{-# LANGUAGE TypeFamilies #-}

-- | We generate code for non-segmented/single-segment SegRed using
-- the basic approach outlined in the paper "Design and GPGPU
-- Performance of Futhark’s Redomap Construct" (ARRAY '16).  The main
-- deviations are:
--
-- * While we still use two-phase reduction, we use only a single
--   kernel, with the final workgroup to write a result (tracked via
--   an atomic counter) performing the final reduction as well.
--
-- * Instead of depending on storage layout transformations to handle
--   non-commutative reductions efficiently, we slide a
--   @groupsize@-sized window over the input, and perform a parallel
--   reduction for each window.  This sacrifices the notion of
--   efficient sequentialisation, but is sometimes faster and
--   definitely simpler and more predictable (and uses less auxiliary
--   storage).
--
-- For segmented reductions we use the approach from "Strategies for
-- Regular Segmented Reductions on GPU" (FHPC '17).  This involves
-- having two different strategies, and dynamically deciding which one
-- to use based on the number of segments and segment size. We use the
-- (static) @group_size@ to decide which of the following two
-- strategies to choose:
--
-- * Large: uses one or more groups to process a single segment. If
--   multiple groups are used per segment, the intermediate reduction
--   results must be recursively reduced, until there is only a single
--   value per segment.
--
--   Each thread /can/ read multiple elements, which will greatly
--   increase performance; however, if the reduction is
--   non-commutative we will have to use a less efficient traversal
--   (with interim group-wide reductions) to enable coalesced memory
--   accesses, just as in the non-segmented case.
--
-- * Small: is used to let each group process *multiple* segments
--   within a group. We will only use this approach when we can
--   process at least two segments within a single group. In those
--   cases, we would allocate a /whole/ group per segment with the
--   large strategy, but at most 50% of the threads in the group would
--   have any element to read, which becomes highly inefficient.
module Futhark.CodeGen.ImpGen.GPU.SegRed
  ( compileSegRed,
    compileSegRed',
    DoSegBody,
  )
where

import Control.Monad
import Data.List (genericLength, zip7)
import Data.Maybe
import Futhark.CodeGen.ImpCode.GPU qualified as Imp
import Futhark.CodeGen.ImpGen
import Futhark.CodeGen.ImpGen.GPU.Base
import Futhark.Error
import Futhark.IR.GPUMem
import Futhark.IR.Mem.LMAD qualified as LMAD
import Futhark.Transform.Rename
import Futhark.Util (chunks)
import Futhark.Util.IntegralExp (divUp, quot, rem)
import Prelude hiding (quot, rem)

-- | The maximum number of operators we support in a single SegRed.
-- This limit arises out of the static allocation of counters.
maxNumOps :: Int32
maxNumOps :: Int32
maxNumOps = Int32
10

-- | Code generation for the body of the SegRed, taking a continuation
-- for saving the results of the body.  The results should be
-- represented as a pairing of a t'SubExp' along with a list of
-- indexes into that t'SubExp' for reading the result.
type DoSegBody = ([(SubExp, [Imp.TExp Int64])] -> InKernelGen ()) -> InKernelGen ()

-- | Compile 'SegRed' instance to host-level code with calls to
-- various kernels.
compileSegRed ::
  Pat LetDecMem ->
  SegLevel ->
  SegSpace ->
  [SegBinOp GPUMem] ->
  KernelBody GPUMem ->
  CallKernelGen ()
compileSegRed :: Pat LParamMem
-> SegLevel
-> SegSpace
-> [SegBinOp GPUMem]
-> KernelBody GPUMem
-> CallKernelGen ()
compileSegRed Pat LParamMem
pat SegLevel
lvl SegSpace
space [SegBinOp GPUMem]
reds KernelBody GPUMem
body = do
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"\n# SegRed" Maybe Exp
forall a. Maybe a
Nothing
  KernelAttrs Bool
_ Bool
_ Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size <- SegLevel -> CallKernelGen KernelAttrs
lvlKernelAttrs SegLevel
lvl
  let grid :: KernelGrid
grid = Count NumGroups SubExp -> Count GroupSize SubExp -> KernelGrid
KernelGrid Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size
  Pat LParamMem
-> KernelGrid
-> SegSpace
-> [SegBinOp GPUMem]
-> DoSegBody
-> CallKernelGen ()
compileSegRed' Pat LParamMem
pat KernelGrid
grid SegSpace
space [SegBinOp GPUMem]
reds (DoSegBody -> CallKernelGen ()) -> DoSegBody -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[(SubExp, [TPrimExp Int64 VName])] -> InKernelGen ()
red_cont ->
    Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
forall rep r op.
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
compileStms Names
forall a. Monoid a => a
mempty (KernelBody GPUMem -> Stms GPUMem
forall rep. KernelBody rep -> Stms rep
kernelBodyStms KernelBody GPUMem
body) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
      let ([KernelResult]
red_res, [KernelResult]
map_res) = Int -> [KernelResult] -> ([KernelResult], [KernelResult])
forall a. Int -> [a] -> ([a], [a])
splitAt ([SegBinOp GPUMem] -> Int
forall rep. [SegBinOp rep] -> Int
segBinOpResults [SegBinOp GPUMem]
reds) ([KernelResult] -> ([KernelResult], [KernelResult]))
-> [KernelResult] -> ([KernelResult], [KernelResult])
forall a b. (a -> b) -> a -> b
$ KernelBody GPUMem -> [KernelResult]
forall rep. KernelBody rep -> [KernelResult]
kernelBodyResult KernelBody GPUMem
body

      Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"save map-out results" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
        let map_arrs :: [PatElem LParamMem]
map_arrs = Int -> [PatElem LParamMem] -> [PatElem LParamMem]
forall a. Int -> [a] -> [a]
drop ([SegBinOp GPUMem] -> Int
forall rep. [SegBinOp rep] -> Int
segBinOpResults [SegBinOp GPUMem]
reds) ([PatElem LParamMem] -> [PatElem LParamMem])
-> [PatElem LParamMem] -> [PatElem LParamMem]
forall a b. (a -> b) -> a -> b
$ Pat LParamMem -> [PatElem LParamMem]
forall dec. Pat dec -> [PatElem dec]
patElems Pat LParamMem
pat
        (PatElem LParamMem -> KernelResult -> InKernelGen ())
-> [PatElem LParamMem] -> [KernelResult] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ (SegSpace -> PatElem LParamMem -> KernelResult -> InKernelGen ()
compileThreadResult SegSpace
space) [PatElem LParamMem]
map_arrs [KernelResult]
map_res

      [(SubExp, [TPrimExp Int64 VName])] -> InKernelGen ()
red_cont ([(SubExp, [TPrimExp Int64 VName])] -> InKernelGen ())
-> [(SubExp, [TPrimExp Int64 VName])] -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ (KernelResult -> (SubExp, [TPrimExp Int64 VName]))
-> [KernelResult] -> [(SubExp, [TPrimExp Int64 VName])]
forall a b. (a -> b) -> [a] -> [b]
map ((,[]) (SubExp -> (SubExp, [TPrimExp Int64 VName]))
-> (KernelResult -> SubExp)
-> KernelResult
-> (SubExp, [TPrimExp Int64 VName])
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelResult -> SubExp
kernelResultSubExp) [KernelResult]
red_res
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"" Maybe Exp
forall a. Maybe a
Nothing

-- | Like 'compileSegRed', but where the body is a monadic action.
compileSegRed' ::
  Pat LetDecMem ->
  KernelGrid ->
  SegSpace ->
  [SegBinOp GPUMem] ->
  DoSegBody ->
  CallKernelGen ()
compileSegRed' :: Pat LParamMem
-> KernelGrid
-> SegSpace
-> [SegBinOp GPUMem]
-> DoSegBody
-> CallKernelGen ()
compileSegRed' Pat LParamMem
pat KernelGrid
grid SegSpace
space [SegBinOp GPUMem]
reds DoSegBody
body
  | [SegBinOp GPUMem] -> Int32
forall i a. Num i => [a] -> i
genericLength [SegBinOp GPUMem]
reds Int32 -> Int32 -> Bool
forall a. Ord a => a -> a -> Bool
> Int32
maxNumOps =
      String -> CallKernelGen ()
forall a. String -> a
compilerLimitationS (String -> CallKernelGen ()) -> String -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$
        String
"compileSegRed': at most " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int32 -> String
forall a. Show a => a -> String
show Int32
maxNumOps String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" reduction operators are supported."
  | [(VName
_, Constant (IntValue (Int64Value Int64
1))), (VName, SubExp)
_] <- SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space =
      Pat LParamMem
-> Count NumGroups SubExp
-> Count GroupSize SubExp
-> SegSpace
-> [SegBinOp GPUMem]
-> DoSegBody
-> CallKernelGen ()
nonsegmentedReduction Pat LParamMem
pat Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size SegSpace
space [SegBinOp GPUMem]
reds DoSegBody
body
  | Bool
otherwise = do
      let group_size' :: TPrimExp Int64 VName
group_size' = SubExp -> TPrimExp Int64 VName
pe64 (SubExp -> TPrimExp Int64 VName) -> SubExp -> TPrimExp Int64 VName
forall a b. (a -> b) -> a -> b
$ Count GroupSize SubExp -> SubExp
forall {k} (u :: k) e. Count u e -> e
unCount Count GroupSize SubExp
group_size
          segment_size :: TPrimExp Int64 VName
segment_size = SubExp -> TPrimExp Int64 VName
pe64 (SubExp -> TPrimExp Int64 VName) -> SubExp -> TPrimExp Int64 VName
forall a b. (a -> b) -> a -> b
$ [SubExp] -> SubExp
forall a. HasCallStack => [a] -> a
last ([SubExp] -> SubExp) -> [SubExp] -> SubExp
forall a b. (a -> b) -> a -> b
$ SegSpace -> [SubExp]
segSpaceDims SegSpace
space
          use_small_segments :: TPrimExp Bool VName
use_small_segments = TPrimExp Int64 VName
segment_size TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
2 TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TPrimExp Int64 VName
group_size'
      TPrimExp Bool VName
-> CallKernelGen () -> CallKernelGen () -> CallKernelGen ()
forall rep r op.
TPrimExp Bool VName
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
sIf
        TPrimExp Bool VName
use_small_segments
        (Pat LParamMem
-> Count NumGroups SubExp
-> Count GroupSize SubExp
-> SegSpace
-> [SegBinOp GPUMem]
-> DoSegBody
-> CallKernelGen ()
smallSegmentsReduction Pat LParamMem
pat Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size SegSpace
space [SegBinOp GPUMem]
reds DoSegBody
body)
        (Pat LParamMem
-> Count NumGroups SubExp
-> Count GroupSize SubExp
-> SegSpace
-> [SegBinOp GPUMem]
-> DoSegBody
-> CallKernelGen ()
largeSegmentsReduction Pat LParamMem
pat Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size SegSpace
space [SegBinOp GPUMem]
reds DoSegBody
body)
  where
    num_groups :: Count NumGroups SubExp
num_groups = KernelGrid -> Count NumGroups SubExp
gridNumGroups KernelGrid
grid
    group_size :: Count GroupSize SubExp
group_size = KernelGrid -> Count GroupSize SubExp
gridGroupSize KernelGrid
grid

-- | Prepare intermediate arrays for the reduction.  Prim-typed
-- arguments go in local memory (so we need to do the allocation of
-- those arrays inside the kernel), while array-typed arguments go in
-- global memory.  Allocations for the former have already been
-- performed.  This policy is baked into how the allocations are done
-- in ExplicitAllocations.
intermediateArrays ::
  Count GroupSize SubExp ->
  SubExp ->
  SegBinOp GPUMem ->
  InKernelGen [VName]
intermediateArrays :: Count GroupSize SubExp
-> SubExp -> SegBinOp GPUMem -> InKernelGen [VName]
intermediateArrays (Count SubExp
group_size) SubExp
num_threads (SegBinOp Commutativity
_ Lambda GPUMem
red_op [SubExp]
nes Shape
_) = do
  let red_op_params :: [LParam GPUMem]
red_op_params = Lambda GPUMem -> [LParam GPUMem]
forall rep. Lambda rep -> [LParam rep]
lambdaParams Lambda GPUMem
red_op
      ([Param LParamMem]
red_acc_params, [Param LParamMem]
_) = Int -> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a. Int -> [a] -> ([a], [a])
splitAt ([SubExp] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
nes) [LParam GPUMem]
[Param LParamMem]
red_op_params
  [Param LParamMem]
-> (Param LParamMem -> ImpM GPUMem KernelEnv KernelOp VName)
-> InKernelGen [VName]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Param LParamMem]
red_acc_params ((Param LParamMem -> ImpM GPUMem KernelEnv KernelOp VName)
 -> InKernelGen [VName])
-> (Param LParamMem -> ImpM GPUMem KernelEnv KernelOp VName)
-> InKernelGen [VName]
forall a b. (a -> b) -> a -> b
$ \Param LParamMem
p ->
    case Param LParamMem -> LParamMem
forall dec. Param dec -> dec
paramDec Param LParamMem
p of
      MemArray PrimType
pt Shape
shape NoUniqueness
_ (ArrayIn VName
mem IxFun
_) -> do
        let shape' :: Shape
shape' = [SubExp] -> Shape
forall d. [d] -> ShapeBase d
Shape [SubExp
num_threads] Shape -> Shape -> Shape
forall a. Semigroup a => a -> a -> a
<> Shape
shape
        String
-> PrimType
-> Shape
-> VName
-> LMAD
-> ImpM GPUMem KernelEnv KernelOp VName
forall rep r op.
String -> PrimType -> Shape -> VName -> LMAD -> ImpM rep r op VName
sArray String
"red_arr" PrimType
pt Shape
shape' VName
mem (LMAD -> ImpM GPUMem KernelEnv KernelOp VName)
-> LMAD -> ImpM GPUMem KernelEnv KernelOp VName
forall a b. (a -> b) -> a -> b
$
          TPrimExp Int64 VName -> [TPrimExp Int64 VName] -> LMAD
forall num. IntegralExp num => num -> [num] -> LMAD num
LMAD.iota TPrimExp Int64 VName
0 ((SubExp -> TPrimExp Int64 VName)
-> [SubExp] -> [TPrimExp Int64 VName]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TPrimExp Int64 VName
pe64 ([SubExp] -> [TPrimExp Int64 VName])
-> [SubExp] -> [TPrimExp Int64 VName]
forall a b. (a -> b) -> a -> b
$ Shape -> [SubExp]
forall d. ShapeBase d -> [d]
shapeDims Shape
shape')
      LParamMem
_ -> do
        let pt :: PrimType
pt = TypeBase Shape NoUniqueness -> PrimType
forall shape u. TypeBase shape u -> PrimType
elemType (TypeBase Shape NoUniqueness -> PrimType)
-> TypeBase Shape NoUniqueness -> PrimType
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase Shape NoUniqueness
forall dec. Typed dec => Param dec -> TypeBase Shape NoUniqueness
paramType Param LParamMem
p
            shape :: Shape
shape = [SubExp] -> Shape
forall d. [d] -> ShapeBase d
Shape [SubExp
group_size]
        String
-> PrimType
-> Shape
-> Space
-> ImpM GPUMem KernelEnv KernelOp VName
forall rep r op.
String -> PrimType -> Shape -> Space -> ImpM rep r op VName
sAllocArray String
"red_arr" PrimType
pt Shape
shape (Space -> ImpM GPUMem KernelEnv KernelOp VName)
-> Space -> ImpM GPUMem KernelEnv KernelOp VName
forall a b. (a -> b) -> a -> b
$ String -> Space
Space String
"local"

