Safe Haskell | None |
---|---|
Language | Haskell2010 |
Provides a simple way for the end-user to derive
the Family
instance for a mutually recursive family.
Let's take a simple example:
data Rose a = a :>: [Rose a] | Leaf a deriveFamily [t| Rose Int |]
Will derive the following code:
type FamRoseInt = '[Rose Int, [Rose Int]] type CodesRoseInt = '['['[K KInt, I (S Z)], '[K KInt]], '['[], '[I Z, I (S Z)]]] -- Type index SNat synonyms pattern IdxRoseInt = SZ pattern IdxListRoseInt = SS SZ -- (:>:) pattern syn pattern RoseInt_Ifx0 :: kon KInt -> phi (S Z) -> View kon phi (Lkup Z CodesRoseInt) pattern RoseInt_Ifx0 p q = Tag CZ (NA_K p :* (NA_I q :* NP0)) -- Leaf pattern syn pattern RoseIntLeaf_ :: kon KInt -> View kon phi (Lkup Z CodesRoseInt) pattern RoseIntLeaf_ p = Tag (CS CZ) (NA_K p :* NP0) -- [] pattern syn pattern ListRoseInt_Ifx0 :: View kon phi (Lkup (S Z) CodesRoseInt) pattern ListRoseInt_Ifx0 = Tag CZ NP0 -- (:) pattern syn pattern ListRoseInt_Ifx1 :: phi Z -> phi (S Z) -> View kon phi (Lkup (S Z) CodesRoseInt) pattern ListRoseInt_Ifx1 p q = Tag (CS CZ) (NA_I p :* (NA_I q :* NP0)) instance Family Singl FamRose CodesRose where sfrom' (SS SZ) (El (a :>: as)) = Rep $ Here (NA_K (SInt a) :* NA_I (El as) :* NP0) sfrom' (SS SZ) (El (Leaf a)) = Rep $ There (Here (NA_K (SInt a) :* NP0)) sfrom' SZ (El []) = Rep $ Here NP0 sfrom' SZ (El (x:xs)) = Rep $ There (Here (NA_I (El x) :* NA_I (El xs) :* NP0)) sfrom' _ _ = error "unreachable" sto' SZ (Rep (Here NP0)) = El [] sto' SZ (Rep (There (Here (NA_I (El x) :* NA_I (El xs) :* NP0)))) = El (x : xs) sto' (SS SZ) (Rep (Here (NA_K (SInt a) :* NA_I (El as) :* NP0))) = El (a :>: as) sto' (SS SZ) (Rep (There (Here (NA_K (SInt a) :* NP0)))) = El (Leaf a) sto' _ _ = error "unreachable" instance HasDatatypeInfo Singl FamRose CodesRose where datatypeInfo _ SZ = ADT "module" (Name "[]" :@: (Name "R" :@: Name "Int")) $ (Constructor "[]") :* (Infix ":" RightAssociative 5) :* NP0 datatypeInfo _ (SS SZ) = ADT "module" (Name "R" :@: Name "Int") $ (Infix ":>:" NotAssociative 0) :* (Constructor "Leaf") :* NP0 datatypeInfo _ _ = error "unreachable"
To illustrate the pattern synonym generation, let us look at a selection of a more involved example
Consider the following family:
data Stmt var = SAssign var (Exp var) | SIf (Exp var) (Stmt var) (Stmt var) | SSeq (Stmt var) (Stmt var) | SReturn (Exp var) | SDecl (Decl var) | SSkip deriving Show data Decl var = DVar var | DFun var var (Stmt var) deriving Show data Exp var = EVar var | ECall var (Exp var) | EAdd (Exp var) (Exp var) | ESub (Exp var) (Exp var) | ELit Int deriving Show
In this case, running deriveFamily [t| Stmt String |]
will
generate the following types:
type FamStmtString = '[Stmt String, Exp String, Decl String] type CodesStmtString = '['['[K KString, I (S Z)], '[I (S Z), I Z, I Z], '[I Z, I Z], '[I (S Z)], '[I (S (S Z))], '[]], '['[K KString], '[K KString, I (S Z)], '[I (S Z), I (S Z)], '[I (S Z), I (S Z)], '[K KInt]], '['[K KString], '[K KString, K KString, I Z]]] pattern IdxStmtString = SZ pattern IdxExpString = SS SZ pattern IdxDeclString = SS (SS SZ) -- Here are the declared patterns for 'View' pattern StmtStringSAssign_ pattern StmtStringSIf_ pattern StmtStringSSeq_ pattern StmtStringSReturn_ pattern StmtStringSDecl_ pattern StmtStringSSkip_ pattern ExpStringEVar_ pattern ExpStringECall_ pattern ExpStringEAdd_ pattern ExpStringESub_ pattern ExpStringELit_ pattern DeclStringDVar_ pattern DeclStringDFun_
We did ommit the definitions and Family
and HasDatatypeInfo
instances
for brevity here. If you want to see the actual generated code, compile with
stack build ghc-options="-ddump-splices -ddump-to-file"
You can find the spliced files with
find -name "*.dump-splices"
This module was based in the TH generication from generic-sop ( https://hackage.haskell.org/package/generics-sop-0.3.2.0/docs/src/Generics-SOP-TH.html )
Documentation
deriveFamilyWith :: Name -> Q Type -> Q [Dec] Source #
Given the name of the first element in the family, derives:
- The other types in the family and Konstant types one needs.
- the SOP code for each of the datatypes involved
- One
Element
instance per datatype - Metadada information for each of the datatypes involved
- Uses the opaque-type universe provided.
deriveFamilyWithTy :: Q Type -> Q Type -> Q [Dec] Source #
Reifies the type given for opaque types, then calls deriveFamilyWith