{-# OPTIONS_GHC -w #-}
{-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-}
#if __GLASGOW_HASKELL__ >= 710
{-# OPTIONS_GHC -XPartialTypeSignatures #-}
#endif
module G4ipProver.Parser (parseProp) where

import G4ipProver.Proposition
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)

-- parser produced by Happy Version 1.19.8

newtype HappyAbsSyn t4 = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: t4 -> (HappyAbsSyn t4)
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn t4) -> t4
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut4 #-}
happyInTok :: (Token) -> (HappyAbsSyn t4)
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn t4) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOutTok #-}


happyExpList :: HappyAddr
happyExpList = HappyA# "\x70\x28\x00\x20\x70\x28\x80\x17\x00\x00\x00\x00\x00\x00\x70\x28\x00\x00\x70\x28\x70\x28\x70\x28\x70\x28\x70\x28\x80\x57\x00\x00\x80\x17\x80\x07\x80\x07\x80\x01\x80\x00\x00\x00"#

{-# NOINLINE happyExpListPerState #-}
happyExpListPerState st =
    token_strs_expected
  where token_strs = ["error","%dummy","%start_parse","Exp","'T'","'F'","var","'/\\\\'","'\\\\/'","'->'","'<-'","'-'","'<->'","'('","')'","%eof"]
        bit_start = st * 16
        bit_end = (st + 1) * 16
        read_bit = readArrayBit happyExpList
        bits = map read_bit [bit_start..bit_end - 1]
        bits_indexed = zip bits [0..15]
        token_strs_expected = concatMap f bits_indexed
        f (False, _) = []
        f (True, nr) = [token_strs !! nr]

happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x01\x00\xf7\xff\x01\x00\x08\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x01\x00\x01\x00\x01\x00\x01\x00\x11\x00\x00\x00\x19\x00\x1f\x00\x1f\x00\x02\x00\x04\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x05\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x12\x00\x13\x00\x1b\x00\x21\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int#
happyAdjustOffset off = off

happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\xf7\xff\xf6\xff\xf5\xff\x00\x00\xfd\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\xff\xf8\xff\xf9\xff\xfa\xff\xfb\xff\xfc\xff"#

happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x0a\x00\x01\x00\x02\x00\x03\x00\x00\x00\x04\x00\x05\x00\x04\x00\x08\x00\x00\x00\x0a\x00\x04\x00\x05\x00\x06\x00\x07\x00\x00\x00\x09\x00\x00\x00\x00\x00\x0c\x00\x04\x00\x05\x00\x06\x00\x07\x00\xff\xff\x09\x00\x00\x00\x0b\x00\x04\x00\x05\x00\x06\x00\x07\x00\x00\x00\x09\x00\x04\x00\x05\x00\x06\x00\x07\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x03\x00\x05\x00\x06\x00\x07\x00\x03\x00\x0a\x00\x0b\x00\x0a\x00\x08\x00\x0e\x00\x03\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x08\x00\x0e\x00\x14\x00\x13\x00\xff\xff\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x00\x00\x0e\x00\x12\x00\x10\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x11\x00\x0e\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr = Happy_Data_Array.array (1, 10) [
        (1 , happyReduce_1),
        (2 , happyReduce_2),
        (3 , happyReduce_3),
        (4 , happyReduce_4),
        (5 , happyReduce_5),
        (6 , happyReduce_6),
        (7 , happyReduce_7),
        (8 , happyReduce_8),
        (9 , happyReduce_9),
        (10 , happyReduce_10)
        ]

