Safe Haskell | None |
---|---|
Language | Haskell2010 |
Synopsis
- data HolesAnn :: (Atom kon -> *) -> (kon -> *) -> [[[Atom kon]]] -> (Atom kon -> *) -> Atom kon -> * where
- holesAnn :: HolesAnn ann ki codes phi at -> ann at
- holesMapAnnM :: Monad m => (forall a. f a -> m (g a)) -> (forall a. ann a -> m (bnn a)) -> HolesAnn ann ki codes f at -> m (HolesAnn bnn ki codes g at)
- holesMapM :: Monad m => (forall a. f a -> m (g a)) -> HolesAnn ann ki codes f at -> m (HolesAnn ann ki codes g at)
- holesMapAnn :: (forall a. f a -> g a) -> (forall a. ann a -> ann' a) -> HolesAnn ann ki codes f at -> HolesAnn ann' ki codes g at
- holesMap :: (forall a. f a -> g a) -> HolesAnn ann ki codes f at -> HolesAnn ann ki codes g at
- holesJoin :: HolesAnn ann ki codes (HolesAnn ann ki codes f) at -> HolesAnn ann ki codes f at
- holesGetHolesAnnWith :: forall f r ann ki codes phi at. f r -> (r -> f r -> f r) -> (forall ix. phi ix -> r) -> HolesAnn ann ki codes phi at -> f r
- holesGetHolesAnnWith' :: (forall ix. phi ix -> r) -> HolesAnn ann ki codes phi at -> [r]
- holesGetHolesAnnWith'' :: Ord r => (forall ix. phi ix -> r) -> HolesAnn ann ki codes phi at -> Set r
- holesRefineAnnM :: Monad m => (forall ix. ann ix -> f ix -> m (HolesAnn ann ki codes g ix)) -> (forall k. ann (K k) -> ki k -> m (HolesAnn ann ki codes g (K k))) -> HolesAnn ann ki codes f at -> m (HolesAnn ann ki codes g at)
- holesRefineVarsM :: Monad m => (forall ix. ann ix -> f ix -> m (HolesAnn ann ki codes g ix)) -> HolesAnn ann ki codes f at -> m (HolesAnn ann ki codes g at)
- holesRefineAnn :: (forall ix. ann ix -> f ix -> HolesAnn ann ki codes g ix) -> (forall k. ann (K k) -> ki k -> HolesAnn ann ki codes g (K k)) -> HolesAnn ann ki codes f at -> HolesAnn ann ki codes g at
- holesAnnCataM :: Monad m => (forall at. ann at -> phi at -> m (res at)) -> (forall k. ann (K k) -> ki k -> m (res (K k))) -> (forall i n. (IsNat i, IsNat n) => ann (I i) -> Constr (Lkup i codes) n -> NP res (Lkup n (Lkup i codes)) -> m (res (I i))) -> HolesAnn ann ki codes phi ix -> m (res ix)
- holesAnnCata :: (forall at. ann at -> phi at -> res at) -> (forall k. ann (K k) -> ki k -> res (K k)) -> (forall i n. (IsNat i, IsNat n) => ann (I i) -> Constr (Lkup i codes) n -> NP res (Lkup n (Lkup i codes)) -> res (I i)) -> HolesAnn ann ki codes phi ix -> res ix
- holesSynthesizeM :: Monad m => (forall at. ann at -> phi at -> m (res at)) -> (forall k. ann (K k) -> ki k -> m (res (K k))) -> (forall i n. (IsNat i, IsNat n) => ann (I i) -> Constr (Lkup i codes) n -> NP res (Lkup n (Lkup i codes)) -> m (res (I i))) -> HolesAnn ann ki codes phi atom -> m (HolesAnn res ki codes phi atom)
- holesSynthesize :: (forall at. ann at -> phi at -> res at) -> (forall k. ann (K k) -> ki k -> res (K k)) -> (forall i n. (IsNat i, IsNat n) => ann (I i) -> Constr (Lkup i codes) n -> NP res (Lkup n (Lkup i codes)) -> res (I i)) -> HolesAnn ann ki codes phi ix -> HolesAnn res ki codes phi ix
- type Holes = HolesAnn (Const ())
- pattern Hole' :: phi at -> Holes ki codes phi at
- pattern HOpq' :: ki k -> Holes ki codes phi (K k)
- pattern HPeel' :: () => (IsNat n, IsNat i) => Constr (Lkup i codes) n -> NP (Holes ki codes phi) (Lkup n (Lkup i codes)) -> Holes ki codes phi (I i)
- holesLCP :: (forall k. Eq (ki k)) => Holes ki codes f at -> Holes ki codes g at -> Holes ki codes (Holes ki codes f :*: Holes ki codes g) at
- na2holes :: NA ki (Fix ki codes) at -> HolesAnn (Const ()) ki codes f at
- holes2naM :: Monad m => (forall ix. f ix -> m (NA ki (Fix ki codes) ix)) -> Holes ki codes f at -> m (NA ki (Fix ki codes) at)
- holesArity :: HolesAnn ann ki codes f at -> Int
- holesSize :: HolesAnn ann ki codes f at -> Int
- holesSNat :: IsNat ix => HolesAnn ann ki codes f (I ix) -> SNat ix
- holesShow :: forall ki ann f fam codes ix. (HasDatatypeInfo ki fam codes, ShowHO ki, ShowHO f) => Proxy fam -> (forall at. ann at -> ShowS) -> HolesAnn ann ki codes f ix -> ShowS
Annotating a Mutually Recursive Family with Holes
It is often the case that we must perform some sort of symbolic processing over our datatype. Take unification for example. For that to work, we must either have a dedicated constructor in the datatype for representing a metavariable, which would be difficult to access in a generic fashion, or we must augment the definition an add those.