-- | Arrays for storing group results.
--
-- The group-result arrays have an extra dimension because they are
-- also used for keeping vectorised accumulators for first-stage
-- reduction, if necessary.  If necessary, this dimension has size
-- group_size, and otherwise 1.  When actually storing group results,
-- the first index is set to 0.
groupResultArrays ::
  Count NumGroups SubExp ->
  Count GroupSize SubExp ->
  [SegBinOp GPUMem] ->
  CallKernelGen [[VName]]
groupResultArrays :: Count NumGroups SubExp
-> Count GroupSize SubExp
-> [SegBinOp GPUMem]
-> CallKernelGen [[VName]]
groupResultArrays (Count SubExp
virt_num_groups) (Count SubExp
group_size) [SegBinOp GPUMem]
reds =
  [SegBinOp GPUMem]
-> (SegBinOp GPUMem -> ImpM GPUMem HostEnv HostOp [VName])
-> CallKernelGen [[VName]]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [SegBinOp GPUMem]
reds ((SegBinOp GPUMem -> ImpM GPUMem HostEnv HostOp [VName])
 -> CallKernelGen [[VName]])
-> (SegBinOp GPUMem -> ImpM GPUMem HostEnv HostOp [VName])
-> CallKernelGen [[VName]]
forall a b. (a -> b) -> a -> b
$ \(SegBinOp Commutativity
_ Lambda GPUMem
lam [SubExp]
_ Shape
shape) ->
    [TypeBase Shape NoUniqueness]
-> (TypeBase Shape NoUniqueness
    -> ImpM GPUMem HostEnv HostOp VName)
-> ImpM GPUMem HostEnv HostOp [VName]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM (Lambda GPUMem -> [TypeBase Shape NoUniqueness]
forall rep. Lambda rep -> [TypeBase Shape NoUniqueness]
lambdaReturnType Lambda GPUMem
lam) ((TypeBase Shape NoUniqueness -> ImpM GPUMem HostEnv HostOp VName)
 -> ImpM GPUMem HostEnv HostOp [VName])
-> (TypeBase Shape NoUniqueness
    -> ImpM GPUMem HostEnv HostOp VName)
-> ImpM GPUMem HostEnv HostOp [VName]
forall a b. (a -> b) -> a -> b
$ \TypeBase Shape NoUniqueness
t -> do
      let pt :: PrimType
pt = TypeBase Shape NoUniqueness -> PrimType
forall shape u. TypeBase shape u -> PrimType
elemType TypeBase Shape NoUniqueness
t
          extra_dim :: SubExp
extra_dim
            | TypeBase Shape NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType TypeBase Shape NoUniqueness
t, Shape -> Int
forall a. ArrayShape a => a -> Int
shapeRank Shape
shape Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = IntType -> Integer -> SubExp
intConst IntType
Int64 Integer
1
            | Bool
otherwise = SubExp
group_size
          full_shape :: Shape
full_shape = [SubExp] -> Shape
forall d. [d] -> ShapeBase d
Shape [SubExp
extra_dim, SubExp
virt_num_groups] Shape -> Shape -> Shape
forall a. Semigroup a => a -> a -> a
<> Shape
shape Shape -> Shape -> Shape
forall a. Semigroup a => a -> a -> a
<> TypeBase Shape NoUniqueness -> Shape
forall shape u. ArrayShape shape => TypeBase shape u -> shape
arrayShape TypeBase Shape NoUniqueness
t
          -- Move the groupsize dimension last to ensure coalesced
          -- memory access.
          perm :: [Int]
perm = [Int
1 .. Shape -> Int
forall a. ArrayShape a => a -> Int
shapeRank Shape
full_shape Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1] [Int] -> [Int] -> [Int]
forall a. [a] -> [a] -> [a]
++ [Int
0]
      String
-> PrimType
-> Shape
-> Space
-> [Int]
-> ImpM GPUMem HostEnv HostOp VName
forall rep r op.
String
-> PrimType -> Shape -> Space -> [Int] -> ImpM rep r op VName
sAllocArrayPerm String
"segred_tmp" PrimType
pt Shape
full_shape (String -> Space
Space String
"device") [Int]
perm

nonsegmentedReduction ::
  Pat LetDecMem ->
  Count NumGroups SubExp ->
  Count GroupSize SubExp ->
  SegSpace ->
  [SegBinOp GPUMem] ->
  DoSegBody ->
  CallKernelGen ()
nonsegmentedReduction :: Pat LParamMem
-> Count NumGroups SubExp
-> Count GroupSize SubExp
-> SegSpace
-> [SegBinOp GPUMem]
-> DoSegBody
-> CallKernelGen ()
nonsegmentedReduction Pat LParamMem
segred_pat Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size SegSpace
space [SegBinOp GPUMem]
reds DoSegBody
body = do
  let ([VName]
gtids, [SubExp]
dims) = [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. [(a, b)] -> ([a], [b])
unzip ([(VName, SubExp)] -> ([VName], [SubExp]))
-> [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space
      dims' :: [TPrimExp Int64 VName]
dims' = (SubExp -> TPrimExp Int64 VName)
-> [SubExp] -> [TPrimExp Int64 VName]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TPrimExp Int64 VName
pe64 [SubExp]
dims
      num_groups' :: Count NumGroups (TPrimExp Int64 VName)
num_groups' = (SubExp -> TPrimExp Int64 VName)
-> Count NumGroups SubExp -> Count NumGroups (TPrimExp Int64 VName)
forall a b. (a -> b) -> Count NumGroups a -> Count NumGroups b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap SubExp -> TPrimExp Int64 VName
pe64 Count NumGroups SubExp
num_groups
      group_size' :: Count GroupSize (TPrimExp Int64 VName)
group_size' = (SubExp -> TPrimExp Int64 VName)
-> Count GroupSize SubExp -> Count GroupSize (TPrimExp Int64 VName)
forall a b. (a -> b) -> Count GroupSize a -> Count GroupSize b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap SubExp -> TPrimExp Int64 VName
pe64 Count GroupSize SubExp
group_size
      global_tid :: TPrimExp Int64 VName
global_tid = VName -> TPrimExp Int64 VName
forall a. a -> TPrimExp Int64 a
Imp.le64 (VName -> TPrimExp Int64 VName) -> VName -> TPrimExp Int64 VName
forall a b. (a -> b) -> a -> b
$ SegSpace -> VName
segFlat SegSpace
space
      w :: TPrimExp Int64 VName
w = [TPrimExp Int64 VName] -> TPrimExp Int64 VName
forall a. HasCallStack => [a] -> a
last [TPrimExp Int64 VName]
dims'

  VName
counter <- String -> Int -> ImpM GPUMem HostEnv HostOp VName
genZeroes String
"counters" (Int -> ImpM GPUMem HostEnv HostOp VName)
-> Int -> ImpM GPUMem HostEnv HostOp VName
forall a b. (a -> b) -> a -> b
$ Int32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int32
maxNumOps

  [[VName]]
reds_group_res_arrs <- Count NumGroups SubExp
-> Count GroupSize SubExp
-> [SegBinOp GPUMem]
-> CallKernelGen [[VName]]
groupResultArrays Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size [SegBinOp GPUMem]
reds

  TV Int64
num_threads <-
    String
-> TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"num_threads" (TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64))
-> TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall a b. (a -> b) -> a -> b
$
      Count NumGroups (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count NumGroups (TPrimExp Int64 VName)
num_groups' TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* Count GroupSize (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count GroupSize (TPrimExp Int64 VName)
group_size'

  String
-> VName -> KernelAttrs -> InKernelGen () -> CallKernelGen ()
sKernelThread String
"segred_nonseg" (SegSpace -> VName
segFlat SegSpace
space) (Count NumGroups SubExp -> Count GroupSize SubExp -> KernelAttrs
defKernelAttrs Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size) (InKernelGen () -> CallKernelGen ())
-> InKernelGen () -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
    KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
    VName
sync_arr <- String
-> PrimType
-> Shape
-> Space
-> ImpM GPUMem KernelEnv KernelOp VName
forall rep r op.
String -> PrimType -> Shape -> Space -> ImpM rep r op VName
sAllocArray String
"sync_arr" PrimType
Bool ([SubExp] -> Shape
forall d. [d] -> ShapeBase d
Shape [IntType -> Integer -> SubExp
intConst IntType
Int32 Integer
1]) (Space -> ImpM GPUMem KernelEnv KernelOp VName)
-> Space -> ImpM GPUMem KernelEnv KernelOp VName
forall a b. (a -> b) -> a -> b
$ String -> Space
Space String
"local"
    [[VName]]
reds_arrs <- (SegBinOp GPUMem -> InKernelGen [VName])
-> [SegBinOp GPUMem] -> ImpM GPUMem KernelEnv KernelOp [[VName]]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM (Count GroupSize SubExp
-> SubExp -> SegBinOp GPUMem -> InKernelGen [VName]
intermediateArrays Count GroupSize SubExp
group_size (TV Int64 -> SubExp
forall {k} (t :: k). TV t -> SubExp
tvSize TV Int64
num_threads)) [SegBinOp GPUMem]
reds

    -- Since this is the nonsegmented case, all outer segment IDs must
    -- necessarily be 0.
    [VName] -> (VName -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [VName]
gtids ((VName -> InKernelGen ()) -> InKernelGen ())
-> (VName -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \VName
v -> VName -> TPrimExp Int64 VName -> InKernelGen ()
forall {k} (t :: k) rep r op. VName -> TExp t -> ImpM rep r op ()
dPrimV_ VName
v (TPrimExp Int64 VName
0 :: Imp.TExp Int64)

    let num_elements :: Count Elements (TPrimExp Int64 VName)
num_elements = TPrimExp Int64 VName -> Count Elements (TPrimExp Int64 VName)
forall a. a -> Count Elements a
Imp.elements TPrimExp Int64 VName
w
        elems_per_thread :: Count Elements (TPrimExp Int64 VName)
elems_per_thread =
          Count Elements (TPrimExp Int64 VName)
num_elements
            Count Elements (TPrimExp Int64 VName)
-> Count Elements (TPrimExp Int64 VName)
-> Count Elements (TPrimExp Int64 VName)
forall e. IntegralExp e => e -> e -> e
`divUp` TPrimExp Int64 VName -> Count Elements (TPrimExp Int64 VName)
forall a. a -> Count Elements a
Imp.elements (TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (KernelConstants -> TPrimExp Int32 VName
kernelNumThreads KernelConstants
constants))

    [SegBinOpSlug]
slugs <-
      ((SegBinOp GPUMem, [VName], [VName])
 -> ImpM GPUMem KernelEnv KernelOp SegBinOpSlug)
-> [(SegBinOp GPUMem, [VName], [VName])]
-> ImpM GPUMem KernelEnv KernelOp [SegBinOpSlug]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM (TPrimExp Int32 VName
-> TPrimExp Int32 VName
-> (SegBinOp GPUMem, [VName], [VName])
-> ImpM GPUMem KernelEnv KernelOp SegBinOpSlug
segBinOpSlug (KernelConstants -> TPrimExp Int32 VName
kernelLocalThreadId KernelConstants
constants) (KernelConstants -> TPrimExp Int32 VName
kernelGroupId KernelConstants
constants)) ([(SegBinOp GPUMem, [VName], [VName])]
 -> ImpM GPUMem KernelEnv KernelOp [SegBinOpSlug])
-> [(SegBinOp GPUMem, [VName], [VName])]
-> ImpM GPUMem KernelEnv KernelOp [SegBinOpSlug]
forall a b. (a -> b) -> a -> b
$
        [SegBinOp GPUMem]
-> [[VName]] -> [[VName]] -> [(SegBinOp GPUMem, [VName], [VName])]
forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [SegBinOp GPUMem]
reds [[VName]]
reds_arrs [[VName]]
reds_group_res_arrs
    [Lambda GPUMem]
reds_op_renamed <-
      KernelConstants
-> [(VName, TPrimExp Int64 VName)]
-> Count Elements (TPrimExp Int64 VName)
-> TPrimExp Int64 VName
-> Count Elements (TPrimExp Int64 VName)
-> TPrimExp Int64 VName
-> [SegBinOpSlug]
-> DoSegBody
-> InKernelGen [Lambda GPUMem]
reductionStageOne
        KernelConstants
constants
        ([VName]
-> [TPrimExp Int64 VName] -> [(VName, TPrimExp Int64 VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
gtids [TPrimExp Int64 VName]
dims')
        Count Elements (TPrimExp Int64 VName)
num_elements
        TPrimExp Int64 VName
global_tid
        Count Elements (TPrimExp Int64 VName)
elems_per_thread
        (TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
num_threads)
        [SegBinOpSlug]
slugs
        DoSegBody
body

    let segred_pes :: [[PatElem LParamMem]]
segred_pes =
          [Int] -> [PatElem LParamMem] -> [[PatElem LParamMem]]
forall a. [Int] -> [a] -> [[a]]
chunks ((SegBinOp GPUMem -> Int) -> [SegBinOp GPUMem] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map ([SubExp] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ([SubExp] -> Int)
-> (SegBinOp GPUMem -> [SubExp]) -> SegBinOp GPUMem -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOp GPUMem -> [SubExp]
forall rep. SegBinOp rep -> [SubExp]
segBinOpNeutral) [SegBinOp GPUMem]
reds) ([PatElem LParamMem] -> [[PatElem LParamMem]])
-> [PatElem LParamMem] -> [[PatElem LParamMem]]
forall a b. (a -> b) -> a -> b
$
            Pat LParamMem -> [PatElem LParamMem]
forall dec. Pat dec -> [PatElem dec]
patElems Pat LParamMem
segred_pat
    [(SegBinOp GPUMem, [VName], [VName], [PatElem LParamMem],
  SegBinOpSlug, Lambda GPUMem, Integer)]
-> ((SegBinOp GPUMem, [VName], [VName], [PatElem LParamMem],
     SegBinOpSlug, Lambda GPUMem, Integer)
    -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([SegBinOp GPUMem]
-> [[VName]]
-> [[VName]]
-> [[PatElem LParamMem]]
-> [SegBinOpSlug]
-> [Lambda GPUMem]
-> [Integer]
-> [(SegBinOp GPUMem, [VName], [VName], [PatElem LParamMem],
     SegBinOpSlug, Lambda GPUMem, Integer)]
forall a b c d e f g.
[a]
-> [b]
-> [c]
-> [d]
-> [e]
-> [f]
-> [g]
-> [(a, b, c, d, e, f, g)]
zip7 [SegBinOp GPUMem]
reds [[VName]]
reds_arrs [[VName]]
reds_group_res_arrs [[PatElem LParamMem]]
segred_pes [SegBinOpSlug]
slugs [Lambda GPUMem]
reds_op_renamed [Integer
0 ..]) (((SegBinOp GPUMem, [VName], [VName], [PatElem LParamMem],
   SegBinOpSlug, Lambda GPUMem, Integer)
  -> InKernelGen ())
 -> InKernelGen ())
-> ((SegBinOp GPUMem, [VName], [VName], [PatElem LParamMem],
     SegBinOpSlug, Lambda GPUMem, Integer)
    -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      \(SegBinOp Commutativity
_ Lambda GPUMem
red_op [SubExp]
nes Shape
_, [VName]
red_arrs, [VName]
group_res_arrs, [PatElem LParamMem]
pes, SegBinOpSlug
slug, Lambda GPUMem
red_op_renamed, Integer
i) -> do
        let ([Param LParamMem]
red_x_params, [Param LParamMem]
red_y_params) = Int -> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a. Int -> [a] -> ([a], [a])
splitAt ([SubExp] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
nes) ([Param LParamMem] -> ([Param LParamMem], [Param LParamMem]))
-> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. Lambda rep -> [LParam rep]
lambdaParams Lambda GPUMem
red_op
        KernelConstants
-> [PatElem LParamMem]
-> TPrimExp Int32 VName
-> TPrimExp Int32 VName
-> [TPrimExp Int64 VName]
-> TPrimExp Int64 VName
-> TPrimExp Int64 VName
-> SegBinOpSlug
-> [LParam GPUMem]
-> [LParam GPUMem]
-> Lambda GPUMem
-> [SubExp]
-> TPrimExp Int32 VName
-> VName
-> TPrimExp Int32 VName
-> VName
-> [VName]
-> [VName]
-> InKernelGen ()
reductionStageTwo
          KernelConstants
constants
          [PatElem LParamMem]
pes
          (KernelConstants -> TPrimExp Int32 VName
kernelGroupId KernelConstants
constants)
          TPrimExp Int32 VName
0
          [TPrimExp Int64 VName
0]
          TPrimExp Int64 VName
0
          (TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TPrimExp Int64 VName -> TPrimExp Int64 VName)
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TPrimExp Int64 VName
kernelNumGroups KernelConstants
constants)
          SegBinOpSlug
slug
          [LParam GPUMem]
[Param LParamMem]
red_x_params
          [LParam GPUMem]
[Param LParamMem]
red_y_params
          Lambda GPUMem
red_op_renamed
          [SubExp]
nes
          TPrimExp Int32 VName
1
          VName
counter
          (Integer -> TPrimExp Int32 VName
forall a. Num a => Integer -> a
fromInteger Integer
i)
          VName
sync_arr
          [VName]
group_res_arrs
          [VName]
red_arrs

smallSegmentsReduction ::
  Pat LetDecMem ->
  Count NumGroups SubExp ->
  Count GroupSize SubExp ->
  SegSpace ->
  [SegBinOp GPUMem] ->
  DoSegBody ->
  CallKernelGen ()
smallSegmentsReduction :: Pat LParamMem
-> Count NumGroups SubExp
-> Count GroupSize SubExp
-> SegSpace
-> [SegBinOp GPUMem]
-> DoSegBody
-> CallKernelGen ()
smallSegmentsReduction (Pat [PatElem LParamMem]
segred_pes) Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size SegSpace
space [SegBinOp GPUMem]
reds DoSegBody
body = do
  let ([VName]
gtids, [SubExp]
dims) = [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. [(a, b)] -> ([a], [b])
unzip ([(VName, SubExp)] -> ([VName], [SubExp]))
-> [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space
      dims' :: [TPrimExp Int64 VName]
dims' = (SubExp -> TPrimExp Int64 VName)
-> [SubExp] -> [TPrimExp Int64 VName]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TPrimExp Int64 VName
pe64 [SubExp]
dims
      segment_size :: TPrimExp Int64 VName
segment_size = [TPrimExp Int64 VName] -> TPrimExp Int64 VName
forall a. HasCallStack => [a] -> a
last [TPrimExp Int64 VName]
dims'

