{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MonoLocalBinds #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
module Algebra.Linear where
import Algebra.Classes
import Prelude (cos,sin,Floating(..),Functor(..),Show(..),Eq(..),Int,fst,flip,($),Ord)
import Control.Applicative
import Data.Foldable
import Data.Traversable
import Control.Monad.State
import Algebra.Category
data VZero a = VZero deriving (Functor,Foldable,Traversable,Show,Eq,Ord)
instance Applicative VZero where
pure _ = VZero
VZero <*> VZero = VZero
data VNext v a = VNext !(v a) !a deriving (Functor,Foldable,Traversable,Show,Eq,Ord)
instance Applicative v => Applicative (VNext v) where
pure x = VNext (pure x) x
VNext fs f <*> VNext xs x = VNext (fs <*> xs) (f x)
type V1' = VNext VZero
type V2' = VNext V1'
type V3' = VNext V2'
pattern V1' :: a -> V1' a
pattern V1' x = VNext VZero x
pattern V2' :: forall a. a -> a -> V2' a
pattern V2' x y = VNext (V1' x) y
pattern V3' :: forall a. a -> a -> a -> V3' a
pattern V3' x y z = VNext (V2' x y) z
newtype Euclid f a = Euclid {fromEuclid :: f a} deriving (Functor,Foldable,Traversable,Show,Eq,Ord,Applicative)
type V3 = Euclid V3'
type V2 = Euclid V2'
pattern V2 :: forall a. a -> a -> Euclid V2' a
pattern V2 x y = Euclid (V2' x y)
pattern V3 :: forall a. a -> a -> a -> Euclid V3' a
pattern V3 x y z = Euclid (V3' x y z)
instance (Applicative f,Additive a) => Additive (Euclid f a) where
zero = pure zero
x + y = (+) <$> x <*> y
instance (Applicative f,AbelianAdditive a) => AbelianAdditive (Euclid f a) where
instance (Applicative f,Group a) => Group (Euclid f a) where
negate x = negate <$> x
x - y = (-) <$> x <*> y
instance (Applicative f,Module s a) => Module s (Euclid f a) where
s *^ t = (s*^) <$> t
pureMat :: (Applicative v, Applicative w) => s -> Mat s v w
pureMat x = Mat (pure (pure x))
(>*<) :: (Applicative v, Applicative w) =>
Mat (a -> s) v w -> Mat a v w -> Mat s v w
Mat f >*< Mat x = Mat (((<*>) <$> f) <*> x)
(>$<) :: (Applicative v, Applicative w) =>
(a -> s) -> Mat a v w -> Mat s v w
f >$< x = pureMat f >*< x
instance (Applicative f,Applicative g,Additive a) => Additive (Mat a f g) where
zero = pureMat zero
x + y = (+) >$< x >*< y
instance (Applicative f,Applicative g,AbelianAdditive a) => AbelianAdditive (Mat a f g) where
instance (Applicative f,Applicative g,Group a) => Group (Mat a f g) where
negate x = negate >$< x
x - y = (-) >$< x >*< y
instance (Applicative f, Applicative g,Module s a) => Module s (Mat a f g) where
s *^ Mat t = Mat (((s*^) <$>) <$> t)
class VectorSpace (Scalar v) v => InnerProdSpace v where
type Scalar v
dotProd :: v -> v -> Scalar v
(⊙) :: Applicative v => Multiplicative s => v s -> v s -> v s
x ⊙ y = (*) <$> x <*> y
instance (Ring a, Field a, Applicative f, Foldable f) => InnerProdSpace (Euclid f a) where
type Scalar (Euclid f a) = a
dotProd x y = add (x ⊙ y)
(·) :: InnerProdSpace v => v -> v -> Scalar v
(·) = dotProd
sqNorm :: InnerProdSpace v => v -> Scalar v
sqNorm x = dotProd x x
norm :: InnerProdSpace v => Floating (Scalar v) => v -> Scalar v
norm = sqrt . sqNorm
normalize :: Floating (Scalar v) => InnerProdSpace v => v -> v
