Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Basic functors.
Definitions of the type-level equivalents of
const
, id
, and (.
), and a definition of
the lifted function space.
These datatypes are generally useful, but in this
library, they're primarily used as parameters for
the NP
, NS
, POP
, and SOP
types.
We define own variants of Const
,
Identity
and Compose
for
various reasons.
Const
andCompose
become kind polymorphic only inbase-4.9.0.0
(transformers-0.5.0.0
).- Shorter names are convenient, and pattern synonyms aren't (yet) powerful enough, particularly exhaustiveness check doesn't work properly. See https://ghc.haskell.org/trac/ghc/ticket/8779.
- newtype K a b = K a
- unK :: K a b -> a
- newtype I a = I a
- unI :: I a -> a
- newtype (f :.: g) p = Comp (f (g p))
- unComp :: (f :.: g) p -> f (g p)
- mapII :: (a -> b) -> I a -> I b
- mapIK :: (a -> b) -> I a -> K b c
- mapKI :: (a -> b) -> K a c -> I b
- mapKK :: (a -> b) -> K a c -> K b d
- mapIII :: (a -> b -> c) -> I a -> I b -> I c
- mapIIK :: (a -> b -> c) -> I a -> I b -> K c d
- mapIKI :: (a -> b -> c) -> I a -> K b d -> I c
- mapIKK :: (a -> b -> c) -> I a -> K b d -> K c e
- mapKII :: (a -> b -> c) -> K a d -> I b -> I c
- mapKIK :: (a -> b -> c) -> K a d -> I b -> K c e
- mapKKI :: (a -> b -> c) -> K a d -> K b e -> I c
- mapKKK :: (a -> b -> c) -> K a d -> K b e -> K c f
Basic functors
The constant type functor.
Like Constant
, but kind-polymorphic
in its second argument and with a shorter name.
K a |
Eq2 (K *) Source # | Since: 0.2.4.0 |
Ord2 (K *) Source # | Since: 0.2.4.0 |
Read2 (K *) Source # | Since: 0.2.4.0 |
Show2 (K *) Source # | Since: 0.2.4.0 |
Functor (K * a) Source # | |
Monoid a => Applicative (K * a) Source # | |
Foldable (K * a) Source # | |
Traversable (K * a) Source # | |
Eq a => Eq1 (K * a) Source # | Since: 0.2.4.0 |
Ord a => Ord1 (K * a) Source # | Since: 0.2.4.0 |
Read a => Read1 (K * a) Source # | Since: 0.2.4.0 |
Show a => Show1 (K * a) Source # | Since: 0.2.4.0 |
Eq a => Eq (K k a b) Source # | |
Ord a => Ord (K k a b) Source # | |
Read a => Read (K k a b) Source # | |
Show a => Show (K k a b) Source # | |
Generic (K k a b) Source # | |
NFData a => NFData (K k a b) Source # | Since: 0.2.5.0 |
type Rep (K k a b) Source # | |
type Code (K * a0 b0) Source # | |
The identity type functor.
Like Identity
, but with a shorter name.
I a |
Monad I Source # | |
Functor I Source # | |
Applicative I Source # | |
Foldable I Source # | |
Traversable I Source # | |
Eq1 I Source # | Since: 0.2.4.0 |
Ord1 I Source # | Since: 0.2.4.0 |
Read1 I Source # | Since: 0.2.4.0 |
Show1 I Source # | Since: 0.2.4.0 |
Eq a => Eq (I a) Source # | |
Ord a => Ord (I a) Source # | |
Read a => Read (I a) Source # | |
Show a => Show (I a) Source # | |
Generic (I a) Source # | |
NFData a => NFData (I a) Source # | Since: 0.2.5.0 |
type Rep (I a) Source # | |
type Code (I a0) Source # | |
newtype (f :.: g) p infixr 7 Source #
Composition of functors.
Like Compose
, but kind-polymorphic
and with a shorter name.
Comp (f (g p)) |
(Functor f, Functor g) => Functor ((:.:) * * f g) Source # | |
(Applicative f, Applicative g) => Applicative ((:.:) * * f g) Source # | Since: 0.2.5.0 |
(Foldable f, Foldable g) => Foldable ((:.:) * * f g) Source # | Since: 0.2.5.0 |
(Traversable f, Traversable g) => Traversable ((:.:) * * f g) Source # | Since: 0.2.5.0 |
(Eq1 f, Eq1 g) => Eq1 ((:.:) * * f g) Source # | Since: 0.2.4.0 |
(Ord1 f, Ord1 g) => Ord1 ((:.:) * * f g) Source # | Since: 0.2.4.0 |
(Read1 f, Read1 g) => Read1 ((:.:) * * f g) Source # | Since: 0.2.4.0 |
(Show1 f, Show1 g) => Show1 ((:.:) * * f g) Source # | Since: 0.2.4.0 |
(Eq1 f, Eq1 g, Eq a) => Eq ((:.:) * * f g a) Source # | |
(Ord1 f, Ord1 g, Ord a) => Ord ((:.:) * * f g a) Source # | |
(Read1 f, Read1 g, Read a) => Read ((:.:) * * f g a) Source # | |
(Show1 f, Show1 g, Show a) => Show ((:.:) * * f g a) Source # | |
Generic ((:.:) k l f g p) Source # | |
NFData (f (g a)) => NFData ((:.:) k l f g a) Source # | Since: 0.2.5.0 |
type Rep ((:.:) k l f g p) Source # | |
type Code ((:.:) * * f0 g0 p0) Source # | |