons [lbl]
    con1 = ASSERT( not (null cons_w_field) ) head cons_w_field

    -- Selector type; Note [Polymorphic selectors]
    field_ty   = conLikeFieldType con1 lbl
    data_tvs   = tyCoVarsOfTypesWellScoped inst_tys
    data_tv_set= mkVarSet data_tvs
    is_naughty = not (tyCoVarsOfType field_ty `subVarSet` data_tv_set)
    (field_tvs, field_theta, field_tau) = tcSplitSigmaTy field_ty
    sel_ty | is_naughty = unitTy  -- See Note [Naughty record selectors]
           | otherwise  = mkSpecForAllTys data_tvs          $
                          mkPhiTy (conLikeStupidTheta con1) $   -- Urgh!
                          mkFunTy data_ty                   $
                          mkSpecForAllTys field_tvs         $
                          mkPhiTy field_theta               $
                          -- req_theta is empty for normal DataCon
                          mkPhiTy req_theta                 $

    -- Make the binding: sel (C2 { fld = x }) = x
    --                   sel (C7 { fld = x }) = x
    --    where cons_w_field = [C2,C7]
    sel_bind = mkTopFunBind Generated sel_lname alts
        alts | is_naughty = [mkSimpleMatch (mkPrefixFunRhs sel_lname)
                                           [] unit_rhs]
             | otherwise =  map mk_match cons_w_field ++ deflt
    mk_match con = mkSimpleMatch (mkPrefixFunRhs sel_lname)
                                 [L loc (mk_sel_pat con)]
                                 (L loc (HsVar (L loc field_var)))
    mk_sel_pat con = ConPatIn (L loc (getName con)) (RecCon rec_fields)
    rec_fields = HsRecFields { rec_flds = [rec_field], rec_dotdot = Nothing }
    rec_field  = noLoc (HsRecField
                        { hsRecFieldLbl
                           = L loc (FieldOcc (L loc $ mkVarUnqual lbl) sel_name)
                        , hsRecFieldArg = L loc (VarPat (L loc field_var))
                        , hsRecPun = False })
    sel_lname = L loc sel_name
    field_var = mkInternalName (mkBuiltinUnique 1) (getOccName sel_name) loc

    -- Add catch-all default case unless the case is exhaustive
    -- We do this explicitly so that we get a nice error message that
    -- mentions this particular record selector
    deflt | all dealt_with all_cons = []
          | otherwise = [mkSimpleMatch CaseAlt
                            [L loc (WildPat placeHolderType)]
                            (mkHsApp (L loc (HsVar
                                            (L loc (getName rEC_SEL_ERROR_ID))))
                                     (L loc (HsLit msg_lit)))]

        -- Do not add a default case unless there are unmatched
        -- constructors.  We must take account of GADTs, else we
        -- get overlap warning messages from the pattern-match checker
        -- NB: we need to pass type args for the *representation* TyCon
        --     to dataConCannotMatch, hence the calculation of inst_tys
        --     This matters in data families
        --              data instance T Int a where
        --                 A :: { fld :: Int } -> T Int Bool
        --                 B :: { fld :: Int } -> T Int Char
    dealt_with :: ConLike -> Bool
    dealt_with (PatSynCon _) = False -- We can't predict overlap
    dealt_with con@(RealDataCon dc) =
      con `elem` cons_w_field || dataConCannotMatch inst_tys dc

    (univ_tvs, _, eq_spec, _, req_theta, _, data_ty) = conLikeFullSig con1

    eq_subst = mkTvSubstPrs (map eqSpecPair eq_spec)
    inst_tys = substTyVars eq_subst univ_tvs

    unit_rhs = mkLHsTupleExpr []
    msg_lit = HsStringPrim NoSourceText (fastStringToByteString lbl)

Note [Polymorphic selectors]
We take care to build the type of a polymorphic selector in the right
order, so that visible type application works.

  data Ord a => T a = MkT { field :: forall b. (Num a, Show b) => (a, b) }

We want

  field :: forall a. Ord a => T a -> forall b. (Num a, Show b) => (a, b)

Note [Naughty record selectors]
A "naughty" field is one for which we can't define a record
selector, because an existential type variable would escape.  For example:
        data T = forall a. MkT { x,y::a }
We obviously can't define
        x (MkT v _) = v
Nevertheless we *do* put a RecSelId into the type environment
so that if the user tries to use 'x' as a selector we can bleat
helpfully, rather than saying unhelpfully that 'x' is not in scope.
Hence the sel_naughty flag, to identify record selectors that don't really exist.

In general, a field is "naughty" if its type mentions a type variable that
isn't in the result type of the constructor.  Note that this *allows*
GADT record selectors (Note [GADT record selectors]) whose types may look
like     sel :: T [a] -> a

For naughty selectors we make a dummy binding
   sel = ()
so that the later type-check will add them to the environment, and they'll be
exported.  The function is never called, because the typechecker spots the
sel_naughty field.

Note [GADT record selectors]
For GADTs, we require that all constructors with a common field 'f' have the same
result type (modulo alpha conversion).  [Checked in TcTyClsDecls.checkValidTyCon]
        data T where
          T1 { f :: Maybe a } :: T [a]
          T2 { f :: Maybe a, y :: b  } :: T [a]
          T3 :: T Int

and now the selector takes that result type as its argument:
   f :: forall a. T [a] -> Maybe a

Details: the "real" types of T1,T2 are:
   T1 :: forall r a.   (r~[a]) => a -> T r
   T2 :: forall r a b. (r~[a]) => a -> b -> T r

So the selector loooks like this:
   f :: forall a. T [a] -> Maybe a
   f (a:*) (t:T [a])
     = case t of
         T1 c   (g:[a]~[c]) (v:Maybe c)       -> v `cast` Maybe (right (sym g))
         T2 c d (g:[a]~[c]) (v:Maybe c) (w:d) -> v `cast` Maybe (right (sym g))
         T3 -> error "T3 does not have field f"

Note the forall'd tyvars of the selector are just the free tyvars
of the result type; there may be other tyvars in the constructor's
type (e.g. 'b' in T2).

Note the need for casts in the result!

Note [Selector running example]
It's OK to combine GADTs and type families.  Here's a running example:

        data instance T [a] where
          T1 { fld :: b } :: T [Maybe b]

The representation type looks like this
        data :R7T a where
          T1 { fld :: b } :: :R7T (Maybe b)

and there's coercion from the family type to the representation type
        :CoR7T a :: T [a] ~ :R7T a

The selector we want for fld looks like this:

        fld :: forall b. T [Maybe b] -> b
        fld = /\b. \(d::T [Maybe b]).
              case d `cast` :CoR7T (Maybe b) of
                T1 (x::b) -> x

The scrutinee of the case has type :R7T (Maybe b), which can be
gotten by appying the eq_spec to the univ_tvs of the data con.