{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
#ifndef MIN_VERSION_generics_sop
#define MIN_VERSION_generics_sop(x,y,z) 1
#endif
module Generics.SOP.Lens (
rep, productRep,
sop, pop,
_SOP, _POP,
_I, _K,
npSingleton,
npHead,
npTail,
nsSingleton,
_Z,
_S,
Generics.SOP.Lens.moduleName,
Generics.SOP.Lens.datatypeName,
Generics.SOP.Lens.constructorInfo,
Generics.SOP.Lens.constructorName,
#if MIN_VERSION_generics_sop(0,5,0)
Generics.SOP.Lens.strictnessInfo,
#endif
) where
import Control.Lens
import Generics.SOP hiding (from)
import qualified Generics.SOP as SOP
#if MIN_VERSION_generics_sop(0,5,0)
import Generics.SOP.Metadata
#endif
rep :: (Generic a, Generic b) => Iso a b (Rep a) (Rep b)
rep = iso SOP.from SOP.to
#if MIN_VERSION_generics_sop(0,3,1)
productRep :: (IsProductType a xs, IsProductType b ys) => Iso a b (NP I xs) (NP I ys)
#else
productRep :: (Generic a, Generic b, Code a ~ '[xs], Code b ~ '[ys]) => Iso a b (NP I xs) (NP I ys)
#endif
productRep = rep . sop . nsSingleton
sop ::
forall (f :: k -> *) xss yss.
Iso (SOP f xss) (SOP f yss) (NS (NP f) xss) (NS (NP f) yss)
sop = iso unSOP SOP
_SOP ::
forall (f :: k -> *) xss yss.
Iso (SOP f xss) (SOP f yss) (NS (NP f) xss) (NS (NP f) yss)
_SOP = sop
pop ::
forall (f :: k -> *) xss yss.
Iso (POP f xss) (POP f yss) (NP (NP f) xss) (NP (NP f) yss)
pop = iso unPOP POP
_POP ::
forall (f :: k -> *) xss yss.
Iso (POP f xss) (POP f yss) (NP (NP f) xss) (NP (NP f) yss)
_POP = pop
instance (t ~ SOP f xss) => Rewrapped (SOP f xss) t
instance Wrapped (SOP f xss) where
type Unwrapped (SOP f xss) = NS (NP f) xss
_Wrapped' = sop
instance (t ~ POP f xss) => Rewrapped (POP f xss) t
instance Wrapped (POP f xss) where
type Unwrapped (POP f xss) = NP (NP f) xss
_Wrapped' = pop
_I :: Iso (I a) (I b) a b
_I = iso unI I
_K :: Iso (K a c) (K b c) a b
_K = iso unK K
instance (t ~ I a) => Rewrapped (I a) t
instance Wrapped (I a) where
type Unwrapped (I a) = a
_Wrapped' = _I
instance (t ~ K a b) => Rewrapped (K a b) t
instance Wrapped (K a b) where
type Unwrapped (K a b) = a
_Wrapped' = _K
npSingleton ::
forall (f :: k -> *) x y.
Iso (NP f '[x]) (NP f '[y]) (f x) (f y)
npSingleton = iso g s
where
g :: NP f '[x] -> f x
g (x :* Nil) = x
#if __GLASGOW_HASKELL__ < 800
g _ = error "_NPSingleton"
#endif
s :: f y -> NP f '[y]
s y = y :* Nil
type family UnSingleton (xs :: [k]) :: k where
UnSingleton '[x] = x
instance (t ~ NS f xs, xs ~ '[x]) => Rewrapped (NS f xs) t
instance (xs ~ '[x]) => Wrapped (NS f xs) where
type Unwrapped (NS f xs) = f (UnSingleton xs)
_Wrapped' = nsSingleton
npHead ::
forall (f :: k -> *) x y zs.
Lens (NP f (x ': zs)) (NP f (y ': zs)) (f x) (f y)
npHead = lens g s
where
g :: NP f (x ': zs) -> f x
g (x :* _zs) = x
s :: NP f (x ': zs) -> f y -> NP f (y ': zs)
s (_x :* zs) y = y :* zs
npTail ::
forall (f :: k -> *) x ys zs.
