{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -Wno-deprecations #-}
module Data.Functor.Contravariant.Divise (
Divise(..)
, (<:>)
, dsum1
, WrappedDivisible(..)
) where
import Control.Applicative
import Control.Applicative.Backwards
import Control.Arrow
import Control.Monad.Trans.Error
import Control.Monad.Trans.Except
import Control.Monad.Trans.Identity
import Control.Monad.Trans.List
import Control.Monad.Trans.Maybe
import Control.Monad.Trans.Reader
import Data.Deriving
import Data.Functor.Apply
import Data.Functor.Compose
import Data.Functor.Constant
import Data.Functor.Contravariant
import Data.Functor.Contravariant.Divisible
import Data.Functor.Invariant
import Data.Functor.Product
import Data.Functor.Reverse
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.RWS.Strict as Strict
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Strict as Strict
import qualified Data.Semigroup.Foldable as F1
#if MIN_VERSION_base(4,8,0)
import Data.Monoid (Alt(..))
#else
import Data.Monoid (Monoid(..))
#endif
#if MIN_VERSION_base(4,9,0) && !MIN_VERSION_base(4,12,0)
import Data.Semigroup (Semigroup(..))
#endif
#if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged)
import Data.Proxy
#endif
#ifdef MIN_VERSION_StateVar
import Data.StateVar
#endif
#if __GLASGOW_HASKELL__ >= 702
#define GHC_GENERICS
import GHC.Generics
#endif
class Contravariant f => Divise f where
divise :: (a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
x f c
y = forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> f a -> f a'
contramap a -> (b, c)
f (forall (f :: * -> *) a b. Divise f => f a -> f b -> f (a, b)
divised f b
x f c
y)
divised :: f a -> f b -> f (a, b)
divised = forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise forall a. a -> a
id
{-# MINIMAL divise | divised #-}
(<:>) :: Divise f => f a -> f a -> f a
f a
x <:> :: forall (f :: * -> *) a. Divise f => f a -> f a -> f a
<:> f a
y = forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (\a
r -> (a
r,a
r)) f a
x f a
y
dsum1 :: (F1.Foldable1 t, Divise f) => t (f a) -> f a
dsum1 :: forall (t :: * -> *) (f :: * -> *) a.
(Foldable1 t, Divise f) =>
t (f a) -> f a
dsum1 = forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 forall (f :: * -> *) a. Divise f => f a -> f a -> f a
(<:>) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a. Foldable1 t => t a -> NonEmpty a
F1.toNonEmpty
newtype WrappedDivisible f a = WrapDivisible { forall {k} (f :: k -> *) (a :: k). WrappedDivisible f a -> f a
unwrapDivisible :: f a }
deriving (forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall k (f :: k -> *) (a :: k) x.
Rep (WrappedDivisible f a) x -> WrappedDivisible f a
forall k (f :: k -> *) (a :: k) x.
WrappedDivisible f a -> Rep (WrappedDivisible f a) x
$cto :: forall k (f :: k -> *) (a :: k) x.
Rep (WrappedDivisible f a) x -> WrappedDivisible f a
$cfrom :: forall k (f :: k -> *) (a :: k) x.
WrappedDivisible f a -> Rep (WrappedDivisible f a) x
Generic, WrappedDivisible f a -> WrappedDivisible f a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k (f :: k -> *) (a :: k).
Eq (f a) =>
WrappedDivisible f a -> WrappedDivisible f a -> Bool
/= :: WrappedDivisible f a -> WrappedDivisible f a -> Bool
$c/= :: forall k (f :: k -> *) (a :: k).
Eq (f a) =>
WrappedDivisible f a -> WrappedDivisible f a -> Bool
== :: WrappedDivisible f a -> WrappedDivisible f a -> Bool
$c== :: forall k (f :: k -> *) (a :: k).
Eq (f a) =>
WrappedDivisible f a -> WrappedDivisible f a -> Bool
Eq, Int -> WrappedDivisible f a -> ShowS
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall k (f :: k -> *) (a :: k).
Show (f a) =>
Int -> WrappedDivisible f a -> ShowS
forall k (f :: k -> *) (a :: k).