happy_n_terms = 13 :: Int
happy_n_nonterms = 1 :: Int

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_1 = happySpecReduce_3  0# happyReduction_1
happyReduction_1 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut4 happy_x_2 of { happy_var_2 ->
        happyIn4
                 (happy_var_2
        )}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_2 = happySpecReduce_2  0# happyReduction_2
happyReduction_2 happy_x_2
        happy_x_1
         =  case happyOut4 happy_x_2 of { happy_var_2 ->
        happyIn4
                 (neg happy_var_2
        )}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_3 = happySpecReduce_3  0# happyReduction_3
happyReduction_3 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut4 happy_x_1 of { happy_var_1 ->
        case happyOut4 happy_x_3 of { happy_var_3 ->
        happyIn4
                 ((happy_var_1 /\ happy_var_3)
        )}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_4 = happySpecReduce_3  0# happyReduction_4
happyReduction_4 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut4 happy_x_1 of { happy_var_1 ->
        case happyOut4 happy_x_3 of { happy_var_3 ->
        happyIn4
                 ((happy_var_1 \/ happy_var_3)
        )}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_5 = happySpecReduce_3  0# happyReduction_5
happyReduction_5 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut4 happy_x_1 of { happy_var_1 ->
        case happyOut4 happy_x_3 of { happy_var_3 ->
        happyIn4
                 ((happy_var_1 ==> happy_var_3)
        )}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_6 = happySpecReduce_3  0# happyReduction_6
happyReduction_6 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut4 happy_x_1 of { happy_var_1 ->
        case happyOut4 happy_x_3 of { happy_var_3 ->
        happyIn4
                 ((happy_var_1 <== happy_var_3)
        )}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_7 = happySpecReduce_3  0# happyReduction_7
happyReduction_7 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut4 happy_x_1 of { happy_var_1 ->
        case happyOut4 happy_x_3 of { happy_var_3 ->
        happyIn4
                 ((happy_var_1 <=> happy_var_3)
        )}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_8 = happySpecReduce_1  0# happyReduction_8
happyReduction_8 happy_x_1
         =  happyIn4
                 (T
        )

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_9 = happySpecReduce_1  0# happyReduction_9
happyReduction_9 happy_x_1
         =  happyIn4
                 (F
        )

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_10 = happySpecReduce_1  0# happyReduction_10
happyReduction_10 happy_x_1
         =  case happyOutTok happy_x_1 of { (TokenVar happy_var_1) ->
        happyIn4
                 (Atom happy_var_1
        )}

happyNewToken action sts stk [] =
        happyDoAction 12# notHappyAtAll action sts stk []

happyNewToken action sts stk (tk:tks) =
        let cont i = happyDoAction i tk action sts stk tks in
        case tk of {
        TokenT -> cont 1#;
        TokenF -> cont 2#;
        TokenVar happy_dollar_dollar -> cont 3#;
        TokenAnd -> cont 4#;
        TokenOr -> cont 5#;
        TokenImp -> cont 6#;
        TokenBImp -> cont 7#;
        TokenNot -> cont 8#;
        TokenEq -> cont 9#;
        TokenOB -> cont 10#;
        TokenCB -> cont 11#;
        _ -> happyError' ((tk:tks), [])
        }

happyError_ explist 12# tk tks = happyError' (tks, explist)
happyError_ explist _ tk tks = happyError' ((tk:tks), explist)

happyThen :: () => E a -> (a -> E b) -> E b
happyThen = (thenE)
happyReturn :: () => a -> E a
happyReturn = (returnE)
happyThen1 m k tks = (thenE) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> E a
happyReturn1 = \a tks -> (returnE) a
happyError' :: () => ([(Token)], [String]) -> E a
happyError' = (\(tokens, _) -> parseError tokens)
parse tks = happySomeParser where
 happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))

happySeq = happyDontSeq


-- Used for error handling
data E a = Ok a | Failed String


thenE :: E a -> (a -> E b) -> E b
m `thenE` k =
   case m of
     Ok a -> k a
     Failed e -> Failed e


returnE :: a -> E a
returnE a = Ok a


failE :: String -> E a
failE err = Failed err


catchE :: E a -> (String -> E a) -> E a
catchE m k =
   case m of
      Ok a -> Ok a
      Failed e -> k e


parseError _ = failE "Parse error"


data Token =
  TokenT | TokenF | TokenAnd | TokenOr |
  TokenImp | TokenBImp | TokenNot | TokenEq |
  TokenOB | TokenCB | TokenVar String
  deriving Show

