fused-effects-1.0.2.1: A fast, flexible, fused effect system.

Safe HaskellNone
LanguageHaskell2010

Control.Effect.Lift

Contents

Description

Provides a mechanism to kick off the evaluation of an effect stack that takes place in a monadic context.

Lift effects are always the last effect in a given effect stack. These stacks are invoked with runM or run.

Predefined carriers:

Since: 0.1.0.0

Synopsis

Lift effect

data Lift sig m k where Source #

Since: 1.0.0.0

Constructors

LiftWith :: (forall ctx. Functor ctx => Handler ctx m sig -> ctx () -> sig (ctx a)) -> Lift sig m a 
Instances
Algebra (Lift IO) IO Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n IO -> Lift IO n a -> ctx () -> IO (ctx a) Source #

Algebra (Lift Identity) Identity Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n Identity -> Lift Identity n a -> ctx () -> Identity (ctx a) Source #

Monad m => Algebra (Lift m) (LiftC m) Source # 
Instance details

Defined in Control.Carrier.Lift

Methods

alg :: Functor ctx => Handler ctx n (LiftC m) -> Lift m n a -> ctx () -> LiftC m (ctx a) Source #

sendM :: (Has (Lift n) sig m, Functor n) => n a -> m a Source #

Given a Lift n constraint in a signature carried by m, sendM promotes arbitrary actions of type n a to m a. It is spiritually similar to lift from the MonadTrans typeclass.

Since: 1.0.0.0

sendIO :: Has (Lift IO) sig m => IO a -> m a Source #

A type-restricted variant of sendM for IO actions.

This is particularly useful when you have a Has (Lift IO) sig m constraint for the use of liftWith, and want to run an action abstracted over MonadIO. IO has a MonadIO instance, and sendIO’s type restricts the action’s type to IO without further type annotations.

Since: 1.0.2.0

liftWith :: Has (Lift n) sig m => (forall ctx. Functor ctx => Handler ctx m n -> ctx () -> n (ctx a)) -> m a Source #

Run actions in an outer context.

This can be used to provide interoperation with base functionality like Control.Exception.catch:

liftWith $ \ hdl ctx -> catch (hdl (m <$ ctx)) (hdl . (<$ ctx) . h)

The higher-order function takes both an initial context, and a handler phrased as a distributive law (as described in the documentation for Handler). This handler takes actions lifted into a context functor, which can be either the initial context, or the derived context produced by handling a previous action.

As with MonadBaseControl, care must be taken when lifting functions like Control.Exception.finally which don’t use the return value of one of their actions, as this can lead to dropped effects.

Since: 1.0.0.0

Re-exports

class Monad m => Algebra sig m | m -> sig Source #

The class of carriers (results) for algebras (effect handlers) over signatures (effects), whose actions are given by the alg method.

Since: 1.0.0.0

Minimal complete definition

alg

Instances
Algebra Choose NonEmpty Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n NonEmpty -> Choose n a -> ctx () -> NonEmpty (ctx a) Source #

Algebra Empty Maybe Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n Maybe -> Empty n a -> ctx () -> Maybe (ctx a) Source #

Algebra NonDet [] Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n [] -> NonDet n a -> ctx () -> [ctx a] Source #

Algebra sig m => Algebra sig (Alt m) Source #

This instance permits effectful actions to be lifted into the Alt monad, which eases the invocation of repeated alternation with <|>:

a <|> b <|> c <|> d

is equivalent to

getAlt (mconcat [a, b, c, d])

Since: 1.0.1.0

Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (Alt m) -> sig n a -> ctx () -> Alt m (ctx a) Source #

Algebra sig m => Algebra sig (Ap m) Source #

This instance permits effectful actions to be lifted into the Ap monad given a monoidal return type, which can provide clarity when chaining calls to mappend.

mappend <$> act1 <*> (mappend <$> act2 <*> act3)

is equivalent to

getAp (act1 <> act2 <> act3)

