{-# LANGUAGE EmptyCase, PolyKinds, UndecidableInstances #-}
{-# OPTIONS_GHC -fno-warn-unticked-promoted-constructors #-}
-- | Derive @generics-sop@ boilerplate instances from GHC's 'GHC.Generic'.
--
-- The technique being used here is described in the following paper:
--
--   * José Pedro Magalhães and Andres Löh.
--     <http://www.andres-loeh.de/GenericGenericProgramming Generic Generic Programming>.
--     Practical Aspects of Declarative Languages (PADL) 2014.
--
module Generics.SOP.GGP
  ( GCode
  , GFrom
  , GTo
  , GDatatypeInfo
  , GDatatypeInfoOf
  , gfrom
  , gto
  , gdatatypeInfo
  ) where

import Data.Proxy (Proxy (..))
import Data.Kind (Type)
import GHC.Generics as GHC
import Generics.SOP.NP as SOP
import Generics.SOP.NS as SOP
import Generics.SOP.BasicFunctors as SOP
import qualified Generics.SOP.Type.Metadata as SOP.T
import Generics.SOP.Metadata as SOP

type family ToSingleCode (a :: Type -> Type) :: Type
type instance ToSingleCode (K1 _i a) = a

type family ToProductCode (a :: Type -> Type) (xs :: [Type]) :: [Type]
type instance ToProductCode (a :*: b)   xs = ToProductCode a (ToProductCode b xs)
type instance ToProductCode U1          xs = xs
type instance ToProductCode (M1 S _c a) xs = ToSingleCode a ': xs

type family ToSumCode (a :: Type -> Type) (xs :: [[Type]]) :: [[Type]]
type instance ToSumCode (a :+: b)   xs = ToSumCode a (ToSumCode b xs)
type instance ToSumCode V1          xs = xs
type instance ToSumCode (M1 D _c a) xs = ToSumCode a xs
type instance ToSumCode (M1 C _c a) xs = ToProductCode a '[] ': xs

data InfoProxy (c :: Meta) (f :: Type -> Type) (x :: Type) = InfoProxy

type family ToInfo (a :: Type -> Type) :: SOP.T.DatatypeInfo
type instance ToInfo (M1 D (MetaData n m p False) a) =
  SOP.T.ADT m n (ToSumInfo a '[]) (ToStrictnessInfoss a '[])
type instance ToInfo (M1 D (MetaData n m p True) a) =
  SOP.T.Newtype m n (ToSingleConstructorInfo a)

type family ToStrictnessInfoss (a :: Type -> Type) (xss :: [[SOP.T.StrictnessInfo]]) :: [[SOP.T.StrictnessInfo]]
type instance ToStrictnessInfoss (a :+: b)  xss = ToStrictnessInfoss a (ToStrictnessInfoss b xss)
type instance ToStrictnessInfoss V1         xss = xss
type instance ToStrictnessInfoss (M1 C _ a) xss = ToStrictnessInfos a '[] ': xss

type family ToStrictnessInfos (a :: Type -> Type) (xs :: [SOP.T.StrictnessInfo]) :: [SOP.T.StrictnessInfo]
type instance ToStrictnessInfos (a :*: b)  xs = ToStrictnessInfos a (ToStrictnessInfos b xs)
type instance ToStrictnessInfos U1         xs = xs
type instance ToStrictnessInfos (M1 S s a) xs = ToStrictnessInfo s ': xs

type family ToStrictnessInfo (s :: Meta) :: SOP.T.StrictnessInfo
type instance ToStrictnessInfo (MetaSel _ su ss ds) = 'SOP.T.StrictnessInfo su ss ds

type family ToSumInfo (a :: Type -> Type) (xs :: [SOP.T.ConstructorInfo]) :: [SOP.T.ConstructorInfo]
type instance ToSumInfo (a :+: b)  xs = ToSumInfo a (ToSumInfo b xs)
type instance ToSumInfo V1         xs = xs
type instance ToSumInfo (M1 C c a) xs = ToSingleConstructorInfo (M1 C c a) ': xs