  -- Careful to avoid division by zero now.
  TPrimExp Int64 VName
segment_size_nonzero <-
    String
-> TPrimExp Int64 VName
-> ImpM GPUMem HostEnv HostOp (TPrimExp Int64 VName)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"segment_size_nonzero" (TPrimExp Int64 VName
 -> ImpM GPUMem HostEnv HostOp (TPrimExp Int64 VName))
-> TPrimExp Int64 VName
-> ImpM GPUMem HostEnv HostOp (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall v. TPrimExp Int64 v -> TPrimExp Int64 v -> TPrimExp Int64 v
sMax64 TPrimExp Int64 VName
1 TPrimExp Int64 VName
segment_size

  let num_groups' :: Count NumGroups (TPrimExp Int64 VName)
num_groups' = (SubExp -> TPrimExp Int64 VName)
-> Count NumGroups SubExp -> Count NumGroups (TPrimExp Int64 VName)
forall a b. (a -> b) -> Count NumGroups a -> Count NumGroups b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap SubExp -> TPrimExp Int64 VName
pe64 Count NumGroups SubExp
num_groups
      group_size' :: Count GroupSize (TPrimExp Int64 VName)
group_size' = (SubExp -> TPrimExp Int64 VName)
-> Count GroupSize SubExp -> Count GroupSize (TPrimExp Int64 VName)
forall a b. (a -> b) -> Count GroupSize a -> Count GroupSize b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap SubExp -> TPrimExp Int64 VName
pe64 Count GroupSize SubExp
group_size
  TV Int64
num_threads <- String
-> TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"num_threads" (TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64))
-> TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall a b. (a -> b) -> a -> b
$ Count NumGroups (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count NumGroups (TPrimExp Int64 VName)
num_groups' TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* Count GroupSize (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count GroupSize (TPrimExp Int64 VName)
group_size'
  let num_segments :: TPrimExp Int64 VName
num_segments = [TPrimExp Int64 VName] -> TPrimExp Int64 VName
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product ([TPrimExp Int64 VName] -> TPrimExp Int64 VName)
-> [TPrimExp Int64 VName] -> TPrimExp Int64 VName
forall a b. (a -> b) -> a -> b
$ [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. HasCallStack => [a] -> [a]
init [TPrimExp Int64 VName]
dims'
      segments_per_group :: TPrimExp Int64 VName
segments_per_group = Count GroupSize (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count GroupSize (TPrimExp Int64 VName)
group_size' TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`quot` TPrimExp Int64 VName
segment_size_nonzero
      required_groups :: TPrimExp Int32 VName
required_groups = TPrimExp Int64 VName -> TPrimExp Int32 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 (TPrimExp Int64 VName -> TPrimExp Int32 VName)
-> TPrimExp Int64 VName -> TPrimExp Int32 VName
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName
num_segments TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`divUp` TPrimExp Int64 VName
segments_per_group

  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"# SegRed-small" Maybe Exp
forall a. Maybe a
Nothing
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"num_segments" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped TPrimExp Int64 VName
num_segments
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"segment_size" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped TPrimExp Int64 VName
segment_size
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"segments_per_group" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped TPrimExp Int64 VName
segments_per_group
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"required_groups" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int32 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped TPrimExp Int32 VName
required_groups

  String
-> VName -> KernelAttrs -> InKernelGen () -> CallKernelGen ()
sKernelThread String
"segred_small" (SegSpace -> VName
segFlat SegSpace
space) (Count NumGroups SubExp -> Count GroupSize SubExp -> KernelAttrs
defKernelAttrs Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size) (InKernelGen () -> CallKernelGen ())
-> InKernelGen () -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
    KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
    [[VName]]
reds_arrs <- (SegBinOp GPUMem -> InKernelGen [VName])
-> [SegBinOp GPUMem] -> ImpM GPUMem KernelEnv KernelOp [[VName]]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM (Count GroupSize SubExp
-> SubExp -> SegBinOp GPUMem -> InKernelGen [VName]
intermediateArrays Count GroupSize SubExp
group_size (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ TV Int64 -> VName
forall {k} (t :: k). TV t -> VName
tvVar TV Int64
num_threads)) [SegBinOp GPUMem]
reds

    -- We probably do not have enough actual workgroups to cover the
    -- entire iteration space.  Some groups thus have to perform double
    -- duty; we put an outer loop to accomplish this.
    SegVirt
-> TPrimExp Int32 VName
-> (TPrimExp Int32 VName -> InKernelGen ())
-> InKernelGen ()
virtualiseGroups SegVirt
SegVirt TPrimExp Int32 VName
required_groups ((TPrimExp Int32 VName -> InKernelGen ()) -> InKernelGen ())
-> (TPrimExp Int32 VName -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \TPrimExp Int32 VName
group_id' -> do
      -- Compute the 'n' input indices.  The outer 'n-1' correspond to
      -- the segment ID, and are computed from the group id.  The inner
      -- is computed from the local thread id, and may be out-of-bounds.
      let ltid :: TPrimExp Int64 VName
ltid = TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TPrimExp Int32 VName -> TPrimExp Int64 VName)
-> TPrimExp Int32 VName -> TPrimExp Int64 VName
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TPrimExp Int32 VName
kernelLocalThreadId KernelConstants
constants
          segment_index :: TPrimExp Int64 VName
segment_index =
            (TPrimExp Int64 VName
ltid TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`quot` TPrimExp Int64 VName
segment_size_nonzero)
              TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ (TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
group_id' TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int64 VName
segments_per_group)
          index_within_segment :: TPrimExp Int64 VName
index_within_segment = TPrimExp Int64 VName
ltid TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`rem` TPrimExp Int64 VName
segment_size

      [(VName, TPrimExp Int64 VName)]
-> TPrimExp Int64 VName -> InKernelGen ()
forall rep r op.
[(VName, TPrimExp Int64 VName)]
-> TPrimExp Int64 VName -> ImpM rep r op ()
dIndexSpace ([VName]
-> [TPrimExp Int64 VName] -> [(VName, TPrimExp Int64 VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip ([VName] -> [VName]
forall a. HasCallStack => [a] -> [a]
init [VName]
gtids) ([TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. HasCallStack => [a] -> [a]
init [TPrimExp Int64 VName]
dims')) TPrimExp Int64 VName
segment_index
      VName -> TPrimExp Int64 VName -> InKernelGen ()
forall {k} (t :: k) rep r op. VName -> TExp t -> ImpM rep r op ()
dPrimV_ ([VName] -> VName
forall a. HasCallStack => [a] -> a
last [VName]
gtids) TPrimExp Int64 VName
index_within_segment

      let out_of_bounds :: InKernelGen ()
out_of_bounds =
            [(SegBinOp GPUMem, [VName])]
-> ((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([SegBinOp GPUMem] -> [[VName]] -> [(SegBinOp GPUMem, [VName])]
forall a b. [a] -> [b] -> [(a, b)]
zip [SegBinOp GPUMem]
reds [[VName]]
reds_arrs) (((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ())
-> ((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(SegBinOp Commutativity
_ Lambda GPUMem
_ [SubExp]
nes Shape
_, [VName]
red_arrs) ->
              [(VName, SubExp)]
-> ((VName, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([VName] -> [SubExp] -> [(VName, SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
red_arrs [SubExp]
nes) (((VName, SubExp) -> InKernelGen ()) -> InKernelGen ())
-> ((VName, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(VName
arr, SubExp
ne) ->
                VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix VName
arr [TPrimExp Int64 VName
ltid] SubExp
ne []

          in_bounds :: InKernelGen ()
in_bounds =
            DoSegBody
body DoSegBody -> DoSegBody
forall a b. (a -> b) -> a -> b
$ \[(SubExp, [TPrimExp Int64 VName])]
red_res ->
              Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"save results to be reduced" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
                let red_dests :: [(VName, [TPrimExp Int64 VName])]
red_dests = (VName -> (VName, [TPrimExp Int64 VName]))
-> [VName] -> [(VName, [TPrimExp Int64 VName])]
forall a b. (a -> b) -> [a] -> [b]
map (,[TPrimExp Int64 VName
ltid]) ([[VName]] -> [VName]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [[VName]]
reds_arrs)
                [((VName, [TPrimExp Int64 VName]),
  (SubExp, [TPrimExp Int64 VName]))]
-> (((VName, [TPrimExp Int64 VName]),
     (SubExp, [TPrimExp Int64 VName]))
    -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([(VName, [TPrimExp Int64 VName])]
-> [(SubExp, [TPrimExp Int64 VName])]
-> [((VName, [TPrimExp Int64 VName]),
     (SubExp, [TPrimExp Int64 VName]))]
forall a b. [a] -> [b] -> [(a, b)]
zip [(VName, [TPrimExp Int64 VName])]
red_dests [(SubExp, [TPrimExp Int64 VName])]
red_res) ((((VName, [TPrimExp Int64 VName]),
   (SubExp, [TPrimExp Int64 VName]))
  -> InKernelGen ())
 -> InKernelGen ())
-> (((VName, [TPrimExp Int64 VName]),
     (SubExp, [TPrimExp Int64 VName]))
    -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \((VName
d, [TPrimExp Int64 VName]
d_is), (SubExp
res, [TPrimExp Int64 VName]
res_is)) ->
                  VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix VName
d [TPrimExp Int64 VName]
d_is SubExp
res [TPrimExp Int64 VName]
res_is

      Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"apply map function if in bounds" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        TPrimExp Bool VName
-> InKernelGen () -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
sIf
          ( TPrimExp Int64 VName
segment_size
              TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.>. TPrimExp Int64 VName
0
              TPrimExp Bool VName -> TPrimExp Bool VName -> TPrimExp Bool VName
forall v.
Eq v =>
TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. [(VName, SubExp)] -> TPrimExp Bool VName
isActive ([(VName, SubExp)] -> [(VName, SubExp)]
forall a. HasCallStack => [a] -> [a]
init ([(VName, SubExp)] -> [(VName, SubExp)])
-> [(VName, SubExp)] -> [(VName, SubExp)]
forall a b. (a -> b) -> a -> b
$ [VName] -> [SubExp] -> [(VName, SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
gtids [SubExp]
dims)
              TPrimExp Bool VName -> TPrimExp Bool VName -> TPrimExp Bool VName
forall v.
Eq v =>
TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TPrimExp Int64 VName
ltid
              TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TPrimExp Int64 VName
segment_size
              TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
segments_per_group
          )
          InKernelGen ()
in_bounds
          InKernelGen ()
out_of_bounds

      KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.ErrorSync Fence
Imp.FenceLocal -- Also implicitly barrier.
      let crossesSegment :: TPrimExp Int32 VName -> TPrimExp Int32 VName -> TPrimExp Bool VName
crossesSegment TPrimExp Int32 VName
from TPrimExp Int32 VName
to =
            (TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
to TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
- TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
from) TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.>. (TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
to TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`rem` TPrimExp Int64 VName
segment_size)
      TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TPrimExp Int64 VName
segment_size TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.>. TPrimExp Int64 VName
0) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"perform segmented scan to imitate reduction" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          [(SegBinOp GPUMem, [VName])]
-> ((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([SegBinOp GPUMem] -> [[VName]] -> [(SegBinOp GPUMem, [VName])]
forall a b. [a] -> [b] -> [(a, b)]
zip [SegBinOp GPUMem]
reds [[VName]]
reds_arrs) (((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ())
-> ((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(SegBinOp Commutativity
_ Lambda GPUMem
red_op [SubExp]
_ Shape
_, [VName]
red_arrs) ->
            Maybe
  (TPrimExp Int32 VName
   -> TPrimExp Int32 VName -> TPrimExp Bool VName)
-> TPrimExp Int64 VName
-> TPrimExp Int64 VName
-> Lambda GPUMem
-> [VName]
-> InKernelGen ()
groupScan
              ((TPrimExp Int32 VName
 -> TPrimExp Int32 VName -> TPrimExp Bool VName)
-> Maybe
     (TPrimExp Int32 VName
      -> TPrimExp Int32 VName -> TPrimExp Bool VName)
forall a. a -> Maybe a
Just TPrimExp Int32 VName -> TPrimExp Int32 VName -> TPrimExp Bool VName
crossesSegment)
              (TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TPrimExp Int64 VName -> TPrimExp Int64 VName)
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a b. (a -> b) -> a -> b
$ TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
num_threads)
              (TPrimExp Int64 VName
segment_size TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
segments_per_group)
              Lambda GPUMem
red_op
              [VName]
red_arrs

      KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal

      Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"save final values of segments"
        (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sWhen
          ( TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
group_id'
              TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
segments_per_group
              TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int64 VName
ltid
                TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TPrimExp Int64 VName
num_segments
                TPrimExp Bool VName -> TPrimExp Bool VName -> TPrimExp Bool VName
forall v.
Eq v =>
TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TPrimExp Int64 VName
ltid
                TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TPrimExp Int64 VName
segments_per_group
          )
        (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ [(PatElem LParamMem, VName)]
-> ((PatElem LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([PatElem LParamMem] -> [VName] -> [(PatElem LParamMem, VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [PatElem LParamMem]
segred_pes ([[VName]] -> [VName]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [[VName]]
reds_arrs))
        (((PatElem LParamMem, VName) -> InKernelGen ()) -> InKernelGen ())
-> ((PatElem LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(PatElem LParamMem
pe, VName
arr) -> do
          -- Figure out which segment result this thread should write...
          let flat_segment_index :: TPrimExp Int64 VName
flat_segment_index =
                TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
group_id' TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
segments_per_group TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int64 VName
ltid
              gtids' :: [TPrimExp Int64 VName]
gtids' =
                [TPrimExp Int64 VName]
-> TPrimExp Int64 VName -> [TPrimExp Int64 VName]
forall num. IntegralExp num => [num] -> num -> [num]
unflattenIndex ([TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. HasCallStack => [a] -> [a]
init [TPrimExp Int64 VName]
dims') TPrimExp Int64 VName
flat_segment_index
          VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix
            (PatElem LParamMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem LParamMem
pe)
            [TPrimExp Int64 VName]
gtids'
            (VName -> SubExp
Var VName
arr)
            [(TPrimExp Int64 VName
ltid TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ TPrimExp Int64 VName
1) TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
segment_size_nonzero TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
- TPrimExp Int64 VName
1]