Since: 1.0.1.0

Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (Ap m) -> sig n a -> ctx () -> Ap m (ctx a) Source #

Algebra sig m => Algebra sig (IdentityT m) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (IdentityT m) -> sig n a -> ctx () -> IdentityT m (ctx a) Source #

Algebra (Lift IO) IO Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n IO -> Lift IO n a -> ctx () -> IO (ctx a) Source #

Algebra (Lift Identity) Identity Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n Identity -> Lift Identity n a -> ctx () -> Identity (ctx a) Source #

Monad m => Algebra (Lift m) (LiftC m) Source # 
Instance details

Defined in Control.Carrier.Lift

Methods

alg :: Functor ctx => Handler ctx n (LiftC m) -> Lift m n a -> ctx () -> LiftC m (ctx a) Source #

Algebra (Error e) (Either e) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (Either e) -> Error e n a -> ctx () -> Either e (ctx a) Source #

Monoid w => Algebra (Writer w) ((,) w) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n ((,) w) -> Writer w n a -> ctx () -> (w, ctx a) Source #

Algebra (Reader r) ((->) r :: Type -> Type) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n ((->) r) -> Reader r n a -> ctx () -> r -> ctx a Source #

Algebra sig m => Algebra (Choose :+: sig) (ChooseC m) Source # 
Instance details

Defined in Control.Carrier.Choose.Church

Methods

alg :: Functor ctx => Handler ctx n (ChooseC m) -> (Choose :+: sig) n a -> ctx () -> ChooseC m (ctx a) Source #

Algebra sig m => Algebra (Empty :+: sig) (MaybeT m) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (MaybeT m) -> (Empty :+: sig) n a -> ctx () -> MaybeT m (ctx a) Source #

Algebra sig m => Algebra (Empty :+: sig) (EmptyC m) Source # 
Instance details

Defined in Control.Carrier.Empty.Maybe

Methods

alg :: Functor ctx => Handler ctx n (EmptyC m) -> (Empty :+: sig) n a -> ctx () -> EmptyC m (ctx a) Source #

Algebra sig m => Algebra (Empty :+: sig) (EmptyC m) Source # 
Instance details

Defined in Control.Carrier.Empty.Church

Methods

alg :: Functor ctx => Handler ctx n (EmptyC m) -> (Empty :+: sig) n a -> ctx () -> EmptyC m (ctx a) Source #

Algebra sig m => Algebra (NonDet :+: sig) (NonDetC m) Source # 
Instance details

Defined in Control.Carrier.NonDet.Church

Methods

alg :: Functor ctx => Handler ctx n (NonDetC m) -> (NonDet :+: sig) n a -> ctx () -> NonDetC m (ctx a) Source #

(MonadIO m, Algebra sig m) => Algebra (Trace :+: sig) (TraceC m) Source # 
Instance details

Defined in Control.Carrier.Trace.Printing

Methods

alg :: Functor ctx => Handler ctx n (TraceC m) -> (Trace :+: sig) n a -> ctx () -> TraceC m (ctx a) Source #

Algebra sig m => Algebra (Trace :+: sig) (TraceC m) Source # 
Instance details

Defined in Control.Carrier.Trace.Ignoring

Methods

alg :: Functor ctx => Handler ctx n (TraceC m) -> (Trace :+: sig) n a -> ctx () -> TraceC m (ctx a) Source #

Algebra sig m => Algebra (Trace :+: sig) (TraceC m) Source # 
Instance details

Defined in Control.Carrier.Trace.Returning

Methods

alg :: Functor ctx => Handler ctx n (TraceC m) -> (Trace :+: sig) n a -> ctx () -> TraceC m (ctx a) Source #

Algebra sig m => Algebra (Fail :+: sig) (FailC m) Source # 
Instance details

Defined in Control.Carrier.Fail.Either

Methods

alg :: Functor ctx => Handler ctx n (FailC m) -> (Fail :+: sig) n a -> ctx () -> FailC m (ctx a) Source #