type family ToSingleConstructorInfo (a :: Type -> Type) :: SOP.T.ConstructorInfo
type instance ToSingleConstructorInfo (M1 C (MetaCons n PrefixI False) a) =
  SOP.T.Constructor n
type instance ToSingleConstructorInfo (M1 C (MetaCons n (InfixI assoc fix) False) a) =
  SOP.T.Infix n assoc fix
type instance ToSingleConstructorInfo (M1 C (MetaCons n f True) a) =
  SOP.T.Record n (ToProductInfo a '[])

type family ToProductInfo (a :: Type -> Type) (xs :: [SOP.T.FieldInfo]) :: [SOP.T.FieldInfo]
type instance ToProductInfo (a :*: b)  xs = ToProductInfo a (ToProductInfo b xs)
type instance ToProductInfo U1         xs = xs
type instance ToProductInfo (M1 S c a) xs = ToSingleInfo (M1 S c a) ': xs

type family ToSingleInfo (a :: Type -> Type) :: SOP.T.FieldInfo
type instance ToSingleInfo (M1 S (MetaSel (Just n) _su _ss _ds) a) = 'SOP.T.FieldInfo n

class GFieldInfos (a :: Type -> Type) where
  gFieldInfos :: proxy a -> NP FieldInfo xs -> NP FieldInfo (ToProductCode a xs)

instance (GFieldInfos a, GFieldInfos b) => GFieldInfos (a :*: b) where
  gFieldInfos :: forall (proxy :: (* -> *) -> *) (xs :: [*]).
proxy (a :*: b)
-> NP FieldInfo xs -> NP FieldInfo (ToProductCode (a :*: b) xs)
gFieldInfos proxy (a :*: b)
_ NP FieldInfo xs
xs = forall (a :: * -> *) (proxy :: (* -> *) -> *) (xs :: [*]).
GFieldInfos a =>
proxy a -> NP FieldInfo xs -> NP FieldInfo (ToProductCode a xs)
gFieldInfos (forall {k} (t :: k). Proxy t
Proxy :: Proxy a) (forall (a :: * -> *) (proxy :: (* -> *) -> *) (xs :: [*]).
GFieldInfos a =>
proxy a -> NP FieldInfo xs -> NP FieldInfo (ToProductCode a xs)
gFieldInfos (forall {k} (t :: k). Proxy t
Proxy :: Proxy b) NP FieldInfo xs
xs)

instance GFieldInfos U1 where
  gFieldInfos :: forall (proxy :: (* -> *) -> *) (xs :: [*]).
proxy U1 -> NP FieldInfo xs -> NP FieldInfo (ToProductCode U1 xs)
gFieldInfos proxy U1
_ NP FieldInfo xs
xs = NP FieldInfo xs
xs

instance (Selector c) => GFieldInfos (M1 S c a) where
  gFieldInfos :: forall (proxy :: (* -> *) -> *) (xs :: [*]).
proxy (M1 S c a)
-> NP FieldInfo xs -> NP FieldInfo (ToProductCode (M1 S c a) xs)
gFieldInfos proxy (M1 S c a)
_ NP FieldInfo xs
xs = forall a. FieldName -> FieldInfo a
FieldInfo (forall {k} (s :: k) k1 (t :: k -> (k1 -> *) -> k1 -> *)
       (f :: k1 -> *) (a :: k1).
Selector s =>
t s f a -> FieldName
selName forall x. InfoProxy c a x
p) forall {k} (a :: k -> *) (x :: k) (xs :: [k]).
a x -> NP a xs -> NP a (x : xs)
:* NP FieldInfo xs
xs
    where
      p :: InfoProxy c a x
      p :: forall x. InfoProxy c a x
p = forall (c :: Meta) (f :: * -> *) x. InfoProxy c f x
InfoProxy

class GSingleFrom (a :: Type -> Type) where
  gSingleFrom :: a x -> ToSingleCode a

instance GSingleFrom (K1 i a) where
  gSingleFrom :: forall x. K1 i a x -> ToSingleCode (K1 i a)
gSingleFrom (K1 a
a) = a
a

class GProductFrom (a :: Type -> Type) where
  gProductFrom :: a x -> NP I xs -> NP I (ToProductCode a xs)