      -- Finally another barrier, because we will be writing to the
      -- local memory array first thing in the next iteration.
      KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal

largeSegmentsReduction ::
  Pat LetDecMem ->
  Count NumGroups SubExp ->
  Count GroupSize SubExp ->
  SegSpace ->
  [SegBinOp GPUMem] ->
  DoSegBody ->
  CallKernelGen ()
largeSegmentsReduction :: Pat LParamMem
-> Count NumGroups SubExp
-> Count GroupSize SubExp
-> SegSpace
-> [SegBinOp GPUMem]
-> DoSegBody
-> CallKernelGen ()
largeSegmentsReduction Pat LParamMem
segred_pat Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size SegSpace
space [SegBinOp GPUMem]
reds DoSegBody
body = do
  let ([VName]
gtids, [SubExp]
dims) = [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. [(a, b)] -> ([a], [b])
unzip ([(VName, SubExp)] -> ([VName], [SubExp]))
-> [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space
      dims' :: [TPrimExp Int64 VName]
dims' = (SubExp -> TPrimExp Int64 VName)
-> [SubExp] -> [TPrimExp Int64 VName]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TPrimExp Int64 VName
pe64 [SubExp]
dims
      num_segments :: TPrimExp Int64 VName
num_segments = [TPrimExp Int64 VName] -> TPrimExp Int64 VName
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product ([TPrimExp Int64 VName] -> TPrimExp Int64 VName)
-> [TPrimExp Int64 VName] -> TPrimExp Int64 VName
forall a b. (a -> b) -> a -> b
$ [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. HasCallStack => [a] -> [a]
init [TPrimExp Int64 VName]
dims'
      segment_size :: TPrimExp Int64 VName
segment_size = [TPrimExp Int64 VName] -> TPrimExp Int64 VName
forall a. HasCallStack => [a] -> a
last [TPrimExp Int64 VName]
dims'
      num_groups' :: Count NumGroups (TPrimExp Int64 VName)
num_groups' = (SubExp -> TPrimExp Int64 VName)
-> Count NumGroups SubExp -> Count NumGroups (TPrimExp Int64 VName)
forall a b. (a -> b) -> Count NumGroups a -> Count NumGroups b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap SubExp -> TPrimExp Int64 VName
pe64 Count NumGroups SubExp
num_groups
      group_size' :: Count GroupSize (TPrimExp Int64 VName)
group_size' = (SubExp -> TPrimExp Int64 VName)
-> Count GroupSize SubExp -> Count GroupSize (TPrimExp Int64 VName)
forall a b. (a -> b) -> Count GroupSize a -> Count GroupSize b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap SubExp -> TPrimExp Int64 VName
pe64 Count GroupSize SubExp
group_size

  (TPrimExp Int64 VName
groups_per_segment, Count Elements (TPrimExp Int64 VName)
elems_per_thread) <-
    TPrimExp Int64 VName
-> TPrimExp Int64 VName
-> Count NumGroups (TPrimExp Int64 VName)
-> Count GroupSize (TPrimExp Int64 VName)
-> CallKernelGen
     (TPrimExp Int64 VName, Count Elements (TPrimExp Int64 VName))
groupsPerSegmentAndElementsPerThread
      TPrimExp Int64 VName
segment_size
      TPrimExp Int64 VName
num_segments
      Count NumGroups (TPrimExp Int64 VName)
num_groups'
      Count GroupSize (TPrimExp Int64 VName)
group_size'
  TV Int64
virt_num_groups <-
    String
-> TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"virt_num_groups" (TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64))
-> TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall a b. (a -> b) -> a -> b
$
      TPrimExp Int64 VName
groups_per_segment TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
num_segments

  TV Int64
num_threads <-
    String
-> TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"num_threads" (TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64))
-> TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall a b. (a -> b) -> a -> b
$
      Count NumGroups (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count NumGroups (TPrimExp Int64 VName)
num_groups' TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* Count GroupSize (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count GroupSize (TPrimExp Int64 VName)
group_size'

  TV Int64
threads_per_segment <-
    String
-> TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"threads_per_segment" (TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64))
-> TPrimExp Int64 VName -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall a b. (a -> b) -> a -> b
$
      TPrimExp Int64 VName
groups_per_segment TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* Count GroupSize (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count GroupSize (TPrimExp Int64 VName)
group_size'

  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"# SegRed-large" Maybe Exp
forall a. Maybe a
Nothing
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"num_segments" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped TPrimExp Int64 VName
num_segments
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"segment_size" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped TPrimExp Int64 VName
segment_size
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"virt_num_groups" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped (TPrimExp Int64 VName -> Exp) -> TPrimExp Int64 VName -> Exp
forall a b. (a -> b) -> a -> b
$ TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
virt_num_groups
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"num_groups" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped (TPrimExp Int64 VName -> Exp) -> TPrimExp Int64 VName -> Exp
forall a b. (a -> b) -> a -> b
$ Count NumGroups (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count NumGroups (TPrimExp Int64 VName)
num_groups'
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"group_size" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped (TPrimExp Int64 VName -> Exp) -> TPrimExp Int64 VName -> Exp
forall a b. (a -> b) -> a -> b
$ Count GroupSize (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count GroupSize (TPrimExp Int64 VName)
group_size'
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"elems_per_thread" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped (TPrimExp Int64 VName -> Exp) -> TPrimExp Int64 VName -> Exp
forall a b. (a -> b) -> a -> b
$ Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
elems_per_thread
  Code HostOp -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> CallKernelGen ())
-> Code HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ String -> Maybe Exp -> Code HostOp
forall a. String -> Maybe Exp -> Code a
Imp.DebugPrint String
"groups_per_segment" (Maybe Exp -> Code HostOp) -> Maybe Exp -> Code HostOp
forall a b. (a -> b) -> a -> b
$ Exp -> Maybe Exp
forall a. a -> Maybe a
Just (Exp -> Maybe Exp) -> Exp -> Maybe Exp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped TPrimExp Int64 VName
groups_per_segment

  [[VName]]
reds_group_res_arrs <- Count NumGroups SubExp
-> Count GroupSize SubExp
-> [SegBinOp GPUMem]
-> CallKernelGen [[VName]]
groupResultArrays (SubExp -> Count NumGroups SubExp
forall {k} (u :: k) e. e -> Count u e
Count (TV Int64 -> SubExp
forall {k} (t :: k). TV t -> SubExp
tvSize TV Int64
virt_num_groups)) Count GroupSize SubExp
group_size [SegBinOp GPUMem]
reds

  -- In principle we should have a counter for every segment.  Since
  -- the number of segments is a dynamic quantity, we would have to
  -- allocate and zero out an array here, which is expensive.
  -- However, we exploit the fact that the number of segments being
  -- reduced at any point in time is limited by the number of
  -- workgroups. If we bound the number of workgroups, we can get away
  -- with using that many counters.  FIXME: Is this limit checked
  -- anywhere?  There are other places in the compiler that will fail
  -- if the group count exceeds the maximum group size, which is at
  -- most 1024 anyway.
  let num_counters :: Int
num_counters = Int32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int32
maxNumOps Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
1024
  VName
counter <- String -> Int -> ImpM GPUMem HostEnv HostOp VName
genZeroes String
"counters" Int
num_counters

  String
-> VName -> KernelAttrs -> InKernelGen () -> CallKernelGen ()
sKernelThread String
"segred_large" (SegSpace -> VName
segFlat SegSpace
space) (Count NumGroups SubExp -> Count GroupSize SubExp -> KernelAttrs
defKernelAttrs Count NumGroups SubExp
num_groups Count GroupSize SubExp
group_size) (InKernelGen () -> CallKernelGen ())
-> InKernelGen () -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
    KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
    [[VName]]
reds_arrs <- (SegBinOp GPUMem -> InKernelGen [VName])
-> [SegBinOp GPUMem] -> ImpM GPUMem KernelEnv KernelOp [[VName]]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM (Count GroupSize SubExp
-> SubExp -> SegBinOp GPUMem -> InKernelGen [VName]
intermediateArrays Count GroupSize SubExp
group_size (TV Int64 -> SubExp
forall {k} (t :: k). TV t -> SubExp
tvSize TV Int64
num_threads)) [SegBinOp GPUMem]
reds
    VName
sync_arr <- String
-> PrimType
-> Shape
-> Space
-> ImpM GPUMem KernelEnv KernelOp VName
forall rep r op.
String -> PrimType -> Shape -> Space -> ImpM rep r op VName
sAllocArray String
"sync_arr" PrimType
Bool ([SubExp] -> Shape
forall d. [d] -> ShapeBase d
Shape [IntType -> Integer -> SubExp
intConst IntType
Int32 Integer
1]) (Space -> ImpM GPUMem KernelEnv KernelOp VName)
-> Space -> ImpM GPUMem KernelEnv KernelOp VName
forall a b. (a -> b) -> a -> b
$ String -> Space
Space String
"local"

    -- We probably do not have enough actual workgroups to cover the
    -- entire iteration space.  Some groups thus have to perform double
    -- duty; we put an outer loop to accomplish this.
    SegVirt
-> TPrimExp Int32 VName
-> (TPrimExp Int32 VName -> InKernelGen ())
-> InKernelGen ()
virtualiseGroups SegVirt
SegVirt (TPrimExp Int64 VName -> TPrimExp Int32 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 (TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
virt_num_groups)) ((TPrimExp Int32 VName -> InKernelGen ()) -> InKernelGen ())
-> (TPrimExp Int32 VName -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \TPrimExp Int32 VName
group_id -> do
      let segment_gtids :: [VName]
segment_gtids = [VName] -> [VName]
forall a. HasCallStack => [a] -> [a]
init [VName]
gtids
          w :: SubExp
w = [SubExp] -> SubExp
forall a. HasCallStack => [a] -> a
last [SubExp]
dims
          local_tid :: TPrimExp Int32 VName
local_tid = KernelConstants -> TPrimExp Int32 VName
kernelLocalThreadId KernelConstants
constants

      TPrimExp Int32 VName
flat_segment_id <-
        String
-> TPrimExp Int32 VName
-> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int32 VName)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"flat_segment_id" (TPrimExp Int32 VName
 -> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int32 VName))
-> TPrimExp Int32 VName
-> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int32 VName)
forall a b. (a -> b) -> a -> b
$
          TPrimExp Int32 VName
group_id TPrimExp Int32 VName
-> TPrimExp Int32 VName -> TPrimExp Int32 VName
forall e. IntegralExp e => e -> e -> e
`quot` TPrimExp Int64 VName -> TPrimExp Int32 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 TPrimExp Int64 VName
groups_per_segment

      TPrimExp Int64 VName
global_tid <-
        String
-> TPrimExp Int64 VName
-> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"global_tid" (TPrimExp Int64 VName
 -> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName))
-> TPrimExp Int64 VName
-> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$
          (TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
group_id TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (Count GroupSize (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count GroupSize (TPrimExp Int64 VName)
group_size') TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
local_tid)
            TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`rem` (TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (Count GroupSize (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count GroupSize (TPrimExp Int64 VName)
group_size') TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
groups_per_segment)

      let first_group_for_segment :: TPrimExp Int64 VName
first_group_for_segment = TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
flat_segment_id TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
groups_per_segment
      [(VName, TPrimExp Int64 VName)]
-> TPrimExp Int64 VName -> InKernelGen ()
forall rep r op.
[(VName, TPrimExp Int64 VName)]
-> TPrimExp Int64 VName -> ImpM rep r op ()
dIndexSpace ([VName]
-> [TPrimExp Int64 VName] -> [(VName, TPrimExp Int64 VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
segment_gtids ([TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. HasCallStack => [a] -> [a]
init [TPrimExp Int64 VName]
dims')) (TPrimExp Int64 VName -> InKernelGen ())
-> TPrimExp Int64 VName -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
flat_segment_id
      VName -> PrimType -> InKernelGen ()
forall rep r op. VName -> PrimType -> ImpM rep r op ()
dPrim_ ([VName] -> VName
forall a. HasCallStack => [a] -> a
last [VName]
gtids) PrimType
int64
      let num_elements :: Count Elements (TPrimExp Int64 VName)
num_elements = TPrimExp Int64 VName -> Count Elements (TPrimExp Int64 VName)
forall a. a -> Count Elements a
Imp.elements (TPrimExp Int64 VName -> Count Elements (TPrimExp Int64 VName))
-> TPrimExp Int64 VName -> Count Elements (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$ SubExp -> TPrimExp Int64 VName
pe64 SubExp
w

      [SegBinOpSlug]
slugs <-
        ((SegBinOp GPUMem, [VName], [VName])
 -> ImpM GPUMem KernelEnv KernelOp SegBinOpSlug)
-> [(SegBinOp GPUMem, [VName], [VName])]
-> ImpM GPUMem KernelEnv KernelOp [SegBinOpSlug]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM (TPrimExp Int32 VName
-> TPrimExp Int32 VName
-> (SegBinOp GPUMem, [VName], [VName])
-> ImpM GPUMem KernelEnv KernelOp SegBinOpSlug
segBinOpSlug TPrimExp Int32 VName
local_tid TPrimExp Int32 VName
group_id) ([(SegBinOp GPUMem, [VName], [VName])]
 -> ImpM GPUMem KernelEnv KernelOp [SegBinOpSlug])
-> [(SegBinOp GPUMem, [VName], [VName])]
-> ImpM GPUMem KernelEnv KernelOp [SegBinOpSlug]
forall a b. (a -> b) -> a -> b
$
          [SegBinOp GPUMem]
-> [[VName]] -> [[VName]] -> [(SegBinOp GPUMem, [VName], [VName])]
forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [SegBinOp GPUMem]
reds [[VName]]
reds_arrs [[VName]]
reds_group_res_arrs
      [Lambda GPUMem]
reds_op_renamed <-
        KernelConstants
-> [(VName, TPrimExp Int64 VName)]
-> Count Elements (TPrimExp Int64 VName)
-> TPrimExp Int64 VName
-> Count Elements (TPrimExp Int64 VName)
-> TPrimExp Int64 VName
-> [SegBinOpSlug]
-> DoSegBody
-> InKernelGen [Lambda GPUMem]
reductionStageOne
          KernelConstants
constants
          ([VName]
-> [TPrimExp Int64 VName] -> [(VName, TPrimExp Int64 VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
gtids [TPrimExp Int64 VName]
dims')
          Count Elements (TPrimExp Int64 VName)
num_elements
          TPrimExp Int64 VName
global_tid
          Count Elements (TPrimExp Int64 VName)
elems_per_thread
          (TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
threads_per_segment)
          [SegBinOpSlug]
slugs
          DoSegBody
body

      let segred_pes :: [[PatElem LParamMem]]
segred_pes =
            [Int] -> [PatElem LParamMem] -> [[PatElem LParamMem]]
forall a. [Int] -> [a] -> [[a]]
chunks ((SegBinOp GPUMem -> Int) -> [SegBinOp GPUMem] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map ([SubExp] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ([SubExp] -> Int)
-> (SegBinOp GPUMem -> [SubExp]) -> SegBinOp GPUMem -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOp GPUMem -> [SubExp]
forall rep. SegBinOp rep -> [SubExp]
segBinOpNeutral) [SegBinOp GPUMem]
reds) ([PatElem LParamMem] -> [[PatElem LParamMem]])
-> [PatElem LParamMem] -> [[PatElem LParamMem]]
forall a b. (a -> b) -> a -> b
$
              Pat LParamMem -> [PatElem LParamMem]
forall dec. Pat dec -> [PatElem dec]
patElems Pat LParamMem
segred_pat