Lens (NP f (x ': ys)) (NP f (x ': zs)) (NP f ys) (NP f zs)
npTail = lens g s
where
g :: NP f (x ': ys) -> NP f ys
g (_x :* ys) = ys
s :: NP f (x ': ys) -> NP f zs -> NP f (x ': zs)
s (x :* _ys) zs = x :* zs
instance Field1 (NP f (x ': zs)) (NP f (y ': zs)) (f x) (f y) where _1 = npHead
instance Field1 (POP f (x ': zs)) (POP f (y ': zs)) (NP f x) (NP f y) where _1 = _POP . _1
instance Field2 (NP f (a ': x ': zs)) (NP f (a ': y ': zs)) (f x) (f y) where _2 = npTail . _1
instance Field2 (POP f (a ': x ': zs)) (POP f (a ': y ': zs)) (NP f x) (NP f y) where _2 = _POP . _2
instance Field3 (NP f (a ': b ': x ': zs)) (NP f (a ': b ': y ': zs)) (f x) (f y) where _3 = npTail . _2
instance Field3 (POP f (a ': b ': x ': zs)) (POP f (a ': b ': y ': zs)) (NP f x) (NP f y) where _3 = _POP . _3
instance Field4 (NP f (a ': b ': c ': x ': zs)) (NP f (a ': b ': c ': y ': zs)) (f x) (f y) where _4 = npTail . _3
instance Field4 (POP f (a ': b ': c ': x ': zs)) (POP f (a ': b ': c ': y ': zs)) (NP f x) (NP f y) where _4 = _POP . _4
instance Field5 (NP f (a ': b ': c ': d ': x ': zs)) (NP f (a ': b ': c ': d ': y ': zs)) (f x) (f y) where _5 = npTail . _4
instance Field5 (POP f (a ': b ': c ': d ': x ': zs)) (POP f (a ': b ': c ': d ': y ': zs)) (NP f x) (NP f y) where _5 = _POP . _5
instance Field6 (NP f (a ': b ': c ': d ': e ': x ': zs)) (NP f (a ': b ': c ': d ': e ': y ': zs)) (f x) (f y) where _6 = npTail . _5
instance Field6 (POP f (a ': b ': c ': d ': e ': x ': zs)) (POP f (a ': b ': c ': d ': e ': y ': zs)) (NP f x) (NP f y) where _6 = _POP . _6
instance Field7 (NP f' (a ': b ': c ': d ': e ': f ': x ': zs)) (NP f' (a ': b ': c ': d ': e ': f ': y ': zs)) (f' x) (f' y) where _7 = npTail . _6
instance Field7 (POP f' (a ': b ': c ': d ': e ': f ': x ': zs)) (POP f' (a ': b ': c ': d ': e ': f ': y ': zs)) (NP f' x) (NP f' y) where _7 = _POP . _7
instance Field8 (NP f' (a ': b ': c ': d ': e ': f ': g ': x ': zs)) (NP f' (a ': b ': c ': d ': e ': f ': g ': y ': zs)) (f' x) (f' y) where _8 = npTail . _7
instance Field8 (POP f' (a ': b ': c ': d ': e ': f ': g ': x ': zs)) (POP f' (a ': b ': c ': d ': e ': f ': g ': y ': zs)) (NP f' x) (NP f' y) where _8 = _POP . _8
instance Field9 (NP f' (a ': b ': c ': d ': e ': f ': g ': h ': x ': zs)) (NP f' (a ': b ': c ': d ': e ': f ': g ': h ': y ': zs)) (f' x) (f' y) where _9 = npTail . _8
instance Field9 (POP f' (a ': b ': c ': d ': e ': f ': g ': h ': x ': zs)) (POP f' (a ': b ': c ': d ': e ': f ': g ': h ': y ': zs)) (NP f' x) (NP f' y) where _9 = _POP . _9
nsSingleton ::
forall (f :: k -> *) x y.