instance (GProductFrom a, GProductFrom b) => GProductFrom (a :*: b) where
  gProductFrom :: forall x (xs :: [*]).
(:*:) a b x -> NP I xs -> NP I (ToProductCode (a :*: b) xs)
gProductFrom (a x
a :*: b x
b) NP I xs
xs = forall (a :: * -> *) x (xs :: [*]).
GProductFrom a =>
a x -> NP I xs -> NP I (ToProductCode a xs)
gProductFrom a x
a (forall (a :: * -> *) x (xs :: [*]).
GProductFrom a =>
a x -> NP I xs -> NP I (ToProductCode a xs)
gProductFrom b x
b NP I xs
xs)

instance GProductFrom U1 where
  gProductFrom :: forall x (xs :: [*]). U1 x -> NP I xs -> NP I (ToProductCode U1 xs)
gProductFrom U1 x
U1 NP I xs
xs = NP I xs
xs

instance GSingleFrom a => GProductFrom (M1 S c a) where
  gProductFrom :: forall x (xs :: [*]).
M1 S c a x -> NP I xs -> NP I (ToProductCode (M1 S c a) xs)
gProductFrom (M1 a x
a) NP I xs
xs = forall a. a -> I a
I (forall (a :: * -> *) x. GSingleFrom a => a x -> ToSingleCode a
gSingleFrom a x
a) forall {k} (a :: k -> *) (x :: k) (xs :: [k]).
a x -> NP a xs -> NP a (x : xs)
:* NP I xs
xs

class GSingleTo (a :: Type -> Type) where
  gSingleTo :: ToSingleCode a -> a x

instance GSingleTo (K1 i a) where
  gSingleTo :: forall x. ToSingleCode (K1 i a) -> K1 i a x
gSingleTo ToSingleCode (K1 i a)
a = forall k i c (p :: k). c -> K1 i c p
K1 ToSingleCode (K1 i a)
a

class GProductTo (a :: Type -> Type) where
  gProductTo :: NP I (ToProductCode a xs) -> (a x -> NP I xs -> r) -> r

instance (GProductTo a, GProductTo b) => GProductTo (a :*: b) where
  gProductTo :: forall (xs :: [*]) x r.
NP I (ToProductCode (a :*: b) xs)
-> ((:*:) a b x -> NP I xs -> r) -> r
gProductTo NP I (ToProductCode (a :*: b) xs)
xs (:*:) a b x -> NP I xs -> r
k = forall (a :: * -> *) (xs :: [*]) x r.
GProductTo a =>
NP I (ToProductCode a xs) -> (a x -> NP I xs -> r) -> r
gProductTo NP I (ToProductCode (a :*: b) xs)
xs (\ a x
a NP I (ToProductCode b xs)
ys -> forall (a :: * -> *) (xs :: [*]) x r.
GProductTo a =>
NP I (ToProductCode a xs) -> (a x -> NP I xs -> r) -> r
gProductTo NP I (ToProductCode b xs)
ys (\ b x
b NP I xs
zs -> (:*:) a b x -> NP I xs -> r
k (a x
a forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: b x
b) NP I xs
zs))

instance GSingleTo a => GProductTo (M1 S c a) where
  gProductTo :: forall (xs :: [*]) x r.
NP I (ToProductCode (M1 S c a) xs)
-> (M1 S c a x -> NP I xs -> r) -> r
gProductTo (SOP.I x
a :* NP I xs
xs) M1 S c a x -> NP I xs -> r
k = M1 S c a x -> NP I xs -> r
k (forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 (forall (a :: * -> *) x. GSingleTo a => ToSingleCode a -> a x
gSingleTo x
a)) NP I xs
xs

instance GProductTo U1 where
  gProductTo :: forall (xs :: [*]) x r.
NP I (ToProductCode U1 xs) -> (U1 x -> NP I xs -> r) -> r
gProductTo NP I (ToProductCode U1 xs)
xs U1 x -> NP I xs -> r
k = U1 x -> NP I xs -> r
k forall k (p :: k). U1 p
U1 NP I (ToProductCode U1 xs)
xs