Show (f a) =>
[WrappedDivisible f a] -> ShowS
forall k (f :: k -> *) (a :: k).
Show (f a) =>
WrappedDivisible f a -> String
showList :: [WrappedDivisible f a] -> ShowS
$cshowList :: forall k (f :: k -> *) (a :: k).
Show (f a) =>
[WrappedDivisible f a] -> ShowS
show :: WrappedDivisible f a -> String
$cshow :: forall k (f :: k -> *) (a :: k).
Show (f a) =>
WrappedDivisible f a -> String
showsPrec :: Int -> WrappedDivisible f a -> ShowS
$cshowsPrec :: forall k (f :: k -> *) (a :: k).
Show (f a) =>
Int -> WrappedDivisible f a -> ShowS
Show, WrappedDivisible f a -> WrappedDivisible f a -> Bool
WrappedDivisible f a -> WrappedDivisible f a -> Ordering
WrappedDivisible f a
-> WrappedDivisible f a -> WrappedDivisible f a
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall {k} {f :: k -> *} {a :: k}.
Ord (f a) =>
Eq (WrappedDivisible f a)
forall k (f :: k -> *) (a :: k).
Ord (f a) =>
WrappedDivisible f a -> WrappedDivisible f a -> Bool
forall k (f :: k -> *) (a :: k).
Ord (f a) =>
WrappedDivisible f a -> WrappedDivisible f a -> Ordering
forall k (f :: k -> *) (a :: k).
Ord (f a) =>
WrappedDivisible f a
-> WrappedDivisible f a -> WrappedDivisible f a
min :: WrappedDivisible f a
-> WrappedDivisible f a -> WrappedDivisible f a
$cmin :: forall k (f :: k -> *) (a :: k).
Ord (f a) =>
WrappedDivisible f a
-> WrappedDivisible f a -> WrappedDivisible f a
max :: WrappedDivisible f a
-> WrappedDivisible f a -> WrappedDivisible f a
$cmax :: forall k (f :: k -> *) (a :: k).
Ord (f a) =>
WrappedDivisible f a
-> WrappedDivisible f a -> WrappedDivisible f a
>= :: WrappedDivisible f a -> WrappedDivisible f a -> Bool
$c>= :: forall k (f :: k -> *) (a :: k).
Ord (f a) =>
WrappedDivisible f a -> WrappedDivisible f a -> Bool
> :: WrappedDivisible f a -> WrappedDivisible f a -> Bool
$c> :: forall k (f :: k -> *) (a :: k).
Ord (f a) =>
WrappedDivisible f a -> WrappedDivisible f a -> Bool
<= :: WrappedDivisible f a -> WrappedDivisible f a -> Bool
$c<= :: forall k (f :: k -> *) (a :: k).
Ord (f a) =>
WrappedDivisible f a -> WrappedDivisible f a -> Bool
< :: WrappedDivisible f a -> WrappedDivisible f a -> Bool
$c< :: forall k (f :: k -> *) (a :: k).
Ord (f a) =>
WrappedDivisible f a -> WrappedDivisible f a -> Bool
compare :: WrappedDivisible f a -> WrappedDivisible f a -> Ordering
$ccompare :: forall k (f :: k -> *) (a :: k).
Ord (f a) =>
WrappedDivisible f a -> WrappedDivisible f a -> Ordering
Ord, ReadPrec [WrappedDivisible f a]
ReadPrec (WrappedDivisible f a)
ReadS [WrappedDivisible f a]
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
forall k (f :: k -> *) (a :: k).
Read (f a) =>
ReadPrec [WrappedDivisible f a]
forall k (f :: k -> *) (a :: k).
Read (f a) =>
ReadPrec (WrappedDivisible f a)
forall k (f :: k -> *) (a :: k).
Read (f a) =>
Int -> ReadS (WrappedDivisible f a)
forall k (f :: k -> *) (a :: k).
Read (f a) =>
ReadS [WrappedDivisible f a]
readListPrec :: ReadPrec [WrappedDivisible f a]
$creadListPrec :: forall k (f :: k -> *) (a :: k).