          multiple_groups_per_segment :: InKernelGen ()
multiple_groups_per_segment =
            [(SegBinOp GPUMem, [VName], [VName], [PatElem LParamMem],
  SegBinOpSlug, Lambda GPUMem, Integer)]
-> ((SegBinOp GPUMem, [VName], [VName], [PatElem LParamMem],
     SegBinOpSlug, Lambda GPUMem, Integer)
    -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([SegBinOp GPUMem]
-> [[VName]]
-> [[VName]]
-> [[PatElem LParamMem]]
-> [SegBinOpSlug]
-> [Lambda GPUMem]
-> [Integer]
-> [(SegBinOp GPUMem, [VName], [VName], [PatElem LParamMem],
     SegBinOpSlug, Lambda GPUMem, Integer)]
forall a b c d e f g.
[a]
-> [b]
-> [c]
-> [d]
-> [e]
-> [f]
-> [g]
-> [(a, b, c, d, e, f, g)]
zip7 [SegBinOp GPUMem]
reds [[VName]]
reds_arrs [[VName]]
reds_group_res_arrs [[PatElem LParamMem]]
segred_pes [SegBinOpSlug]
slugs [Lambda GPUMem]
reds_op_renamed [Integer
0 ..]) (((SegBinOp GPUMem, [VName], [VName], [PatElem LParamMem],
   SegBinOpSlug, Lambda GPUMem, Integer)
  -> InKernelGen ())
 -> InKernelGen ())
-> ((SegBinOp GPUMem, [VName], [VName], [PatElem LParamMem],
     SegBinOpSlug, Lambda GPUMem, Integer)
    -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
              \(SegBinOp Commutativity
_ Lambda GPUMem
red_op [SubExp]
nes Shape
_, [VName]
red_arrs, [VName]
group_res_arrs, [PatElem LParamMem]
pes, SegBinOpSlug
slug, Lambda GPUMem
red_op_renamed, Integer
i) -> do
                let ([Param LParamMem]
red_x_params, [Param LParamMem]
red_y_params) =
                      Int -> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a. Int -> [a] -> ([a], [a])
splitAt ([SubExp] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
nes) ([Param LParamMem] -> ([Param LParamMem], [Param LParamMem]))
-> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. Lambda rep -> [LParam rep]
lambdaParams Lambda GPUMem
red_op
                KernelConstants
-> [PatElem LParamMem]
-> TPrimExp Int32 VName
-> TPrimExp Int32 VName
-> [TPrimExp Int64 VName]
-> TPrimExp Int64 VName
-> TPrimExp Int64 VName
-> SegBinOpSlug
-> [LParam GPUMem]
-> [LParam GPUMem]
-> Lambda GPUMem
-> [SubExp]
-> TPrimExp Int32 VName
-> VName
-> TPrimExp Int32 VName
-> VName
-> [VName]
-> [VName]
-> InKernelGen ()
reductionStageTwo
                  KernelConstants
constants
                  [PatElem LParamMem]
pes
                  TPrimExp Int32 VName
group_id
                  TPrimExp Int32 VName
flat_segment_id
                  ((VName -> TPrimExp Int64 VName)
-> [VName] -> [TPrimExp Int64 VName]
forall a b. (a -> b) -> [a] -> [b]
map VName -> TPrimExp Int64 VName
forall a. a -> TPrimExp Int64 a
Imp.le64 [VName]
segment_gtids)
                  (TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int64 VName
first_group_for_segment)
                  TPrimExp Int64 VName
groups_per_segment
                  SegBinOpSlug
slug
                  [LParam GPUMem]
[Param LParamMem]
red_x_params
                  [LParam GPUMem]
[Param LParamMem]
red_y_params
                  Lambda GPUMem
red_op_renamed
                  [SubExp]
nes
                  (Int -> TPrimExp Int32 VName
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
num_counters)
                  VName
counter
                  (Integer -> TPrimExp Int32 VName
forall a. Num a => Integer -> a
fromInteger Integer
i)
                  VName
sync_arr
                  [VName]
group_res_arrs
                  [VName]
red_arrs

          one_group_per_segment :: InKernelGen ()
one_group_per_segment =
            Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
comment Text
"first thread in group saves final result to memory" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
              [(SegBinOpSlug, [PatElem LParamMem])]
-> ((SegBinOpSlug, [PatElem LParamMem]) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([SegBinOpSlug]
-> [[PatElem LParamMem]] -> [(SegBinOpSlug, [PatElem LParamMem])]
forall a b. [a] -> [b] -> [(a, b)]
zip [SegBinOpSlug]
slugs [[PatElem LParamMem]]
segred_pes) (((SegBinOpSlug, [PatElem LParamMem]) -> InKernelGen ())
 -> InKernelGen ())
-> ((SegBinOpSlug, [PatElem LParamMem]) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(SegBinOpSlug
slug, [PatElem LParamMem]
pes) ->
                TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TPrimExp Int32 VName
local_tid TPrimExp Int32 VName -> TPrimExp Int32 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TPrimExp Int32 VName
0) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
                  [(PatElem LParamMem, (VName, [TPrimExp Int64 VName]))]
-> ((PatElem LParamMem, (VName, [TPrimExp Int64 VName]))
    -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([PatElem LParamMem]
-> [(VName, [TPrimExp Int64 VName])]
-> [(PatElem LParamMem, (VName, [TPrimExp Int64 VName]))]
forall a b. [a] -> [b] -> [(a, b)]
zip [PatElem LParamMem]
pes (SegBinOpSlug -> [(VName, [TPrimExp Int64 VName])]
slugAccs SegBinOpSlug
slug)) (((PatElem LParamMem, (VName, [TPrimExp Int64 VName]))
  -> InKernelGen ())
 -> InKernelGen ())
-> ((PatElem LParamMem, (VName, [TPrimExp Int64 VName]))
    -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(PatElem LParamMem
v, (VName
acc, [TPrimExp Int64 VName]
acc_is)) ->
                    VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix (PatElem LParamMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem LParamMem
v) ((VName -> TPrimExp Int64 VName)
-> [VName] -> [TPrimExp Int64 VName]
forall a b. (a -> b) -> [a] -> [b]
map VName -> TPrimExp Int64 VName
forall a. a -> TPrimExp Int64 a
Imp.le64 [VName]
segment_gtids) (VName -> SubExp
Var VName
acc) [TPrimExp Int64 VName]
acc_is

      TPrimExp Bool VName
-> InKernelGen () -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
sIf (TPrimExp Int64 VName
groups_per_segment TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TPrimExp Int64 VName
1) InKernelGen ()
one_group_per_segment InKernelGen ()
multiple_groups_per_segment

-- Careful to avoid division by zero here.  We have at least one group
-- per segment.
groupsPerSegmentAndElementsPerThread ::
  Imp.TExp Int64 ->
  Imp.TExp Int64 ->
  Count NumGroups (Imp.TExp Int64) ->
  Count GroupSize (Imp.TExp Int64) ->
  CallKernelGen
    ( Imp.TExp Int64,
      Imp.Count Imp.Elements (Imp.TExp Int64)
    )
groupsPerSegmentAndElementsPerThread :: TPrimExp Int64 VName
-> TPrimExp Int64 VName
-> Count NumGroups (TPrimExp Int64 VName)
-> Count GroupSize (TPrimExp Int64 VName)
-> CallKernelGen
     (TPrimExp Int64 VName, Count Elements (TPrimExp Int64 VName))
groupsPerSegmentAndElementsPerThread TPrimExp Int64 VName
segment_size TPrimExp Int64 VName
num_segments Count NumGroups (TPrimExp Int64 VName)
num_groups_hint Count GroupSize (TPrimExp Int64 VName)
group_size = do
  TPrimExp Int64 VName
groups_per_segment <-
    String
-> TPrimExp Int64 VName
-> ImpM GPUMem HostEnv HostOp (TPrimExp Int64 VName)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"groups_per_segment" (TPrimExp Int64 VName
 -> ImpM GPUMem HostEnv HostOp (TPrimExp Int64 VName))
-> TPrimExp Int64 VName
-> ImpM GPUMem HostEnv HostOp (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$
      Count NumGroups (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count NumGroups (TPrimExp Int64 VName)
num_groups_hint TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`divUp` TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall v. TPrimExp Int64 v -> TPrimExp Int64 v -> TPrimExp Int64 v
sMax64 TPrimExp Int64 VName
1 TPrimExp Int64 VName
num_segments
  TPrimExp Int64 VName
elements_per_thread <-
    String
-> TPrimExp Int64 VName
-> ImpM GPUMem HostEnv HostOp (TPrimExp Int64 VName)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"elements_per_thread" (TPrimExp Int64 VName
 -> ImpM GPUMem HostEnv HostOp (TPrimExp Int64 VName))
-> TPrimExp Int64 VName
-> ImpM GPUMem HostEnv HostOp (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$
      TPrimExp Int64 VName
segment_size TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`divUp` (Count GroupSize (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
unCount Count GroupSize (TPrimExp Int64 VName)
group_size TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
groups_per_segment)
  (TPrimExp Int64 VName, Count Elements (TPrimExp Int64 VName))
-> CallKernelGen
     (TPrimExp Int64 VName, Count Elements (TPrimExp Int64 VName))
forall a. a -> ImpM GPUMem HostEnv HostOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (TPrimExp Int64 VName
groups_per_segment, TPrimExp Int64 VName -> Count Elements (TPrimExp Int64 VName)
forall a. a -> Count Elements a
Imp.elements TPrimExp Int64 VName
elements_per_thread)

-- | A SegBinOp with auxiliary information.
data SegBinOpSlug = SegBinOpSlug
  { SegBinOpSlug -> SegBinOp GPUMem
slugOp :: SegBinOp GPUMem,
    -- | The arrays used for computing the intra-group reduction
    -- (either local or global memory).
    SegBinOpSlug -> [VName]
slugArrs :: [VName],
    -- | Places to store accumulator in stage 1 reduction.
    SegBinOpSlug -> [(VName, [TPrimExp Int64 VName])]
slugAccs :: [(VName, [Imp.TExp Int64])]
  }

slugBody :: SegBinOpSlug -> Body GPUMem
slugBody :: SegBinOpSlug -> Body GPUMem
slugBody = Lambda GPUMem -> Body GPUMem
forall rep. Lambda rep -> Body rep
lambdaBody (Lambda GPUMem -> Body GPUMem)
-> (SegBinOpSlug -> Lambda GPUMem) -> SegBinOpSlug -> Body GPUMem
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOp GPUMem -> Lambda GPUMem
forall rep. SegBinOp rep -> Lambda rep
segBinOpLambda (SegBinOp GPUMem -> Lambda GPUMem)
-> (SegBinOpSlug -> SegBinOp GPUMem)
-> SegBinOpSlug
-> Lambda GPUMem
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOpSlug -> SegBinOp GPUMem
slugOp

slugParams :: SegBinOpSlug -> [LParam GPUMem]
slugParams :: SegBinOpSlug -> [LParam GPUMem]
slugParams = Lambda GPUMem -> [LParam GPUMem]
Lambda GPUMem -> [Param LParamMem]
forall rep. Lambda rep -> [LParam rep]
lambdaParams (Lambda GPUMem -> [Param LParamMem])
-> (SegBinOpSlug -> Lambda GPUMem)
-> SegBinOpSlug
-> [Param LParamMem]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOp GPUMem -> Lambda GPUMem
forall rep. SegBinOp rep -> Lambda rep
segBinOpLambda (SegBinOp GPUMem -> Lambda GPUMem)
-> (SegBinOpSlug -> SegBinOp GPUMem)
-> SegBinOpSlug
-> Lambda GPUMem
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOpSlug -> SegBinOp GPUMem
slugOp

slugNeutral :: SegBinOpSlug -> [SubExp]
slugNeutral :: SegBinOpSlug -> [SubExp]
slugNeutral = SegBinOp GPUMem -> [SubExp]
forall rep. SegBinOp rep -> [SubExp]
segBinOpNeutral (SegBinOp GPUMem -> [SubExp])
-> (SegBinOpSlug -> SegBinOp GPUMem) -> SegBinOpSlug -> [SubExp]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOpSlug -> SegBinOp GPUMem
slugOp

slugShape :: SegBinOpSlug -> Shape
slugShape :: SegBinOpSlug -> Shape
slugShape = SegBinOp GPUMem -> Shape
forall rep. SegBinOp rep -> Shape
segBinOpShape (SegBinOp GPUMem -> Shape)
-> (SegBinOpSlug -> SegBinOp GPUMem) -> SegBinOpSlug -> Shape
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOpSlug -> SegBinOp GPUMem
slugOp

slugsComm :: [SegBinOpSlug] -> Commutativity
slugsComm :: [SegBinOpSlug] -> Commutativity
slugsComm = [Commutativity] -> Commutativity
forall a. Monoid a => [a] -> a
mconcat ([Commutativity] -> Commutativity)
-> ([SegBinOpSlug] -> [Commutativity])
-> [SegBinOpSlug]
-> Commutativity
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (SegBinOpSlug -> Commutativity)
-> [SegBinOpSlug] -> [Commutativity]
forall a b. (a -> b) -> [a] -> [b]
map (SegBinOp GPUMem -> Commutativity
forall rep. SegBinOp rep -> Commutativity
segBinOpComm (SegBinOp GPUMem -> Commutativity)
-> (SegBinOpSlug -> SegBinOp GPUMem)
-> SegBinOpSlug
-> Commutativity
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOpSlug -> SegBinOp GPUMem
slugOp)

accParams, nextParams :: SegBinOpSlug -> [LParam GPUMem]
accParams :: SegBinOpSlug -> [LParam GPUMem]
accParams SegBinOpSlug
slug = Int -> [LParam GPUMem] -> [LParam GPUMem]
forall a. Int -> [a] -> [a]
take ([SubExp] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (SegBinOpSlug -> [SubExp]
slugNeutral SegBinOpSlug
slug)) ([LParam GPUMem] -> [LParam GPUMem])
-> [LParam GPUMem] -> [LParam GPUMem]
forall a b. (a -> b) -> a -> b
$ SegBinOpSlug -> [LParam GPUMem]
slugParams SegBinOpSlug
slug
nextParams :: SegBinOpSlug -> [LParam GPUMem]
nextParams SegBinOpSlug
slug = Int -> [LParam GPUMem] -> [LParam GPUMem]
forall a. Int -> [a] -> [a]
drop ([SubExp] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (SegBinOpSlug -> [SubExp]
slugNeutral SegBinOpSlug
slug)) ([LParam GPUMem] -> [LParam GPUMem])
-> [LParam GPUMem] -> [LParam GPUMem]
forall a b. (a -> b) -> a -> b
$ SegBinOpSlug -> [LParam GPUMem]
slugParams SegBinOpSlug
slug

segBinOpSlug :: Imp.TExp Int32 -> Imp.TExp Int32 -> (SegBinOp GPUMem, [VName], [VName]) -> InKernelGen SegBinOpSlug
segBinOpSlug :: TPrimExp Int32 VName
-> TPrimExp Int32 VName
-> (SegBinOp GPUMem, [VName], [VName])
-> ImpM GPUMem KernelEnv KernelOp SegBinOpSlug
segBinOpSlug TPrimExp Int32 VName
local_tid TPrimExp Int32 VName
group_id (SegBinOp GPUMem
op, [VName]
group_res_arrs, [VName]
param_arrs) =
  SegBinOp GPUMem
-> [VName] -> [(VName, [TPrimExp Int64 VName])] -> SegBinOpSlug
SegBinOpSlug SegBinOp GPUMem
op [VName]
group_res_arrs
    ([(VName, [TPrimExp Int64 VName])] -> SegBinOpSlug)
-> ImpM GPUMem KernelEnv KernelOp [(VName, [TPrimExp Int64 VName])]
-> ImpM GPUMem KernelEnv KernelOp SegBinOpSlug
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Param LParamMem
 -> VName
 -> ImpM GPUMem KernelEnv KernelOp (VName, [TPrimExp Int64 VName]))
-> [Param LParamMem]
-> [VName]
-> ImpM GPUMem KernelEnv KernelOp [(VName, [TPrimExp Int64 VName])]
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM Param LParamMem
-> VName
-> ImpM GPUMem KernelEnv KernelOp (VName, [TPrimExp Int64 VName])
mkAcc (Lambda GPUMem -> [LParam GPUMem]
forall rep. Lambda rep -> [LParam rep]
lambdaParams (SegBinOp GPUMem -> Lambda GPUMem
forall rep. SegBinOp rep -> Lambda rep
segBinOpLambda SegBinOp GPUMem
op)) [VName]
param_arrs
  where
    mkAcc :: Param LParamMem
-> VName
-> ImpM GPUMem KernelEnv KernelOp (VName, [TPrimExp Int64 VName])
mkAcc Param LParamMem
p VName
param_arr
      | Prim PrimType
t <- Param LParamMem -> TypeBase Shape NoUniqueness
forall dec. Typed dec => Param dec -> TypeBase Shape NoUniqueness
paramType Param LParamMem
p,
        Shape -> Int
forall a. ArrayShape a => a -> Int
shapeRank (SegBinOp GPUMem -> Shape
forall rep. SegBinOp rep -> Shape
segBinOpShape SegBinOp GPUMem
op) Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = do
          TV Any
acc <- String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Any)
forall {k} rep r op (t :: k).
String -> PrimType -> ImpM rep r op (TV t)
dPrim (VName -> String
baseString (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) String -> String -> String
forall a. Semigroup a => a -> a -> a
<> String
"_acc") PrimType
t
          (VName, [TPrimExp Int64 VName])
-> ImpM GPUMem KernelEnv KernelOp (VName, [TPrimExp Int64 VName])
forall a. a -> ImpM GPUMem KernelEnv KernelOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (TV Any -> VName
forall {k} (t :: k). TV t -> VName
tvVar TV Any
acc, [])
      | Bool
otherwise =
          (VName, [TPrimExp Int64 VName])
-> ImpM GPUMem KernelEnv KernelOp (VName, [TPrimExp Int64 VName])
forall a. a -> ImpM GPUMem KernelEnv KernelOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (VName
param_arr, [TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
local_tid, TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
group_id])