-- This can most certainly be simplified
class GSumFrom (a :: Type -> Type) where
  gSumFrom :: a x -> proxy xss -> SOP I (ToSumCode a xss)
  gSumSkip :: proxy a -> SOP I xss -> SOP I (ToSumCode a xss)

instance GSumFrom V1 where
  gSumFrom :: forall x (proxy :: [[*]] -> *) (xss :: [[*]]).
V1 x -> proxy xss -> SOP I (ToSumCode V1 xss)
gSumFrom V1 x
x = case V1 x
x of {}
  gSumSkip :: forall (proxy :: (* -> *) -> *) (xss :: [[*]]).
proxy V1 -> SOP I xss -> SOP I (ToSumCode V1 xss)
gSumSkip proxy V1
_ SOP I xss
xss = SOP I xss
xss

instance (GSumFrom a, GSumFrom b) => GSumFrom (a :+: b) where
  gSumFrom :: forall x (proxy :: [[*]] -> *) (xss :: [[*]]).
(:+:) a b x -> proxy xss -> SOP I (ToSumCode (a :+: b) xss)
gSumFrom (L1 a x
a) proxy xss
xss = forall (a :: * -> *) x (proxy :: [[*]] -> *) (xss :: [[*]]).
GSumFrom a =>
a x -> proxy xss -> SOP I (ToSumCode a xss)
gSumFrom a x
a (forall (proxy :: [[*]] -> *) (xss :: [[*]]).
proxy xss -> Proxy (ToSumCode b xss)
toSumCodeProxy proxy xss
xss) where
    toSumCodeProxy :: proxy xss -> Proxy (ToSumCode b xss)
    toSumCodeProxy :: forall (proxy :: [[*]] -> *) (xss :: [[*]]).
proxy xss -> Proxy (ToSumCode b xss)
toSumCodeProxy proxy xss
_ = forall {k} (t :: k). Proxy t
Proxy

  gSumFrom (R1 b x
b) proxy xss
xss = forall (a :: * -> *) (proxy :: (* -> *) -> *) (xss :: [[*]]).
GSumFrom a =>
proxy a -> SOP I xss -> SOP I (ToSumCode a xss)
gSumSkip (forall {k} (t :: k). Proxy t
Proxy :: Proxy a) (forall (a :: * -> *) x (proxy :: [[*]] -> *) (xss :: [[*]]).
GSumFrom a =>
a x -> proxy xss -> SOP I (ToSumCode a xss)
gSumFrom b x
b proxy xss
xss)

  gSumSkip :: forall (proxy :: (* -> *) -> *) (xss :: [[*]]).
proxy (a :+: b) -> SOP I xss -> SOP I (ToSumCode (a :+: b) xss)
gSumSkip proxy (a :+: b)
_ SOP I xss
xss = forall (a :: * -> *) (proxy :: (* -> *) -> *) (xss :: [[*]]).
GSumFrom a =>
proxy a -> SOP I xss -> SOP I (ToSumCode a xss)
gSumSkip (forall {k} (t :: k). Proxy t
Proxy :: Proxy a) (forall (a :: * -> *) (proxy :: (* -> *) -> *) (xss :: [[*]]).
GSumFrom a =>
proxy a -> SOP I xss -> SOP I (ToSumCode a xss)
gSumSkip (forall {k} (t :: k). Proxy t
Proxy :: Proxy b) SOP I xss
xss)

instance (GSumFrom a) => GSumFrom (M1 D c a) where
  gSumFrom :: forall x (proxy :: [[*]] -> *) (xss :: [[*]]).
M1 D c a x -> proxy xss -> SOP I (ToSumCode (M1 D c a) xss)
gSumFrom (M1 a x
a) proxy xss
xss = forall (a :: * -> *) x (proxy :: [[*]] -> *) (xss :: [[*]]).
GSumFrom a =>
a x -> proxy xss -> SOP I (ToSumCode a xss)
gSumFrom a x
a proxy xss
xss
  gSumSkip :: forall (proxy :: (* -> *) -> *) (xss :: [[*]]).
proxy (M1 D c a) -> SOP I xss -> SOP I (ToSumCode (M1 D c a) xss)
gSumSkip proxy (M1 D c a)
_      SOP I xss
xss = forall (a :: * -> *) (proxy :: (* -> *) -> *) (xss :: [[*]]).
GSumFrom a =>
proxy a -> SOP I xss -> SOP I (ToSumCode a xss)
gSumSkip (forall {k} (t :: k). Proxy t
Proxy :: Proxy a) SOP I xss
xss