Algebra sig m => Algebra (Fresh :+: sig) (FreshC m) Source # 
Instance details

Defined in Control.Carrier.Fresh.Strict

Methods

alg :: Functor ctx => Handler ctx n (FreshC m) -> (Fresh :+: sig) n a -> ctx () -> FreshC m (ctx a) Source #

Algebra sig m => Algebra (Fresh :+: sig) (FreshC m) Source # 
Instance details

Defined in Control.Carrier.Fresh.Church

Methods

alg :: Functor ctx => Handler ctx n (FreshC m) -> (Fresh :+: sig) n a -> ctx () -> FreshC m (ctx a) Source #

Algebra sig m => Algebra (Cut :+: (NonDet :+: sig)) (CutC m) Source # 
Instance details

Defined in Control.Carrier.Cut.Church

Methods

alg :: Functor ctx => Handler ctx n (CutC m) -> (Cut :+: (NonDet :+: sig)) n a -> ctx () -> CutC m (ctx a) Source #

Algebra sig m => Algebra (Cull :+: (NonDet :+: sig)) (CullC m) Source # 
Instance details

Defined in Control.Carrier.Cull.Church

Methods

alg :: Functor ctx => Handler ctx n (CullC m) -> (Cull :+: (NonDet :+: sig)) n a -> ctx () -> CullC m (ctx a) Source #

Algebra sig m => Algebra (Reader r :+: sig) (ReaderC r m) Source # 
Instance details

Defined in Control.Carrier.Reader

Methods

alg :: Functor ctx => Handler ctx n (ReaderC r m) -> (Reader r :+: sig) n a -> ctx () -> ReaderC r m (ctx a) Source #

Algebra sig m => Algebra (State s :+: sig) (StateT s m) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (StateT s m) -> (State s :+: sig) n a -> ctx () -> StateT s m (ctx a) Source #

Algebra sig m => Algebra (State s :+: sig) (StateT s m) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (StateT s m) -> (State s :+: sig) n a -> ctx () -> StateT s m (ctx a) Source #

Algebra sig m => Algebra (State s :+: sig) (StateC s m) Source # 
Instance details

Defined in Control.Carrier.State.Strict

Methods

alg :: Functor ctx => Handler ctx n (StateC s m) -> (State s :+: sig) n a -> ctx () -> StateC s m (ctx a) Source #

Algebra sig m => Algebra (State s :+: sig) (StateC s m) Source # 
Instance details

Defined in Control.Carrier.State.Lazy

Methods

alg :: Functor ctx => Handler ctx n (StateC s m) -> (State s :+: sig) n a -> ctx () -> StateC s m (ctx a) Source #

Algebra sig m => Algebra (State s :+: sig) (StateC s m) Source # 
Instance details

Defined in Control.Carrier.State.Church

Methods

alg :: Functor ctx => Handler ctx n (StateC s m) -> (State s :+: sig) n a -> ctx () -> StateC s m (ctx a) Source #

Algebra sig m => Algebra (Throw e :+: sig) (ThrowC e m) Source # 
Instance details

Defined in Control.Carrier.Throw.Either

Methods

alg :: Functor ctx => Handler ctx n (ThrowC e m) -> (Throw e :+: sig) n a -> ctx () -> ThrowC e m (ctx a) Source #

Algebra sig m => Algebra (Error e :+: sig) (ExceptT e m) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (ExceptT e m) -> (Error e :+: sig) n a -> ctx () -> ExceptT e m (ctx a) Source #

Algebra sig m => Algebra (Error e :+: sig) (ErrorC e m) Source # 
Instance details

Defined in Control.Carrier.Error.Either

Methods

alg :: Functor ctx => Handler ctx n (ErrorC e m) -> (Error e :+: sig) n a -> ctx () -> ErrorC e m (ctx a) Source #

Algebra sig m => Algebra (Error e :+: sig) (ErrorC e m) Source # 
Instance details