In this module we provide the Holes
datatype, which
enables this very functionality. Imagine the following
family:
data Exp = Add Exp Exp | Let Decls Exp | Var Exp data Decls = Decl VarDecl Decls | Empty data VarDecl = VarD String Exp
The values that inhabit the type Holes ki FamExp phi
are
essentially isomorphic to:
data Exp' = Add Exp' Exp' | Let Decls' Exp' | Var Exp' | EHole (phi IdxExp) data Decls' = Decl VarDecl' Decls' | Empty | DHole (phi IdxDecls) data VarDecl' = VarD String Exp' | VHole (phi IdxVarDecl)
If we want to, say, forbid holes on the declaration bit, we can do so in the definition of phi. For example:
data OnlyExpAndVarHoles :: Atom kon -> * where ExpHole :: OnlyExpAndVarHoles ('I IdxExp) VarHole :: OnlyExpAndVarHoles ('I IdxVar)
data HolesAnn :: (Atom kon -> *) -> (kon -> *) -> [[[Atom kon]]] -> (Atom kon -> *) -> Atom kon -> * where Source #
A value of type HolesAnn
augments a mutually recursive
family with holes. This is useful for writing generic
unification-like algorithms.
Essentially, we have the following isomorphism:
Holes ann ki codes phi at =~= (ann at :*: (phi :+: NA ki (Rep ki (Holes ann ki codes phi))))
That is, we are extending the representations with values of
type phi
, and adding annotations of type ann at
everywhere.
A simpler variant of this type is given in Holes
, where
the annotationsare defaulted to Const ()
The annotations are ignored in most of the functions and are here only as a means of helping algorithms keep intermediate values directly in the datatype. They have no semantic meaning.
Note that HolesAnn ann ki codes
, of kind (Atom kon -> *) -> Atom kon -> *
forms an indexed free monad.
Hole :: ann at -> phi at -> HolesAnn ann ki codes phi at | A "hole" contains something of type |
HOpq :: ann (K k) -> ki k -> HolesAnn ann ki codes phi (K k) | An opaque value |
HPeel :: (IsNat n, IsNat i) => ann (I i) -> Constr (Lkup i codes) n -> NP (HolesAnn ann ki codes phi) (Lkup n (Lkup i codes)) -> HolesAnn ann ki codes phi (I i) | A view over a constructor with its fields replaced by treefixes. This already comes in a SOP flavour. |
holesAnn :: HolesAnn ann ki codes phi at -> ann at Source #
Extracts the annotation from the topmost HolesAnn
constructor.
Mapping Over HolesAnn
:: Monad m | |
=> (forall a. f a -> m (g a)) | Function to map over holes |
-> (forall a. ann a -> m (bnn a)) | Function to map over annotations |
-> HolesAnn ann ki codes f at | |
-> m (HolesAnn bnn ki codes g at) |
Our HolesAnn
is a higher order functor and can be mapped over.
holesMapM :: Monad m => (forall a. f a -> m (g a)) -> HolesAnn ann ki codes f at -> m (HolesAnn ann ki codes g at) Source #
Maps over the index part, not the annotation
holesMapAnn :: (forall a. f a -> g a) -> (forall a. ann a -> ann' a) -> HolesAnn ann ki codes f at -> HolesAnn ann' ki codes g at Source #
Non-monadic version of holesMapM
holesMap :: (forall a. f a -> g a) -> HolesAnn ann ki codes f at -> HolesAnn ann ki codes g at Source #
Non-monadic version of holesMapM
holesJoin :: HolesAnn ann ki codes (HolesAnn ann ki codes f) at -> HolesAnn ann ki codes f at Source #
Since HolesAnn
is just a free monad, we can join them!
Extracting Annotations and HolesAnn from HolesAnn
:: f r | Empty structure |
-> (r -> f r -> f r) | Insertion function |
-> (forall ix. phi ix -> r) | How to get rid of the existential type |
-> HolesAnn ann ki codes phi at | |
-> f r |
Returns the set of holes in a value of type HolesAnn
. The _getter_
argument is there to handle the existantial type index present
in the holes and the insertion function is used to place
the holes in a datastructure of choice. The treefix is taversed
in a pre-order style and the holes inserted in the sturcture
as they are visited.
holesGetHolesAnnWith' :: (forall ix. phi ix -> r) -> HolesAnn ann ki codes phi at -> [r] Source #
Instantiates holesGetHolesAnnWith
to use a list.