computeThreadChunkSize ::
  Commutativity ->
  Imp.TExp Int64 ->
  Imp.TExp Int64 ->
  Imp.Count Imp.Elements (Imp.TExp Int64) ->
  Imp.Count Imp.Elements (Imp.TExp Int64) ->
  TV Int64 ->
  ImpM rep r op ()
computeThreadChunkSize :: forall rep r op.
Commutativity
-> TPrimExp Int64 VName
-> TPrimExp Int64 VName
-> Count Elements (TPrimExp Int64 VName)
-> Count Elements (TPrimExp Int64 VName)
-> TV Int64
-> ImpM rep r op ()
computeThreadChunkSize Commutativity
Commutative TPrimExp Int64 VName
threads_per_segment TPrimExp Int64 VName
thread_index Count Elements (TPrimExp Int64 VName)
elements_per_thread Count Elements (TPrimExp Int64 VName)
num_elements TV Int64
chunk_var =
  TV Int64
chunk_var
    TV Int64 -> TPrimExp Int64 VName -> ImpM rep r op ()
forall {k} (t :: k) rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall v. TPrimExp Int64 v -> TPrimExp Int64 v -> TPrimExp Int64 v
sMin64
      (Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
elements_per_thread)
      ((Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
num_elements TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
- TPrimExp Int64 VName
thread_index) TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`divUp` TPrimExp Int64 VName
threads_per_segment)
computeThreadChunkSize Commutativity
Noncommutative TPrimExp Int64 VName
_ TPrimExp Int64 VName
thread_index Count Elements (TPrimExp Int64 VName)
elements_per_thread Count Elements (TPrimExp Int64 VName)
num_elements TV Int64
chunk_var = do
  TV Int64
starting_point <-
    String -> TPrimExp Int64 VName -> ImpM rep r op (TV Int64)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"starting_point" (TPrimExp Int64 VName -> ImpM rep r op (TV Int64))
-> TPrimExp Int64 VName -> ImpM rep r op (TV Int64)
forall a b. (a -> b) -> a -> b
$
      TPrimExp Int64 VName
thread_index TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
elements_per_thread
  TV Int64
remaining_elements <-
    String -> TPrimExp Int64 VName -> ImpM rep r op (TV Int64)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"remaining_elements" (TPrimExp Int64 VName -> ImpM rep r op (TV Int64))
-> TPrimExp Int64 VName -> ImpM rep r op (TV Int64)
forall a b. (a -> b) -> a -> b
$
      Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
num_elements TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
- TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
starting_point

  let no_remaining_elements :: TPrimExp Bool VName
no_remaining_elements = TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
remaining_elements TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<=. TPrimExp Int64 VName
0
      beyond_bounds :: TPrimExp Bool VName
beyond_bounds = Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
num_elements TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<=. TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
starting_point

  TPrimExp Bool VName
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
forall rep r op.
TPrimExp Bool VName
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
sIf
    (TPrimExp Bool VName
no_remaining_elements TPrimExp Bool VName -> TPrimExp Bool VName -> TPrimExp Bool VName
forall v.
Eq v =>
TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.||. TPrimExp Bool VName
beyond_bounds)
    (TV Int64
chunk_var TV Int64 -> TPrimExp Int64 VName -> ImpM rep r op ()
forall {k} (t :: k) rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TPrimExp Int64 VName
0)
    ( TPrimExp Bool VName
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
forall rep r op.
TPrimExp Bool VName
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
sIf
        TPrimExp Bool VName
is_last_thread
        (TV Int64
chunk_var TV Int64 -> TPrimExp Int64 VName -> ImpM rep r op ()
forall {k} (t :: k) rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
last_thread_elements)
        (TV Int64
chunk_var TV Int64 -> TPrimExp Int64 VName -> ImpM rep r op ()
forall {k} (t :: k) rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
elements_per_thread)
    )
  where
    last_thread_elements :: Count Elements (TPrimExp Int64 VName)
last_thread_elements =
      Count Elements (TPrimExp Int64 VName)
num_elements Count Elements (TPrimExp Int64 VName)
-> Count Elements (TPrimExp Int64 VName)
-> Count Elements (TPrimExp Int64 VName)
forall a. Num a => a -> a -> a
- TPrimExp Int64 VName -> Count Elements (TPrimExp Int64 VName)
forall a. a -> Count Elements a
Imp.elements TPrimExp Int64 VName
thread_index Count Elements (TPrimExp Int64 VName)
-> Count Elements (TPrimExp Int64 VName)
-> Count Elements (TPrimExp Int64 VName)
forall a. Num a => a -> a -> a
* Count Elements (TPrimExp Int64 VName)
elements_per_thread
    is_last_thread :: TPrimExp Bool VName
is_last_thread =
      Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
num_elements
        TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. (TPrimExp Int64 VName
thread_index TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ TPrimExp Int64 VName
1)
        TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
elements_per_thread

reductionStageZero ::
  KernelConstants ->
  [(VName, Imp.TExp Int64)] ->
  Imp.Count Imp.Elements (Imp.TExp Int64) ->
  Imp.TExp Int64 ->
  Imp.Count Imp.Elements (Imp.TExp Int64) ->
  Imp.TExp Int64 ->
  [SegBinOpSlug] ->
  DoSegBody ->
  InKernelGen ([Lambda GPUMem], InKernelGen ())
reductionStageZero :: KernelConstants
-> [(VName, TPrimExp Int64 VName)]
-> Count Elements (TPrimExp Int64 VName)
-> TPrimExp Int64 VName
-> Count Elements (TPrimExp Int64 VName)
-> TPrimExp Int64 VName
-> [SegBinOpSlug]
-> DoSegBody
-> InKernelGen ([Lambda GPUMem], InKernelGen ())
reductionStageZero KernelConstants
constants [(VName, TPrimExp Int64 VName)]
ispace Count Elements (TPrimExp Int64 VName)
num_elements TPrimExp Int64 VName
global_tid Count Elements (TPrimExp Int64 VName)
elems_per_thread TPrimExp Int64 VName
threads_per_segment [SegBinOpSlug]
slugs DoSegBody
body = do
  let ([VName]
gtids, [TPrimExp Int64 VName]
_dims) = [(VName, TPrimExp Int64 VName)]
-> ([VName], [TPrimExp Int64 VName])
forall a b. [(a, b)] -> ([a], [b])
unzip [(VName, TPrimExp Int64 VName)]
ispace
      gtid :: TV Int64
gtid = VName -> PrimType -> TV Int64
forall {k} (t :: k). VName -> PrimType -> TV t
mkTV ([VName] -> VName
forall a. HasCallStack => [a] -> a
last [VName]
gtids) PrimType
int64
      local_tid :: TPrimExp Int64 VName
local_tid = TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TPrimExp Int32 VName -> TPrimExp Int64 VName)
-> TPrimExp Int32 VName -> TPrimExp Int64 VName
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TPrimExp Int32 VName
kernelLocalThreadId KernelConstants
constants

  -- Figure out how many elements this thread should process.
  TV Int64
chunk_size <- String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Int64)
forall {k} rep r op (t :: k).
String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"chunk_size" PrimType
int64
  Commutativity
-> TPrimExp Int64 VName
-> TPrimExp Int64 VName
-> Count Elements (TPrimExp Int64 VName)
-> Count Elements (TPrimExp Int64 VName)
-> TV Int64
-> InKernelGen ()
forall rep r op.
Commutativity
-> TPrimExp Int64 VName
-> TPrimExp Int64 VName
-> Count Elements (TPrimExp Int64 VName)
-> Count Elements (TPrimExp Int64 VName)
-> TV Int64
-> ImpM rep r op ()
computeThreadChunkSize
    ([SegBinOpSlug] -> Commutativity
slugsComm [SegBinOpSlug]
slugs)
    TPrimExp Int64 VName
threads_per_segment
    (TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int64 VName
global_tid)
    Count Elements (TPrimExp Int64 VName)
elems_per_thread
    Count Elements (TPrimExp Int64 VName)
num_elements
    TV Int64
chunk_size

  Maybe (Exp GPUMem) -> Scope GPUMem -> InKernelGen ()
forall rep (inner :: * -> *) r op.
Mem rep inner =>
Maybe (Exp rep) -> Scope rep -> ImpM rep r op ()
dScope Maybe (Exp GPUMem)
forall a. Maybe a
Nothing (Scope GPUMem -> InKernelGen ()) -> Scope GPUMem -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ [Param LParamMem] -> Scope GPUMem
forall rep dec. (LParamInfo rep ~ dec) => [Param dec] -> Scope rep
scopeOfLParams ([Param LParamMem] -> Scope GPUMem)
-> [Param LParamMem] -> Scope GPUMem
forall a b. (a -> b) -> a -> b
$ (SegBinOpSlug -> [Param LParamMem])
-> [SegBinOpSlug] -> [Param LParamMem]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap SegBinOpSlug -> [LParam GPUMem]
SegBinOpSlug -> [Param LParamMem]
slugParams [SegBinOpSlug]
slugs

  Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"neutral-initialise the accumulators" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    [SegBinOpSlug]
-> (SegBinOpSlug -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [SegBinOpSlug]
slugs ((SegBinOpSlug -> InKernelGen ()) -> InKernelGen ())
-> (SegBinOpSlug -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \SegBinOpSlug
slug ->
      [((VName, [TPrimExp Int64 VName]), SubExp)]
-> (((VName, [TPrimExp Int64 VName]), SubExp) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([(VName, [TPrimExp Int64 VName])]
-> [SubExp] -> [((VName, [TPrimExp Int64 VName]), SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip (SegBinOpSlug -> [(VName, [TPrimExp Int64 VName])]
slugAccs SegBinOpSlug
slug) (SegBinOpSlug -> [SubExp]
slugNeutral SegBinOpSlug
slug)) ((((VName, [TPrimExp Int64 VName]), SubExp) -> InKernelGen ())
 -> InKernelGen ())
-> (((VName, [TPrimExp Int64 VName]), SubExp) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \((VName
acc, [TPrimExp Int64 VName]
acc_is), SubExp
ne) ->
        Shape
-> ([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ()
forall rep r op.
Shape
-> ([TPrimExp Int64 VName] -> ImpM rep r op ()) -> ImpM rep r op ()
sLoopNest (SegBinOpSlug -> Shape
slugShape SegBinOpSlug
slug) (([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ())
-> ([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[TPrimExp Int64 VName]
vec_is ->
          VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix VName
acc ([TPrimExp Int64 VName]
acc_is [TPrimExp Int64 VName]
-> [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. [a] -> [a] -> [a]
++ [TPrimExp Int64 VName]
vec_is) SubExp
ne []

  [Lambda GPUMem]
slugs_op_renamed <- (SegBinOpSlug -> ImpM GPUMem KernelEnv KernelOp (Lambda GPUMem))
-> [SegBinOpSlug] -> InKernelGen [Lambda GPUMem]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM (Lambda GPUMem -> ImpM GPUMem KernelEnv KernelOp (Lambda GPUMem)
forall rep (m :: * -> *).
(Renameable rep, MonadFreshNames m) =>
Lambda rep -> m (Lambda rep)
renameLambda (Lambda GPUMem -> ImpM GPUMem KernelEnv KernelOp (Lambda GPUMem))
-> (SegBinOpSlug -> Lambda GPUMem)
-> SegBinOpSlug
-> ImpM GPUMem KernelEnv KernelOp (Lambda GPUMem)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOp GPUMem -> Lambda GPUMem
forall rep. SegBinOp rep -> Lambda rep
segBinOpLambda (SegBinOp GPUMem -> Lambda GPUMem)
-> (SegBinOpSlug -> SegBinOp GPUMem)
-> SegBinOpSlug
-> Lambda GPUMem
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOpSlug -> SegBinOp GPUMem
slugOp) [SegBinOpSlug]
slugs

  let doTheReduction :: InKernelGen ()
doTheReduction =
        [(Lambda GPUMem, SegBinOpSlug)]
-> ((Lambda GPUMem, SegBinOpSlug) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Lambda GPUMem]
-> [SegBinOpSlug] -> [(Lambda GPUMem, SegBinOpSlug)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Lambda GPUMem]
slugs_op_renamed [SegBinOpSlug]
slugs) (((Lambda GPUMem, SegBinOpSlug) -> InKernelGen ())
 -> InKernelGen ())
-> ((Lambda GPUMem, SegBinOpSlug) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Lambda GPUMem
slug_op_renamed, SegBinOpSlug
slug) ->
          Shape
-> ([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ()
forall rep r op.
Shape
-> ([TPrimExp Int64 VName] -> ImpM rep r op ()) -> ImpM rep r op ()
sLoopNest (SegBinOpSlug -> Shape
slugShape SegBinOpSlug
slug) (([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ())
-> ([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[TPrimExp Int64 VName]
vec_is -> do
            Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
comment Text
"to reduce current chunk, first store our result in memory" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
              [(Param LParamMem, (VName, [TPrimExp Int64 VName]))]
-> ((Param LParamMem, (VName, [TPrimExp Int64 VName]))
    -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem]
-> [(VName, [TPrimExp Int64 VName])]
-> [(Param LParamMem, (VName, [TPrimExp Int64 VName]))]
forall a b. [a] -> [b] -> [(a, b)]
zip (SegBinOpSlug -> [LParam GPUMem]
slugParams SegBinOpSlug
slug) (SegBinOpSlug -> [(VName, [TPrimExp Int64 VName])]
slugAccs SegBinOpSlug
slug)) (((Param LParamMem, (VName, [TPrimExp Int64 VName]))
  -> InKernelGen ())
 -> InKernelGen ())
-> ((Param LParamMem, (VName, [TPrimExp Int64 VName]))
    -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
p, (VName
acc, [TPrimExp Int64 VName]
acc_is)) ->
                VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] (VName -> SubExp
Var VName
acc) ([TPrimExp Int64 VName]
acc_is [TPrimExp Int64 VName]
-> [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. [a] -> [a] -> [a]
++ [TPrimExp Int64 VName]
vec_is)

              [(VName, Param LParamMem)]
-> ((VName, Param LParamMem) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([VName] -> [Param LParamMem] -> [(VName, Param LParamMem)]
forall a b. [a] -> [b] -> [(a, b)]
zip (SegBinOpSlug -> [VName]
slugArrs SegBinOpSlug
slug) (SegBinOpSlug -> [LParam GPUMem]
slugParams SegBinOpSlug
slug)) (((VName, Param LParamMem) -> InKernelGen ()) -> InKernelGen ())
-> ((VName, Param LParamMem) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(VName
arr, Param LParamMem
p) ->
                Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (TypeBase Shape NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (TypeBase Shape NoUniqueness -> Bool)
-> TypeBase Shape NoUniqueness -> Bool
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase Shape NoUniqueness
forall dec. Typed dec => Param dec -> TypeBase Shape NoUniqueness
paramType Param LParamMem
p) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
                  VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix VName
arr [TPrimExp Int64 VName
local_tid] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) []

            KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.ErrorSync Fence
Imp.FenceLocal -- Also implicitly barrier.
            TPrimExp Int32 VName -> Lambda GPUMem -> [VName] -> InKernelGen ()
groupReduce (TPrimExp Int64 VName -> TPrimExp Int32 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 (KernelConstants -> TPrimExp Int64 VName
kernelGroupSize KernelConstants
constants)) Lambda GPUMem
slug_op_renamed (SegBinOpSlug -> [VName]
slugArrs SegBinOpSlug
slug)

            KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal

            Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"first thread saves the result in accumulator" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
              TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TPrimExp Int64 VName
local_tid TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TPrimExp Int64 VName
0) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
                [((VName, [TPrimExp Int64 VName]), Param LParamMem)]
-> (((VName, [TPrimExp Int64 VName]), Param LParamMem)
    -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([(VName, [TPrimExp Int64 VName])]
-> [Param LParamMem]
-> [((VName, [TPrimExp Int64 VName]), Param LParamMem)]
forall a b. [a] -> [b] -> [(a, b)]
zip (SegBinOpSlug -> [(VName, [TPrimExp Int64 VName])]
slugAccs SegBinOpSlug
slug) (Lambda GPUMem -> [LParam GPUMem]
forall rep. Lambda rep -> [LParam rep]
lambdaParams Lambda GPUMem
slug_op_renamed)) ((((VName, [TPrimExp Int64 VName]), Param LParamMem)
  -> InKernelGen ())
 -> InKernelGen ())
-> (((VName, [TPrimExp Int64 VName]), Param LParamMem)
    -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \((VName
acc, [TPrimExp Int64 VName]
acc_is), Param LParamMem
p) ->
                  VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix VName
acc ([TPrimExp Int64 VName]
acc_is [TPrimExp Int64 VName]
-> [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. [a] -> [a] -> [a]
++ [TPrimExp Int64 VName]
vec_is) (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) []

  -- If this is a non-commutative reduction, each thread must run the
  -- loop the same number of iterations, because we will be performing
  -- a group-wide reduction in there.
  let comm :: Commutativity
comm = [SegBinOpSlug] -> Commutativity
slugsComm [SegBinOpSlug]
slugs
      (TPrimExp Int64 VName
bound, InKernelGen () -> InKernelGen ()
check_bounds) =
        case Commutativity
comm of
          Commutativity
Commutative -> (TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
chunk_size, InKernelGen () -> InKernelGen ()
forall a. a -> a
id)
          Commutativity
Noncommutative ->
            ( Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
elems_per_thread,
              TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
gtid TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
num_elements)
            )

  String
-> TPrimExp Int64 VName
-> (TPrimExp Int64 VName -> InKernelGen ())
-> InKernelGen ()
forall {k} (t :: k) rep r op.
String
-> TExp t -> (TExp t -> ImpM rep r op ()) -> ImpM rep r op ()
sFor String
"i" TPrimExp Int64 VName
bound ((TPrimExp Int64 VName -> InKernelGen ()) -> InKernelGen ())
-> (TPrimExp Int64 VName -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \TPrimExp Int64 VName
i -> do
    TV Int64
gtid
      TV Int64 -> TPrimExp Int64 VName -> InKernelGen ()
forall {k} (t :: k) rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- case Commutativity
comm of
        Commutativity
Commutative ->
          TPrimExp Int64 VName
global_tid TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ TPrimExp Int64 VName
threads_per_segment TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
i
        Commutativity
Noncommutative ->
          let index_in_segment :: TPrimExp Int64 VName
index_in_segment = TPrimExp Int64 VName
global_tid TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`quot` KernelConstants -> TPrimExp Int64 VName
kernelGroupSize KernelConstants
constants
           in TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int64 VName
local_tid
                TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ (TPrimExp Int64 VName
index_in_segment TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* Count Elements (TPrimExp Int64 VName) -> TPrimExp Int64 VName
forall {k} (u :: k) e. Count u e -> e
Imp.unCount Count Elements (TPrimExp Int64 VName)
elems_per_thread TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ TPrimExp Int64 VName
i)
                  TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* KernelConstants -> TPrimExp Int64 VName
kernelGroupSize KernelConstants
constants

    InKernelGen () -> InKernelGen ()
check_bounds (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"apply map function" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        DoSegBody
body DoSegBody -> DoSegBody
forall a b. (a -> b) -> a -> b
$ \[(SubExp, [TPrimExp Int64 VName])]
all_red_res -> do
          let slugs_res :: [[(SubExp, [TPrimExp Int64 VName])]]
slugs_res = [Int]
-> [(SubExp, [TPrimExp Int64 VName])]
-> [[(SubExp, [TPrimExp Int64 VName])]]
forall a. [Int] -> [a] -> [[a]]
chunks ((SegBinOpSlug -> Int) -> [SegBinOpSlug] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map ([SubExp] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ([SubExp] -> Int)
-> (SegBinOpSlug -> [SubExp]) -> SegBinOpSlug -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOpSlug -> [SubExp]
slugNeutral) [SegBinOpSlug]
slugs) [(SubExp, [TPrimExp Int64 VName])]
all_red_res

          [(SegBinOpSlug, [(SubExp, [TPrimExp Int64 VName])])]
-> ((SegBinOpSlug, [(SubExp, [TPrimExp Int64 VName])])
    -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([SegBinOpSlug]
-> [[(SubExp, [TPrimExp Int64 VName])]]
-> [(SegBinOpSlug, [(SubExp, [TPrimExp Int64 VName])])]
forall a b. [a] -> [b] -> [(a, b)]
zip [SegBinOpSlug]
slugs [[(SubExp, [TPrimExp Int64 VName])]]
slugs_res) (((SegBinOpSlug, [(SubExp, [TPrimExp Int64 VName])])
  -> InKernelGen ())
 -> InKernelGen ())
-> ((SegBinOpSlug, [(SubExp, [TPrimExp Int64 VName])])
    -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(SegBinOpSlug
slug, [(SubExp, [TPrimExp Int64 VName])]
red_res) ->
            Shape
-> ([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ()
forall rep r op.
Shape
-> ([TPrimExp Int64 VName] -> ImpM rep r op ()) -> ImpM rep r op ()
sLoopNest (SegBinOpSlug -> Shape
slugShape SegBinOpSlug
slug) (([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ())
-> ([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[TPrimExp Int64 VName]
vec_is -> do
              Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"load accumulator" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
                [(Param LParamMem, (VName, [TPrimExp Int64 VName]))]
-> ((Param LParamMem, (VName, [TPrimExp Int64 VName]))
    -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem]
-> [(VName, [TPrimExp Int64 VName])]
-> [(Param LParamMem, (VName, [TPrimExp Int64 VName]))]
forall a b. [a] -> [b] -> [(a, b)]
zip (SegBinOpSlug -> [LParam GPUMem]
accParams SegBinOpSlug
slug) (SegBinOpSlug -> [(VName, [TPrimExp Int64 VName])]
slugAccs SegBinOpSlug
slug)) (((Param LParamMem, (VName, [TPrimExp Int64 VName]))
  -> InKernelGen ())
 -> InKernelGen ())
-> ((Param LParamMem, (VName, [TPrimExp Int64 VName]))
    -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
p, (VName
acc, [TPrimExp Int64 VName]
acc_is)) ->
                  VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] (VName -> SubExp
Var VName
acc) ([TPrimExp Int64 VName]
acc_is [TPrimExp Int64 VName]
-> [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. [a] -> [a] -> [a]
++ [TPrimExp Int64 VName]
vec_is)
              Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"load new values" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
                [(Param LParamMem, (SubExp, [TPrimExp Int64 VName]))]
-> ((Param LParamMem, (SubExp, [TPrimExp Int64 VName]))
    -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem]
-> [(SubExp, [TPrimExp Int64 VName])]
-> [(Param LParamMem, (SubExp, [TPrimExp Int64 VName]))]
forall a b. [a] -> [b] -> [(a, b)]
zip (SegBinOpSlug -> [LParam GPUMem]
nextParams SegBinOpSlug
slug) [(SubExp, [TPrimExp Int64 VName])]
red_res) (((Param LParamMem, (SubExp, [TPrimExp Int64 VName]))
  -> InKernelGen ())
 -> InKernelGen ())
-> ((Param LParamMem, (SubExp, [TPrimExp Int64 VName]))
    -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
p, (SubExp
res, [TPrimExp Int64 VName]
res_is)) ->
                  VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] SubExp
res ([TPrimExp Int64 VName]
res_is [TPrimExp Int64 VName]
-> [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. [a] -> [a] -> [a]
++ [TPrimExp Int64 VName]
vec_is)
              Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"apply reduction operator"
                (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
forall rep r op.
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
compileStms Names
forall a. Monoid a => a
mempty (Body GPUMem -> Stms GPUMem
forall rep. Body rep -> Stms rep
bodyStms (Body GPUMem -> Stms GPUMem) -> Body GPUMem -> Stms GPUMem
forall a b. (a -> b) -> a -> b
$ SegBinOpSlug -> Body GPUMem
slugBody SegBinOpSlug
slug)
                (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"store in accumulator"
                (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ [((VName, [TPrimExp Int64 VName]), SubExp)]
-> (((VName, [TPrimExp Int64 VName]), SubExp) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_
                  ( [(VName, [TPrimExp Int64 VName])]
-> [SubExp] -> [((VName, [TPrimExp Int64 VName]), SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip
                      (SegBinOpSlug -> [(VName, [TPrimExp Int64 VName])]
slugAccs SegBinOpSlug
slug)
                      ((SubExpRes -> SubExp) -> [SubExpRes] -> [SubExp]
forall a b. (a -> b) -> [a] -> [b]
map SubExpRes -> SubExp
resSubExp ([SubExpRes] -> [SubExp]) -> [SubExpRes] -> [SubExp]
forall a b. (a -> b) -> a -> b
$ Body GPUMem -> [SubExpRes]
forall rep. Body rep -> [SubExpRes]
bodyResult (Body GPUMem -> [SubExpRes]) -> Body GPUMem -> [SubExpRes]
forall a b. (a -> b) -> a -> b
$ SegBinOpSlug -> Body GPUMem
slugBody SegBinOpSlug
slug)
                  )
                ((((VName, [TPrimExp Int64 VName]), SubExp) -> InKernelGen ())
 -> InKernelGen ())
-> (((VName, [TPrimExp Int64 VName]), SubExp) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \((VName
acc, [TPrimExp Int64 VName]
acc_is), SubExp
se) ->
                  VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix VName
acc ([TPrimExp Int64 VName]
acc_is [TPrimExp Int64 VName]
-> [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. [a] -> [a] -> [a]
++ [TPrimExp Int64 VName]
vec_is) SubExp
se []

    case Commutativity
comm of
      Commutativity
Noncommutative -> do
        InKernelGen ()
doTheReduction
        Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"first thread keeps accumulator; others reset to neutral element" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
          let reset_to_neutral :: InKernelGen ()
reset_to_neutral =
                [SegBinOpSlug]
-> (SegBinOpSlug -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [SegBinOpSlug]
slugs ((SegBinOpSlug -> InKernelGen ()) -> InKernelGen ())
-> (SegBinOpSlug -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \SegBinOpSlug
slug ->
                  [((VName, [TPrimExp Int64 VName]), SubExp)]
-> (((VName, [TPrimExp Int64 VName]), SubExp) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([(VName, [TPrimExp Int64 VName])]
-> [SubExp] -> [((VName, [TPrimExp Int64 VName]), SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip (SegBinOpSlug -> [(VName, [TPrimExp Int64 VName])]
slugAccs SegBinOpSlug
slug) (SegBinOpSlug -> [SubExp]
slugNeutral SegBinOpSlug
slug)) ((((VName, [TPrimExp Int64 VName]), SubExp) -> InKernelGen ())
 -> InKernelGen ())
-> (((VName, [TPrimExp Int64 VName]), SubExp) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \((VName
acc, [TPrimExp Int64 VName]
acc_is), SubExp
ne) ->
                    Shape
-> ([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ()
forall rep r op.
Shape
-> ([TPrimExp Int64 VName] -> ImpM rep r op ()) -> ImpM rep r op ()
sLoopNest (SegBinOpSlug -> Shape
slugShape SegBinOpSlug
slug) (([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ())
-> ([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[TPrimExp Int64 VName]
vec_is ->
                      VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix VName
acc ([TPrimExp Int64 VName]
acc_is [TPrimExp Int64 VName]
-> [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. [a] -> [a] -> [a]
++ [TPrimExp Int64 VName]
vec_is) SubExp
ne []
          TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sUnless (TPrimExp Int64 VName
local_tid TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TPrimExp Int64 VName
0) InKernelGen ()
reset_to_neutral
      Commutativity
_ -> () -> InKernelGen ()
forall a. a -> ImpM GPUMem KernelEnv KernelOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
  KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.ErrorSync Fence
Imp.FenceLocal
  ([Lambda GPUMem], InKernelGen ())
-> InKernelGen ([Lambda GPUMem], InKernelGen ())
forall a. a -> ImpM GPUMem KernelEnv KernelOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ([Lambda GPUMem]
slugs_op_renamed, InKernelGen ()
doTheReduction)

reductionStageOne ::
  KernelConstants ->
  [(VName, Imp.TExp Int64)] ->
  Imp.Count Imp.Elements (Imp.TExp Int64) ->
  Imp.TExp Int64 ->
  Imp.Count Imp.Elements (Imp.TExp Int64) ->
  Imp.TExp Int64 ->
  [SegBinOpSlug] ->
  DoSegBody ->
  InKernelGen [Lambda GPUMem]
reductionStageOne :: KernelConstants
-> [(VName, TPrimExp Int64 VName)]
-> Count Elements (TPrimExp Int64 VName)
-> TPrimExp Int64 VName
-> Count Elements (TPrimExp Int64 VName)
-> TPrimExp Int64 VName
-> [SegBinOpSlug]
-> DoSegBody
-> InKernelGen [Lambda GPUMem]
reductionStageOne KernelConstants
constants [(VName, TPrimExp Int64 VName)]
ispace Count Elements (TPrimExp Int64 VName)
num_elements TPrimExp Int64 VName
global_tid Count Elements (TPrimExp Int64 VName)
elems_per_thread TPrimExp Int64 VName
threads_per_segment [SegBinOpSlug]
slugs DoSegBody
body = do
  ([Lambda GPUMem]
slugs_op_renamed, InKernelGen ()
doTheReduction) <-
    KernelConstants
-> [(VName, TPrimExp Int64 VName)]
-> Count Elements (TPrimExp Int64 VName)
-> TPrimExp Int64 VName
-> Count Elements (TPrimExp Int64 VName)
-> TPrimExp Int64 VName
-> [SegBinOpSlug]
-> DoSegBody
-> InKernelGen ([Lambda GPUMem], InKernelGen ())
reductionStageZero KernelConstants
constants [(VName, TPrimExp Int64 VName)]
ispace Count Elements (TPrimExp Int64 VName)
num_elements TPrimExp Int64 VName
global_tid Count Elements (TPrimExp Int64 VName)
elems_per_thread TPrimExp Int64 VName
threads_per_segment [SegBinOpSlug]
slugs DoSegBody
body

  case [SegBinOpSlug] -> Commutativity
slugsComm [SegBinOpSlug]
slugs of
    Commutativity
Noncommutative -> () -> InKernelGen ()
forall a. a -> ImpM GPUMem KernelEnv KernelOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
    Commutativity
Commutative -> InKernelGen ()
doTheReduction