Read (f a) =>
ReadPrec [WrappedDivisible f a]
readPrec :: ReadPrec (WrappedDivisible f a)
$creadPrec :: forall k (f :: k -> *) (a :: k).
Read (f a) =>
ReadPrec (WrappedDivisible f a)
readList :: ReadS [WrappedDivisible f a]
$creadList :: forall k (f :: k -> *) (a :: k).
Read (f a) =>
ReadS [WrappedDivisible f a]
readsPrec :: Int -> ReadS (WrappedDivisible f a)
$creadsPrec :: forall k (f :: k -> *) (a :: k).
Read (f a) =>
Int -> ReadS (WrappedDivisible f a)
Read, forall a b. a -> WrappedDivisible f b -> WrappedDivisible f a
forall a b.
(a -> b) -> WrappedDivisible f a -> WrappedDivisible f b
forall (f :: * -> *) a b.
Functor f =>
a -> WrappedDivisible f b -> WrappedDivisible f a
forall (f :: * -> *) a b.
Functor f =>
(a -> b) -> WrappedDivisible f a -> WrappedDivisible f b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> WrappedDivisible f b -> WrappedDivisible f a
$c<$ :: forall (f :: * -> *) a b.
Functor f =>
a -> WrappedDivisible f b -> WrappedDivisible f a
fmap :: forall a b.
(a -> b) -> WrappedDivisible f a -> WrappedDivisible f b
$cfmap :: forall (f :: * -> *) a b.
Functor f =>
(a -> b) -> WrappedDivisible f a -> WrappedDivisible f b
Functor, forall a. Eq a => a -> WrappedDivisible f a -> Bool
forall a. Num a => WrappedDivisible f a -> a
forall a. Ord a => WrappedDivisible f a -> a
forall m. Monoid m => WrappedDivisible f m -> m
forall a. WrappedDivisible f a -> Bool
forall a. WrappedDivisible f a -> Int
forall a. WrappedDivisible f a -> [a]
forall a. (a -> a -> a) -> WrappedDivisible f a -> a
forall m a. Monoid m => (a -> m) -> WrappedDivisible f a -> m
forall b a. (b -> a -> b) -> b -> WrappedDivisible f a -> b
forall a b. (a -> b -> b) -> b -> WrappedDivisible f a -> b
forall (f :: * -> *) a.
(Foldable f, Eq a) =>
a -> WrappedDivisible f a -> Bool
forall (f :: * -> *) a.
(Foldable f, Num a) =>
WrappedDivisible f a -> a
forall (f :: * -> *) a.
(Foldable f, Ord a) =>
WrappedDivisible f a -> a
forall (f :: * -> *) m.
(Foldable f, Monoid m) =>
WrappedDivisible f m -> m
forall (f :: * -> *) a. Foldable f => WrappedDivisible f a -> Bool
forall (f :: * -> *) a. Foldable f => WrappedDivisible f a -> Int
forall (f :: * -> *) a. Foldable f => WrappedDivisible f a -> [a]
forall (f :: * -> *) a.
Foldable f =>
(a -> a -> a) -> WrappedDivisible f a -> a
forall (f :: * -> *) m a.
(Foldable f, Monoid m) =>
(a -> m) -> WrappedDivisible f a -> m
forall (f :: * -> *) b a.
Foldable f =>
(b -> a -> b) -> b -> WrappedDivisible f a -> b
forall (f :: * -> *) a b.
Foldable f =>
(a -> b -> b) -> b -> WrappedDivisible f a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => WrappedDivisible f a -> a
$cproduct :: forall (f :: * -> *) a.
(Foldable f, Num a) =>
WrappedDivisible f a -> a
sum :: forall a. Num a => WrappedDivisible f a -> a
$csum :: forall (f :: * -> *) a.
(Foldable f, Num a) =>
WrappedDivisible f a -> a
minimum :: forall a. Ord a => WrappedDivisible f a -> a
$cminimum :: forall (f :: * -> *) a.