It's implementation is trivial:
holesGetHolesAnnWith' = holesGetHolesAnnWith [] (:)
holesGetHolesAnnWith'' :: Ord r => (forall ix. phi ix -> r) -> HolesAnn ann ki codes phi at -> Set r Source #
Instantiates holesGetHolesAnnWith
to use a set instead of a list.
Refining HolesAnn
holesRefineAnnM :: Monad m => (forall ix. ann ix -> f ix -> m (HolesAnn ann ki codes g ix)) -> (forall k. ann (K k) -> ki k -> m (HolesAnn ann ki codes g (K k))) -> HolesAnn ann ki codes f at -> m (HolesAnn ann ki codes g at) Source #
:: Monad m | |
=> (forall ix. ann ix -> f ix -> m (HolesAnn ann ki codes g ix)) | How to produce a |
-> HolesAnn ann ki codes f at | |
-> m (HolesAnn ann ki codes g at) |
Just like holesRefineAnnM
, but only refines variables. One example is to implement
holesJoin
with it.
holesJoin = runIdentity . holesRefineVarsM (\_ -> return)
:: (forall ix. ann ix -> f ix -> HolesAnn ann ki codes g ix) | |
-> (forall k. ann (K k) -> ki k -> HolesAnn ann ki codes g (K k)) | |
-> HolesAnn ann ki codes f at | |
-> HolesAnn ann ki codes g at |
Pure version of holesRefineAnnM
Annotation Catamorphism and Synthesized Attributes
:: Monad m | |
=> (forall at. ann at -> phi at -> m (res at)) | Action to perform at |
-> (forall k. ann (K k) -> ki k -> m (res (K k))) | Action to perform at |
-> (forall i n. (IsNat i, IsNat n) => ann (I i) -> Constr (Lkup i codes) n -> NP res (Lkup n (Lkup i codes)) -> m (res (I i))) | Action to perform at |
-> HolesAnn ann ki codes phi ix | |
-> m (res ix) |
Standard monadic catamorphism for holes. The algebra can take the annotation into account.
:: (forall at. ann at -> phi at -> res at) | Action to perform at |
-> (forall k. ann (K k) -> ki k -> res (K k)) | Action to perform at |
-> (forall i n. (IsNat i, IsNat n) => ann (I i) -> Constr (Lkup i codes) n -> NP res (Lkup n (Lkup i codes)) -> res (I i)) | Action to perform at |
-> HolesAnn ann ki codes phi ix | |
-> res ix |
Pure variant of holesAnnCataM
:: Monad m | |
=> (forall at. ann at -> phi at -> m (res at)) | Action to perform at |
-> (forall k. ann (K k) -> ki k -> m (res (K k))) | Action to perform at |
-> (forall i n. (IsNat i, IsNat n) => ann (I i) -> Constr (Lkup i codes) n -> NP res (Lkup n (Lkup i codes)) -> m (res (I i))) | Action to perform at |
-> HolesAnn ann ki codes phi atom | Input value |
-> m (HolesAnn res ki codes phi atom) |
Synthesizes attributes over a value of type HolesAnn
. This
is extremely useful for easily annotating a value with auxiliar
annotations.
:: (forall at. ann at -> phi at -> res at) | |
-> (forall k. ann (K k) -> ki k -> res (K k)) | |
-> (forall i n. (IsNat i, IsNat n) => ann (I i) -> Constr (Lkup i codes) n -> NP res (Lkup n (Lkup i codes)) -> res (I i)) | |
-> HolesAnn ann ki codes phi ix | |
-> HolesAnn res ki codes phi ix |
Pure variant of holesSynthesize
Using Holes
with no annotations
pattern HPeel' :: () => (IsNat n, IsNat i) => Constr (Lkup i codes) n -> NP (Holes ki codes phi) (Lkup n (Lkup i codes)) -> Holes ki codes phi (I i) Source #
Synonym to HPeel (Const ())
holesLCP :: (forall k. Eq (ki k)) => Holes ki codes f at -> Holes ki codes g at -> Holes ki codes (Holes ki codes f :*: Holes ki codes g) at Source #
Factors out the largest common prefix of two treefixes. This is also known as the anti-unification of two treefixes.
It enjoys naturality properties with holesJoin:
holesJoin (holesMap fst (holesLCP p q)) == p holesJoin (holesMap snd (holesLCP p q)) == q
We use a function to combine annotations in case it is necessary.
Translating between NA
and HolesAnn
na2holes :: NA ki (Fix ki codes) at -> HolesAnn (Const ()) ki codes f at Source #
A stiff treefix is one with no holes anywhere.
:: Monad m | |
=> (forall ix. f ix -> m (NA ki (Fix ki codes) ix)) | |
-> Holes ki codes f at | |
-> m (NA ki (Fix ki codes) at) |
Reduces a treefix back to a tree; we use a monadic function here to allow for custom failure confitions.
holesArity :: HolesAnn ann ki codes f at -> Int Source #
Returns how many holes are inside a treefix
holesSize :: HolesAnn ann ki codes f at -> Int Source #
Returns the size of a treefix. Holes have size 0.