Defined in Control.Carrier.Error.Church

Methods

alg :: Functor ctx => Handler ctx n (ErrorC e m) -> (Error e :+: sig) n a -> ctx () -> ErrorC e m (ctx a) Source #

(Algebra sig m, Monoid w) => Algebra (Writer w :+: sig) (WriterT w m) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (WriterT w m) -> (Writer w :+: sig) n a -> ctx () -> WriterT w m (ctx a) Source #

(Algebra sig m, Monoid w) => Algebra (Writer w :+: sig) (WriterT w m) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (WriterT w m) -> (Writer w :+: sig) n a -> ctx () -> WriterT w m (ctx a) Source #

(Monoid w, Algebra sig m) => Algebra (Writer w :+: sig) (WriterC w m) Source # 
Instance details

Defined in Control.Carrier.Writer.Strict

Methods

alg :: Functor ctx => Handler ctx n (WriterC w m) -> (Writer w :+: sig) n a -> ctx () -> WriterC w m (ctx a) Source #

(Algebra sig m, Monoid w) => Algebra (Writer w :+: sig) (WriterC w m) Source # 
Instance details

Defined in Control.Carrier.Writer.Church

Methods

alg :: Functor ctx => Handler ctx n (WriterC w m) -> (Writer w :+: sig) n a -> ctx () -> WriterC w m (ctx a) Source #

(Reifies s (Interpreter eff m), Algebra sig m) => Algebra (eff :+: sig) (InterpretC s eff m) Source # 
Instance details

Defined in Control.Carrier.Interpret

Methods

alg :: Functor ctx => Handler ctx n (InterpretC s eff m) -> (eff :+: sig) n a -> ctx () -> InterpretC s eff m (ctx a) Source #

Algebra sig m => Algebra (Reader r :+: sig) (ReaderT r m) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (ReaderT r m) -> (Reader r :+: sig) n a -> ctx () -> ReaderT r m (ctx a) Source #

(LabelledMember label sub sig, Algebra sig m) => Algebra (sub :+: sig) (UnderLabel label sub m) Source # 
Instance details

Defined in Control.Effect.Labelled

Methods

alg :: Functor ctx => Handler ctx n (UnderLabel label sub m) -> (sub :+: sig) n a -> ctx () -> UnderLabel label sub m (ctx a) Source #

(Algebra sig m, Monoid w) => Algebra (Reader r :+: (Writer w :+: (State s :+: sig))) (RWST r w s m) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (RWST r w s m) -> (Reader r :+: (Writer w :+: (State s :+: sig))) n a -> ctx () -> RWST r w s m (ctx a) Source #

(Algebra sig m, Monoid w) => Algebra (Reader r :+: (Writer w :+: (State s :+: sig))) (RWST r w s m) Source # 
Instance details

Defined in Control.Algebra

Methods

alg :: Functor ctx => Handler ctx n (RWST r w s m) -> (Reader r :+: (Writer w :+: (State s :+: sig))) n a -> ctx () -> RWST r w s m (ctx a) Source #

Algebra (eff :+: sig) (sub m) => Algebra (Labelled label eff :+: sig) (Labelled label sub m) Source # 
Instance details

Defined in Control.Effect.Labelled

Methods

alg :: Functor ctx => Handler ctx n (Labelled label sub m) -> (Labelled label eff :+: sig) n a -> ctx () -> Labelled label sub m (ctx a) Source #

type Has eff sig m = (Members eff sig, Algebra sig m) Source #

m is a carrier for sig containing eff.

Note that if eff is a sum, it will be decomposed into multiple Member constraints. While this technically allows one to combine multiple unrelated effects into a single Has constraint, doing so has two significant drawbacks:

  1. Due to a problem with recursive type families, this can lead to significantly slower compiles.
  2. It defeats ghc’s warnings for redundant constraints, and thus can lead to a proliferation of redundant constraints as code is changed.

Since: 1.0.0.0

run :: Identity a -> a Source #

Run an action exhausted of effects to produce its final result value.

Since: 1.0.0.0