tokenize :: String -> [Token]
tokenize [] = []
tokenize ('/':'\\':cs) = TokenAnd : tokenize cs
tokenize ('&':cs) = TokenAnd : tokenize cs
tokenize ('\\':'/':cs) = TokenOr : tokenize cs
tokenize ('|':cs) = TokenOr : tokenize cs
tokenize ('<':'-':'>':cs) = TokenEq : tokenize cs
tokenize ('<':'=':'>':cs) = TokenEq : tokenize cs
tokenize ('-':'>':cs) = TokenImp : tokenize cs
tokenize ('=':'>':cs) = TokenImp : tokenize cs
tokenize ('<':'-':cs) = TokenBImp : tokenize cs
tokenize ('<':'=':cs) = TokenBImp : tokenize cs
tokenize ('-':cs) = TokenNot : tokenize cs
tokenize ('~':cs) = TokenNot : tokenize cs
tokenize ('(':cs) = TokenOB : tokenize cs
tokenize (')':cs) = TokenCB : tokenize cs
tokenize ('T':cs) = TokenT : tokenize cs
tokenize ('F':cs) = TokenF : tokenize cs
tokenize input@(c:cs)
  | isVarChar c = TokenVar var : tokenize rest
  where
    isVarChar = (`elem` "abcdefghijklmnopqrstuvwxyz1234567890")
    (var, rest) = span isVarChar input
-- just skip unrecognizable characters
tokenize (_:cs) = tokenize cs


parseProp str = case parse $ tokenize str of
  Ok p -> Right p
  Failed s -> Left s
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command-line>" #-}
{-# LINE 10 "<command-line>" #-}
# 1 "/usr/include/stdc-predef.h" 1 3 4

# 17 "/usr/include/stdc-predef.h" 3 4










































{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "/home/hp/haskell-platform/build/ghc-bindist/local/lib/ghc-8.2.2/include/ghcversion.h" #-}















{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "/tmp/ghc6044_0/ghc_2.h" #-}


































































































































































{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp 













-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
{-# LINE 43 "templates/GenericTemplate.hs" #-}

data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList







{-# LINE 65 "templates/GenericTemplate.hs" #-}

{-# LINE 75 "templates/GenericTemplate.hs" #-}

{-# LINE 84 "templates/GenericTemplate.hs" #-}

infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
        (happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
        = {- nothing -}


          case action of
                0#           -> {- nothing -}
                                     happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Int)) i tk st
                -1#          -> {- nothing -}
                                     happyAccept i tk st
                n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}

                                                   (happyReduceArr Happy_Data_Array.! rule) i tk st
                                                   where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
                n                 -> {- nothing -}


                                     happyShift new_state i tk st
                                     where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where off    = happyAdjustOffset (indexShortOffAddr happyActOffsets st)
         off_i  = (off Happy_GHC_Exts.+#  i)
         check  = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
                  then EQ(indexShortOffAddr happyCheck off_i, i)
                  else False
         action
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st




indexShortOffAddr (HappyA# arr) off =
        Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#




{-# INLINE happyLt #-}
happyLt x y = LT(x,y)


readArrayBit arr bit =
    Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `mod` 16)
  where unbox_int (Happy_GHC_Exts.I# x) = x






data HappyAddr = HappyA# Happy_GHC_Exts.Addr#


-----------------------------------------------------------------------------
-- HappyState data type (not arrays)

{-# LINE 180 "templates/GenericTemplate.hs" #-}

-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
         sts1@((HappyCons (st1@(action)) (_))) ->
                let r = fn stk in  -- it doesn't hurt to always seq here...
                happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
          let drop_stk = happyDropStk k stk in
          happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
         let drop_stk = happyDropStk k stk

             off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1)
             off_i = (off Happy_GHC_Exts.+#  nt)
             new_state = indexShortOffAddr happyTable off_i




          in
          happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))

happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st =
   {- nothing -}
   happyDoAction j tk new_state
   where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st)
         off_i = (off Happy_GHC_Exts.+#  nt)
         new_state = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)

-- parse error if we are in recovery and we fail again
happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--      trace "failing" $ 
        happyError_ explist i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  0# tk old_st (HappyCons ((action)) (sts)) 
                                                (saved_tok `HappyStk` _ `HappyStk` stk) =
--      trace ("discarding state, depth " ++ show (length stk))  $
        happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail explist i tk (action) sts stk =
--      trace "entering error recovery" $
        happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.