Iso (NS f '[x]) (NS f '[y]) (f x) (f y)
nsSingleton = iso g Z
where
g :: NS f '[x] -> f x
g (Z x) = x
#if __GLASGOW_HASKELL__ < 800
g _ = error "singletonS"
#else
g (S v) = case v of {}
#endif
_Z ::
forall (f :: k -> *) x y zs.
Prism (NS f (x ': zs)) (NS f (y ': zs)) (f x) (f y)
_Z = prism Z p
where
p :: NS f (x ': zs) -> Either (NS f (y ': zs)) (f x)
p (Z x) = Right x
p (S xs) = Left (S xs)
_S ::
forall (f :: k -> *) x ys zs.
Prism (NS f (x ': ys)) (NS f (x ': zs)) (NS f ys) (NS f zs)
_S = prism S p
where
p :: NS f (x ': ys) -> Either (NS f (x ': zs)) (NS f ys)
p (Z x) = Left $ Z x
p (S xs) = Right $ xs
moduleName :: Lens' (DatatypeInfo xss) ModuleName
moduleName = lens g s
where
g :: DatatypeInfo xss -> ModuleName
#if MIN_VERSION_generics_sop(0,5,0)
g (ADT m _ _ _) = m
#else
g (ADT m _ _) = m
#endif
g (Newtype m _ _) = m
s :: DatatypeInfo xss -> ModuleName -> DatatypeInfo xss
#if MIN_VERSION_generics_sop(0,5,0)
s (ADT _ n cs ss) m = ADT m n cs ss
#else
s (ADT _ n cs) m = ADT m n cs
#endif
s (Newtype _ n c) m = Newtype m n c
datatypeName :: Lens' (DatatypeInfo xss) DatatypeName
datatypeName = lens g s
where
g :: DatatypeInfo xss -> DatatypeName
#if MIN_VERSION_generics_sop(0,5,0)
g (ADT _ n _ _) = n
#else
g (ADT _ n _) = n
#endif
g (Newtype _ n _) = n
s :: DatatypeInfo xss -> DatatypeName -> DatatypeInfo xss
#if MIN_VERSION_generics_sop(0,5,0)
s (ADT m _ cs ss) n = ADT m n cs ss
#else
s (ADT m _ cs) n = ADT m n cs
#endif
s (Newtype m _ c) n = Newtype m n c
constructorInfo :: Lens' (DatatypeInfo xss) (NP ConstructorInfo xss)
constructorInfo = lens g s
where
g :: DatatypeInfo xss -> NP ConstructorInfo xss
#if MIN_VERSION_generics_sop(0,5,0)
g (ADT _ _ cs _) = cs
#else
g (ADT _ _ cs) = cs
#endif
g (Newtype _ _ c) = c :* Nil
s :: DatatypeInfo xss -> NP ConstructorInfo xss -> DatatypeInfo xss
#if MIN_VERSION_generics_sop(0,5,0)
s (ADT m n _ ss) cs = ADT m n cs ss
#else
s (ADT m n _) cs = ADT m n cs
#endif
s (Newtype m n _) (c :* Nil) = Newtype m n c
#if __GLASGOW_HASKELL__ < 800
s _ _ = error "constructorInfo set: impossible happened"
#endif
constructorName :: Lens' (ConstructorInfo xs) ConstructorName
constructorName f (Constructor n ) = (\ n' -> Constructor n' ) `fmap` f n
constructorName f (Infix n a fix) = (\ n' -> Infix n' a fix) `fmap` f n
constructorName f (Record n finfo) = (\ n' -> Record n' finfo) `fmap` f n
#if MIN_VERSION_generics_sop(0,5,0)
strictnessInfo :: Traversal' (DatatypeInfo xss) (POP StrictnessInfo xss)
strictnessInfo _ di@(Newtype {}) = pure di
strictnessInfo f (ADT m n cs ss) = ADT m n cs <$> f ss
#endif