instance (GProductFrom a) => GSumFrom (M1 C c a) where
  gSumFrom :: forall x (proxy :: [[*]] -> *) (xss :: [[*]]).
M1 C c a x -> proxy xss -> SOP I (ToSumCode (M1 C c a) xss)
gSumFrom (M1 a x
a) proxy xss
_    = forall k (f :: k -> *) (xss :: [[k]]). NS (NP f) xss -> SOP f xss
SOP (forall {k} (a :: k -> *) (x :: k) (xs :: [k]). a x -> NS a (x : xs)
Z (forall (a :: * -> *) x (xs :: [*]).
GProductFrom a =>
a x -> NP I xs -> NP I (ToProductCode a xs)
gProductFrom a x
a forall {k} (a :: k -> *). NP a '[]
Nil))
  gSumSkip :: forall (proxy :: (* -> *) -> *) (xss :: [[*]]).
proxy (M1 C c a) -> SOP I xss -> SOP I (ToSumCode (M1 C c a) xss)
gSumSkip proxy (M1 C c a)
_ (SOP NS (NP I) xss
xss) = forall k (f :: k -> *) (xss :: [[k]]). NS (NP f) xss -> SOP f xss
SOP (forall {k} (a :: k -> *) (xs :: [k]) (x :: k).
NS a xs -> NS a (x : xs)
S NS (NP I) xss
xss)

class GSumTo (a :: Type -> Type) where
  gSumTo :: SOP I (ToSumCode a xss) -> (a x -> r) -> (SOP I xss -> r) -> r

instance GSumTo V1 where
  gSumTo :: forall (xss :: [[*]]) x r.
SOP I (ToSumCode V1 xss) -> (V1 x -> r) -> (SOP I xss -> r) -> r
gSumTo SOP I (ToSumCode V1 xss)
x V1 x -> r
_ SOP I xss -> r
k = SOP I xss -> r
k SOP I (ToSumCode V1 xss)
x

instance (GSumTo a, GSumTo b) => GSumTo (a :+: b) where
  gSumTo :: forall (xss :: [[*]]) x r.
SOP I (ToSumCode (a :+: b) xss)
-> ((:+:) a b x -> r) -> (SOP I xss -> r) -> r
gSumTo SOP I (ToSumCode (a :+: b) xss)
xss (:+:) a b x -> r
s SOP I xss -> r
k = forall (a :: * -> *) (xss :: [[*]]) x r.
GSumTo a =>
SOP I (ToSumCode a xss) -> (a x -> r) -> (SOP I xss -> r) -> r
gSumTo SOP I (ToSumCode (a :+: b) xss)
xss ((:+:) a b x -> r
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1) (\ SOP I (ToSumCode b xss)
r -> forall (a :: * -> *) (xss :: [[*]]) x r.
GSumTo a =>
SOP I (ToSumCode a xss) -> (a x -> r) -> (SOP I xss -> r) -> r
gSumTo SOP I (ToSumCode b xss)
r ((:+:) a b x -> r
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1) SOP I xss -> r
k)

instance (GProductTo a) => GSumTo (M1 C c a) where
  gSumTo :: forall (xss :: [[*]]) x r.
SOP I (ToSumCode (M1 C c a) xss)
-> (M1 C c a x -> r) -> (SOP I xss -> r) -> r
gSumTo (SOP (Z NP I x
xs)) M1 C c a x -> r
s SOP I xss -> r
_ = M1 C c a x -> r
s (forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 (forall (a :: * -> *) (xs :: [*]) x r.
GProductTo a =>
NP I (ToProductCode a xs) -> (a x -> NP I xs -> r) -> r
gProductTo NP I x
xs ((\ a x
x NP I '[]
Nil -> a x
x) :: a x -> NP I '[] -> a x)))
  gSumTo (SOP (S NS (NP I) xs
xs)) M1 C c a x -> r
_ SOP I xss -> r
k = SOP I xss -> r
k (forall k (f :: k -> *) (xss :: [[k]]). NS (NP f) xss -> SOP f xss
SOP NS (NP I) xs
xs)

instance (GSumTo a) => GSumTo (M1 D c a) where
  gSumTo :: forall (xss :: [[*]]) x r.
SOP I (ToSumCode (M1 D c a) xss)
-> (M1 D c a x -> r) -> (SOP I xss -> r) -> r
gSumTo SOP I (ToSumCode (M1 D c a) xss)
xss M1 D c a x -> r
s SOP I xss -> r
k = forall (a :: * -> *) (xss :: [[*]]) x r.
GSumTo a =>
SOP I (ToSumCode a xss) -> (a x -> r) -> (SOP I xss -> r) -> r
gSumTo SOP I (ToSumCode (M1 D c a) xss)
xss (M1 D c a x -> r
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1) SOP I xss -> r
k