normalize v = recip (norm v) *^ v
(×) :: Ring a => V3 a -> V3 a -> V3 a
(V3 a1 a2 a3) × (V3 b1 b2 b3) = V3 (a2*b3 - a3*b2) (negate (a1*b3 - a3*b1)) (a1*b2 - a2*b1)
index :: Applicative v => Traversable v => v Int
index = fst (runState (sequenceA (pure increment)) zero)
where increment = do x <- get; put (x+1); return x
type SqMat v s = Mat s v v
newtype Mat s w v = Mat {fromMat :: v (w s)} deriving Show
instance Ring s => Category (Mat s) where
type Con v = (Applicative v, Traversable v)
(.) = matMul
id = identity
type Mat3x3 s = SqMat V3' s
type Mat2x2 s = SqMat V2' s
pattern Mat2x2 :: forall s. s -> s -> s -> s -> Mat s V2' V2'
pattern Mat2x2 a b c d = Mat (V2' (V2' a b) (V2' c d))
pattern Mat3x3 :: forall s. s -> s -> s -> s -> s -> s -> s -> s -> s -> Mat s V3' V3'
pattern Mat3x3 a b c d e f g h i = Mat (V3' (V3' a b c) (V3' d e f) (V3' g h i))
matVecMul :: (Foldable f1, Ring b, Applicative f1, Functor f2) => Mat b f1 f2 -> Euclid f1 b -> Euclid f2 b
matVecMul (Mat m) v = Euclid (euclideanDotProd v <$> (Euclid <$> m))
where euclideanDotProd x y = add (Euclid x ⊙ Euclid y)
rotation2d :: Floating a => a -> Mat2x2 a
rotation2d θ = Mat $ V2' (V2' (cos θ) (-sin θ))
(V2' (sin θ) (cos θ))
crossProductMatrix :: Group a => V3 a -> Mat3x3 a
crossProductMatrix (V3 a1 a2 a3) = Mat (V3' (V3' zero (negate a3) a2)
(V3' a3 zero (negate a1))
(V3' (negate a2) a1 zero))
(⊗) :: (Applicative v, Applicative w, Multiplicative s)
=> Euclid w s -> Euclid v s -> Mat s w v
Euclid v1 ⊗ Euclid v2 = flip (tensorWith (*)) v1 v2
tensorWith :: (Applicative v, Applicative w)
=> (s -> t -> u) -> w s -> v t -> Mat u v w
tensorWith f v1 v2 = flip f >$< Mat (pure v2) >*< Mat (pure <$> v1)
identity :: Traversable v => Ring s => Applicative v => SqMat v s
identity = tensorWith (\x y -> if x == y then one else zero) index index
diagonal :: Traversable v => Ring s => Applicative v => Euclid v s -> SqMat v s
diagonal (Euclid v) = tensorWith (\x (y,a) -> if x == y then a else zero) index ((,) <$> index <*> v)
rotation3d :: Ring a => Floating a => a -> V3 a -> Mat3x3 a
rotation3d θ u = cos θ *^ identity +
sin θ *^ crossProductMatrix u +
(1 - cos θ) *^ (u ⊗ u)
rotationFromTo :: (Floating a, Module a a,Field a)
=> V3 a -> V3 a -> Mat3x3 a
rotationFromTo from to = c *^ identity + s *^ crossProductMatrix v + (1-c) *^ (v ⊗ v)
where y = to
x = from
v = x × y
c = dotProd x y
s = norm v
transpose :: Applicative f => Traversable g => Mat a f g -> Mat a g f
transpose = Mat . sequenceA . fromMat
matMul' :: (Traversable u, Ring s, Applicative w, Applicative v, Applicative u) => Mat s v u -> Mat s u w -> Mat s v w
matMul' (transpose -> Mat y) (Mat x) = tensorWith (\a b -> add (a ⊙ b)) x y
matMul :: (Traversable u, Ring s, Applicative w, Applicative v, Applicative u) => Mat s u w -> Mat s v u -> Mat s v w
matMul = flip matMul'
newtype OrthoMat v s = OrthoMat (SqMat v s)
instance (Ring s, Applicative v, Traversable v) => Multiplicative (OrthoMat v s) where
one = OrthoMat id
OrthoMat m * OrthoMat n = OrthoMat (m . n)
instance (Ring s, Applicative v, Traversable v) => Division (OrthoMat v s) where
recip (OrthoMat m) = OrthoMat (transpose m)