  [Lambda GPUMem] -> InKernelGen [Lambda GPUMem]
forall a. a -> ImpM GPUMem KernelEnv KernelOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure [Lambda GPUMem]
slugs_op_renamed

reductionStageTwo ::
  KernelConstants ->
  [PatElem LetDecMem] ->
  Imp.TExp Int32 ->
  Imp.TExp Int32 ->
  [Imp.TExp Int64] ->
  Imp.TExp Int64 ->
  Imp.TExp Int64 ->
  SegBinOpSlug ->
  [LParam GPUMem] ->
  [LParam GPUMem] ->
  Lambda GPUMem ->
  [SubExp] ->
  Imp.TExp Int32 ->
  VName ->
  Imp.TExp Int32 ->
  VName ->
  [VName] ->
  [VName] ->
  InKernelGen ()
reductionStageTwo :: KernelConstants
-> [PatElem LParamMem]
-> TPrimExp Int32 VName
-> TPrimExp Int32 VName
-> [TPrimExp Int64 VName]
-> TPrimExp Int64 VName
-> TPrimExp Int64 VName
-> SegBinOpSlug
-> [LParam GPUMem]
-> [LParam GPUMem]
-> Lambda GPUMem
-> [SubExp]
-> TPrimExp Int32 VName
-> VName
-> TPrimExp Int32 VName
-> VName
-> [VName]
-> [VName]
-> InKernelGen ()
reductionStageTwo
  KernelConstants
constants
  [PatElem LParamMem]
segred_pes
  TPrimExp Int32 VName
group_id
  TPrimExp Int32 VName
flat_segment_id
  [TPrimExp Int64 VName]
segment_gtids
  TPrimExp Int64 VName
first_group_for_segment
  TPrimExp Int64 VName
groups_per_segment
  SegBinOpSlug
slug
  [LParam GPUMem]
red_x_params
  [LParam GPUMem]
red_y_params
  Lambda GPUMem
red_op_renamed
  [SubExp]
nes
  TPrimExp Int32 VName
num_counters
  VName
counter
  TPrimExp Int32 VName
counter_i
  VName
sync_arr
  [VName]
group_res_arrs
  [VName]
red_arrs = do
    let local_tid :: TPrimExp Int32 VName
local_tid = KernelConstants -> TPrimExp Int32 VName
kernelLocalThreadId KernelConstants
constants
        group_size :: TPrimExp Int64 VName
group_size = KernelConstants -> TPrimExp Int64 VName
kernelGroupSize KernelConstants
constants
    TV Int64
old_counter <- String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Int64)
forall {k} rep r op (t :: k).
String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"old_counter" PrimType
int32
    (VName
counter_mem, Space
_, Count Elements (TPrimExp Int64 VName)
counter_offset) <-
      VName
-> [TPrimExp Int64 VName]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, Count Elements (TPrimExp Int64 VName))
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> ImpM
     rep r op (VName, Space, Count Elements (TPrimExp Int64 VName))
fullyIndexArray
        VName
counter
        [ TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TPrimExp Int32 VName -> TPrimExp Int64 VName)
-> TPrimExp Int32 VName -> TPrimExp Int64 VName
forall a b. (a -> b) -> a -> b
$
            TPrimExp Int32 VName
counter_i TPrimExp Int32 VName
-> TPrimExp Int32 VName -> TPrimExp Int32 VName
forall a. Num a => a -> a -> a
* TPrimExp Int32 VName
num_counters
              TPrimExp Int32 VName
-> TPrimExp Int32 VName -> TPrimExp Int32 VName
forall a. Num a => a -> a -> a
+ TPrimExp Int32 VName
flat_segment_id TPrimExp Int32 VName
-> TPrimExp Int32 VName -> TPrimExp Int32 VName
forall e. IntegralExp e => e -> e -> e
`rem` TPrimExp Int32 VName
num_counters
        ]
    Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
comment Text
"first thread in group saves group result to global memory" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TPrimExp Int32 VName
local_tid TPrimExp Int32 VName -> TPrimExp Int32 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TPrimExp Int32 VName
0) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
        [(VName, (VName, [TPrimExp Int64 VName]))]
-> ((VName, (VName, [TPrimExp Int64 VName])) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ (Int
-> [(VName, (VName, [TPrimExp Int64 VName]))]
-> [(VName, (VName, [TPrimExp Int64 VName]))]
forall a. Int -> [a] -> [a]
take ([SubExp] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
nes) ([(VName, (VName, [TPrimExp Int64 VName]))]
 -> [(VName, (VName, [TPrimExp Int64 VName]))])
-> [(VName, (VName, [TPrimExp Int64 VName]))]
-> [(VName, (VName, [TPrimExp Int64 VName]))]
forall a b. (a -> b) -> a -> b
$ [VName]
-> [(VName, [TPrimExp Int64 VName])]
-> [(VName, (VName, [TPrimExp Int64 VName]))]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
group_res_arrs (SegBinOpSlug -> [(VName, [TPrimExp Int64 VName])]
slugAccs SegBinOpSlug
slug)) (((VName, (VName, [TPrimExp Int64 VName])) -> InKernelGen ())
 -> InKernelGen ())
-> ((VName, (VName, [TPrimExp Int64 VName])) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(VName
v, (VName
acc, [TPrimExp Int64 VName]
acc_is)) ->
          VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix VName
v [TPrimExp Int64 VName
0, TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
group_id] (VName -> SubExp
Var VName
acc) [TPrimExp Int64 VName]
acc_is
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.MemFence Fence
Imp.FenceGlobal
        -- Increment the counter, thus stating that our result is
        -- available.
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp
          (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Space -> AtomicOp -> KernelOp
Imp.Atomic Space
DefaultSpace
          (AtomicOp -> KernelOp) -> AtomicOp -> KernelOp
forall a b. (a -> b) -> a -> b
$ IntType
-> VName
-> VName
-> Count Elements (TPrimExp Int64 VName)
-> Exp
-> AtomicOp
Imp.AtomicAdd
            IntType
Int32
            (TV Int64 -> VName
forall {k} (t :: k). TV t -> VName
tvVar TV Int64
old_counter)
            VName
counter_mem
            Count Elements (TPrimExp Int64 VName)
counter_offset
          (Exp -> AtomicOp) -> Exp -> AtomicOp
forall a b. (a -> b) -> a -> b
$ TPrimExp Int32 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped (TPrimExp Int32 VName
1 :: Imp.TExp Int32)
        -- Now check if we were the last group to write our result.  If
        -- so, it is our responsibility to produce the final result.
        VName -> [TPrimExp Int64 VName] -> Exp -> InKernelGen ()
forall rep r op.
VName -> [TPrimExp Int64 VName] -> Exp -> ImpM rep r op ()
sWrite VName
sync_arr [TPrimExp Int64 VName
0] (Exp -> InKernelGen ()) -> Exp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ TPrimExp Bool VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped (TPrimExp Bool VName -> Exp) -> TPrimExp Bool VName -> Exp
forall a b. (a -> b) -> a -> b
$ TV Int64 -> TPrimExp Int64 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int64
old_counter TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TPrimExp Int64 VName
groups_per_segment TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
- TPrimExp Int64 VName
1

    KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceGlobal

    TV Bool
is_last_group <- String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Bool)
forall {k} rep r op (t :: k).
String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"is_last_group" PrimType
Bool
    VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix (TV Bool -> VName
forall {k} (t :: k). TV t -> VName
tvVar TV Bool
is_last_group) [] (VName -> SubExp
Var VName
sync_arr) [TPrimExp Int64 VName
0]
    TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TV Bool -> TPrimExp Bool VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Bool
is_last_group) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
      -- The final group has written its result (and it was
      -- us!), so read in all the group results and perform the
      -- final stage of the reduction.  But first, we reset the
      -- counter so it is ready for next time.  This is done
      -- with an atomic to avoid warnings about write/write
      -- races in oclgrind.
      TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TPrimExp Int32 VName
local_tid TPrimExp Int32 VName -> TPrimExp Int32 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TPrimExp Int32 VName
0) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          Space -> AtomicOp -> KernelOp
Imp.Atomic Space
DefaultSpace (AtomicOp -> KernelOp) -> AtomicOp -> KernelOp
forall a b. (a -> b) -> a -> b
$
            IntType
-> VName
-> VName
-> Count Elements (TPrimExp Int64 VName)
-> Exp
-> AtomicOp
Imp.AtomicAdd IntType
Int32 (TV Int64 -> VName
forall {k} (t :: k). TV t -> VName
tvVar TV Int64
old_counter) VName
counter_mem Count Elements (TPrimExp Int64 VName)
counter_offset (Exp -> AtomicOp) -> Exp -> AtomicOp
forall a b. (a -> b) -> a -> b
$
              TPrimExp Int64 VName -> Exp
forall {k} (t :: k) v. TPrimExp t v -> PrimExp v
untyped (TPrimExp Int64 VName -> Exp) -> TPrimExp Int64 VName -> Exp
forall a b. (a -> b) -> a -> b
$
                TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a
negate TPrimExp Int64 VName
groups_per_segment

      Shape
-> ([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ()
forall rep r op.
Shape
-> ([TPrimExp Int64 VName] -> ImpM rep r op ()) -> ImpM rep r op ()
sLoopNest (SegBinOpSlug -> Shape
slugShape SegBinOpSlug
slug) (([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ())
-> ([TPrimExp Int64 VName] -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[TPrimExp Int64 VName]
vec_is -> do
        Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Shape -> Bool
forall a. ShapeBase a -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null (Shape -> Bool) -> Shape -> Bool
forall a b. (a -> b) -> a -> b
$ SegBinOpSlug -> Shape
slugShape SegBinOpSlug
slug) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal)

        -- There is no guarantee that the number of workgroups for the
        -- segment is less than the workgroup size, so each thread may
        -- have to read multiple elements.  We do this in a sequential
        -- way that may induce non-coalesced accesses, but the total
        -- number of accesses should be tiny here.
        Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
comment Text
"read in the per-group-results" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
          TPrimExp Int64 VName
read_per_thread <-
            String
-> TPrimExp Int64 VName
-> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"read_per_thread" (TPrimExp Int64 VName
 -> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName))
-> TPrimExp Int64 VName
-> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$
              TPrimExp Int64 VName
groups_per_segment TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall e. IntegralExp e => e -> e -> e
`divUp` TPrimExp Int64 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int64 VName
group_size

          [(Param LParamMem, SubExp)]
-> ((Param LParamMem, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem] -> [SubExp] -> [(Param LParamMem, SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [LParam GPUMem]
[Param LParamMem]
red_x_params [SubExp]
nes) (((Param LParamMem, SubExp) -> InKernelGen ()) -> InKernelGen ())
-> ((Param LParamMem, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
p, SubExp
ne) ->
            VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] SubExp
ne []

          String
-> TPrimExp Int64 VName
-> (TPrimExp Int64 VName -> InKernelGen ())
-> InKernelGen ()
forall {k} (t :: k) rep r op.
String
-> TExp t -> (TExp t -> ImpM rep r op ()) -> ImpM rep r op ()
sFor String
"i" TPrimExp Int64 VName
read_per_thread ((TPrimExp Int64 VName -> InKernelGen ()) -> InKernelGen ())
-> (TPrimExp Int64 VName -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \TPrimExp Int64 VName
i -> do
            TPrimExp Int64 VName
group_res_id <-
              String
-> TPrimExp Int64 VName
-> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"group_res_id" (TPrimExp Int64 VName
 -> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName))
-> TPrimExp Int64 VName
-> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$
                TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
local_tid TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
* TPrimExp Int64 VName
read_per_thread TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ TPrimExp Int64 VName
i
            TPrimExp Int64 VName
index_of_group_res <-
              String
-> TPrimExp Int64 VName
-> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName)
forall {k} (t :: k) rep r op.
String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"index_of_group_res" (TPrimExp Int64 VName
 -> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName))
-> TPrimExp Int64 VName
-> ImpM GPUMem KernelEnv KernelOp (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$
                TPrimExp Int64 VName
first_group_for_segment TPrimExp Int64 VName
-> TPrimExp Int64 VName -> TPrimExp Int64 VName
forall a. Num a => a -> a -> a
+ TPrimExp Int64 VName
group_res_id

            TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TPrimExp Int64 VName
group_res_id TPrimExp Int64 VName -> TPrimExp Int64 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TPrimExp Int64 VName
groups_per_segment) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
              [(Param LParamMem, VName)]
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem] -> [VName] -> [(Param LParamMem, VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [LParam GPUMem]
[Param LParamMem]
red_y_params [VName]
group_res_arrs) (((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ())
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
                \(Param LParamMem
p, VName
group_res_arr) ->
                  VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix
                    (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p)
                    []
                    (VName -> SubExp
Var VName
group_res_arr)
                    ([TPrimExp Int64 VName
0, TPrimExp Int64 VName
index_of_group_res] [TPrimExp Int64 VName]
-> [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. [a] -> [a] -> [a]
++ [TPrimExp Int64 VName]
vec_is)

              Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
forall rep r op.
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
compileStms Names
forall a. Monoid a => a
mempty (Body GPUMem -> Stms GPUMem
forall rep. Body rep -> Stms rep
bodyStms (Body GPUMem -> Stms GPUMem) -> Body GPUMem -> Stms GPUMem
forall a b. (a -> b) -> a -> b
$ SegBinOpSlug -> Body GPUMem
slugBody SegBinOpSlug
slug) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
                [(Param LParamMem, SubExp)]
-> ((Param LParamMem, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem] -> [SubExp] -> [(Param LParamMem, SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [LParam GPUMem]
[Param LParamMem]
red_x_params ([SubExp] -> [(Param LParamMem, SubExp)])
-> [SubExp] -> [(Param LParamMem, SubExp)]
forall a b. (a -> b) -> a -> b
$ (SubExpRes -> SubExp) -> [SubExpRes] -> [SubExp]
forall a b. (a -> b) -> [a] -> [b]
map SubExpRes -> SubExp
resSubExp ([SubExpRes] -> [SubExp]) -> [SubExpRes] -> [SubExp]
forall a b. (a -> b) -> a -> b
$ Body GPUMem -> [SubExpRes]
forall rep. Body rep -> [SubExpRes]
bodyResult (Body GPUMem -> [SubExpRes]) -> Body GPUMem -> [SubExpRes]
forall a b. (a -> b) -> a -> b
$ SegBinOpSlug -> Body GPUMem
slugBody SegBinOpSlug
slug) (((Param LParamMem, SubExp) -> InKernelGen ()) -> InKernelGen ())
-> ((Param LParamMem, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
p, SubExp
se) ->
                  VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] SubExp
se []

        [(Param LParamMem, VName)]
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem] -> [VName] -> [(Param LParamMem, VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [LParam GPUMem]
[Param LParamMem]
red_x_params [VName]
red_arrs) (((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ())
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
p, VName
arr) ->
          Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (TypeBase Shape NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (TypeBase Shape NoUniqueness -> Bool)
-> TypeBase Shape NoUniqueness -> Bool
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase Shape NoUniqueness
forall dec. Typed dec => Param dec -> TypeBase Shape NoUniqueness
paramType Param LParamMem
p) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix VName
arr [TPrimExp Int32 VName -> TPrimExp Int64 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TPrimExp Int32 VName
local_tid] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) []

        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.ErrorSync Fence
Imp.FenceLocal

        Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"reduce the per-group results" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
          TPrimExp Int32 VName -> Lambda GPUMem -> [VName] -> InKernelGen ()
groupReduce (TPrimExp Int64 VName -> TPrimExp Int32 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 TPrimExp Int64 VName
group_size) Lambda GPUMem
red_op_renamed [VName]
red_arrs

          Text -> InKernelGen () -> InKernelGen ()
forall rep r op. Text -> ImpM rep r op () -> ImpM rep r op ()
sComment Text
"and back to memory with the final result" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            TPrimExp Bool VName -> InKernelGen () -> InKernelGen ()
forall rep r op.
TPrimExp Bool VName -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TPrimExp Int32 VName
local_tid TPrimExp Int32 VName -> TPrimExp Int32 VName -> TPrimExp Bool VName
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TPrimExp Int32 VName
0) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
              [(PatElem LParamMem, Param LParamMem)]
-> ((PatElem LParamMem, Param LParamMem) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([PatElem LParamMem]
-> [Param LParamMem] -> [(PatElem LParamMem, Param LParamMem)]
forall a b. [a] -> [b] -> [(a, b)]
zip [PatElem LParamMem]
segred_pes ([Param LParamMem] -> [(PatElem LParamMem, Param LParamMem)])
-> [Param LParamMem] -> [(PatElem LParamMem, Param LParamMem)]
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. Lambda rep -> [LParam rep]
lambdaParams Lambda GPUMem
red_op_renamed) (((PatElem LParamMem, Param LParamMem) -> InKernelGen ())
 -> InKernelGen ())
-> ((PatElem LParamMem, Param LParamMem) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(PatElem LParamMem
pe, Param LParamMem
p) ->
                VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> InKernelGen ()
forall rep r op.
VName
-> [TPrimExp Int64 VName]
-> SubExp
-> [TPrimExp Int64 VName]
-> ImpM rep r op ()
copyDWIMFix
                  (PatElem LParamMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem LParamMem
pe)
                  ([TPrimExp Int64 VName]
segment_gtids [TPrimExp Int64 VName]
-> [TPrimExp Int64 VName] -> [TPrimExp Int64 VName]
forall a. [a] -> [a] -> [a]
++ [TPrimExp Int64 VName]
vec_is)
                  (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p)
                  []