-- | Compute the SOP code of a datatype.
--
-- This requires that 'GHC.Rep' is defined, which in turn requires that
-- the type has a 'GHC.Generic' (from module "GHC.Generics") instance.
--
-- This is the default definition for 'Generics.SOP.Code'.
-- For more info, see 'Generics.SOP.Generic'.
--
type GCode (a :: Type) = ToSumCode (GHC.Rep a) '[]

-- | Constraint for the class that computes 'gfrom'.
type GFrom a = GSumFrom (GHC.Rep a)

-- | Constraint for the class that computes 'gto'.
type GTo a = GSumTo (GHC.Rep a)

-- | Constraint for the class that computes 'gdatatypeInfo'.
type GDatatypeInfo a = SOP.T.DemoteDatatypeInfo (GDatatypeInfoOf a) (GCode a)

-- | Compute the datatype info of a datatype.
--
-- @since 0.3.0.0
--
type GDatatypeInfoOf (a :: Type) = ToInfo (GHC.Rep a)

-- | An automatically computed version of 'Generics.SOP.from'.
--
-- This requires that the type being converted has a
-- 'GHC.Generic' (from module "GHC.Generics") instance.
--
-- This is the default definition for 'Generics.SOP.from'.
-- For more info, see 'Generics.SOP.Generic'.
--
gfrom :: (GFrom a, GHC.Generic a) => a -> SOP I (GCode a)
gfrom :: forall a. (GFrom a, Generic a) => a -> SOP I (GCode a)
gfrom a
x = forall (a :: * -> *) x (proxy :: [[*]] -> *) (xss :: [[*]]).
GSumFrom a =>
a x -> proxy xss -> SOP I (ToSumCode a xss)
gSumFrom (forall a x. Generic a => a -> Rep a x
GHC.from a
x) (forall {k} (t :: k). Proxy t
Proxy :: Proxy '[])

-- | An automatically computed version of 'Generics.SOP.to'.
--
-- This requires that the type being converted has a
-- 'GHC.Generic' (from module "GHC.Generics") instance.
--
-- This is the default definition for 'Generics.SOP.to'.
-- For more info, see 'Generics.SOP.Generic'.
--
gto :: forall a. (GTo a, GHC.Generic a) => SOP I (GCode a) -> a
gto :: forall a. (GTo a, Generic a) => SOP I (GCode a) -> a
gto SOP I (GCode a)
x = forall a x. Generic a => Rep a x -> a
GHC.to (forall (a :: * -> *) (xss :: [[*]]) x r.
GSumTo a =>
SOP I (ToSumCode a xss) -> (a x -> r) -> (SOP I xss -> r) -> r
gSumTo SOP I (GCode a)
x forall a. a -> a
id ((\SOP I '[]
y -> case SOP I '[]
y of {}) :: SOP I '[] -> (GHC.Rep a) x))

-- | An automatically computed version of 'Generics.SOP.datatypeInfo'.
--
-- This requires that the type being converted has a
-- 'GHC.Generic' (from module "GHC.Generics") instance.
--
-- This is the default definition for 'Generics.SOP.datatypeInfo'.
-- For more info, see 'Generics.SOP.HasDatatypeInfo'.
--
gdatatypeInfo :: forall proxy a. (GDatatypeInfo a) => proxy a -> DatatypeInfo (GCode a)
gdatatypeInfo :: forall (proxy :: * -> *) a.
GDatatypeInfo a =>
proxy a -> DatatypeInfo (GCode a)
gdatatypeInfo proxy a
_ = forall (x :: DatatypeInfo) (xss :: [[*]])
       (proxy :: DatatypeInfo -> *).
DemoteDatatypeInfo x xss =>
proxy x -> DatatypeInfo xss
SOP.T.demoteDatatypeInfo (forall {k} (t :: k). Proxy t
Proxy :: Proxy (GDatatypeInfoOf a))