(Foldable f, Ord a) =>
WrappedDivisible f a -> a
maximum :: forall a. Ord a => WrappedDivisible f a -> a
$cmaximum :: forall (f :: * -> *) a.
(Foldable f, Ord a) =>
WrappedDivisible f a -> a
elem :: forall a. Eq a => a -> WrappedDivisible f a -> Bool
$celem :: forall (f :: * -> *) a.
(Foldable f, Eq a) =>
a -> WrappedDivisible f a -> Bool
length :: forall a. WrappedDivisible f a -> Int
$clength :: forall (f :: * -> *) a. Foldable f => WrappedDivisible f a -> Int
null :: forall a. WrappedDivisible f a -> Bool
$cnull :: forall (f :: * -> *) a. Foldable f => WrappedDivisible f a -> Bool
toList :: forall a. WrappedDivisible f a -> [a]
$ctoList :: forall (f :: * -> *) a. Foldable f => WrappedDivisible f a -> [a]
foldl1 :: forall a. (a -> a -> a) -> WrappedDivisible f a -> a
$cfoldl1 :: forall (f :: * -> *) a.
Foldable f =>
(a -> a -> a) -> WrappedDivisible f a -> a
foldr1 :: forall a. (a -> a -> a) -> WrappedDivisible f a -> a
$cfoldr1 :: forall (f :: * -> *) a.
Foldable f =>
(a -> a -> a) -> WrappedDivisible f a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> WrappedDivisible f a -> b
$cfoldl' :: forall (f :: * -> *) b a.
Foldable f =>
(b -> a -> b) -> b -> WrappedDivisible f a -> b
foldl :: forall b a. (b -> a -> b) -> b -> WrappedDivisible f a -> b
$cfoldl :: forall (f :: * -> *) b a.
Foldable f =>
(b -> a -> b) -> b -> WrappedDivisible f a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> WrappedDivisible f a -> b
$cfoldr' :: forall (f :: * -> *) a b.
Foldable f =>
(a -> b -> b) -> b -> WrappedDivisible f a -> b
foldr :: forall a b. (a -> b -> b) -> b -> WrappedDivisible f a -> b
$cfoldr :: forall (f :: * -> *) a b.
Foldable f =>
(a -> b -> b) -> b -> WrappedDivisible f a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> WrappedDivisible f a -> m
$cfoldMap' :: forall (f :: * -> *) m a.
(Foldable f, Monoid m) =>
(a -> m) -> WrappedDivisible f a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> WrappedDivisible f a -> m
$cfoldMap :: forall (f :: * -> *) m a.
(Foldable f, Monoid m) =>
(a -> m) -> WrappedDivisible f a -> m
fold :: forall m. Monoid m => WrappedDivisible f m -> m
$cfold :: forall (f :: * -> *) m.
(Foldable f, Monoid m) =>
WrappedDivisible f m -> m
Foldable, forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall {f :: * -> *}. Traversable f => Functor (WrappedDivisible f)
forall {f :: * -> *}.
Traversable f =>
Foldable (WrappedDivisible f)
forall (f :: * -> *) (m :: * -> *) a.
(Traversable f, Monad m) =>
WrappedDivisible f (m a) -> m (WrappedDivisible f a)
forall (f :: * -> *) (f :: * -> *) a.
(Traversable f, Applicative f) =>
WrappedDivisible f (f a) -> f (WrappedDivisible f a)
forall (f :: * -> *) (m :: * -> *) a b.
(Traversable f, Monad m) =>
(a -> m b) -> WrappedDivisible f a -> m (WrappedDivisible f b)
forall (f :: * -> *) (f :: * -> *) a b.
(Traversable f, Applicative f) =>
(a -> f b) -> WrappedDivisible f a -> f (WrappedDivisible f b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> WrappedDivisible f a -> f (WrappedDivisible f b)
sequence :: forall (m :: * -> *) a.
Monad m =>
WrappedDivisible f (m a) -> m (WrappedDivisible f a)
$csequence :: forall (f :: * -> *) (m :: * -> *) a.
(Traversable f, Monad m) =>
WrappedDivisible f (m a) -> m (WrappedDivisible f a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> WrappedDivisible f a -> m (WrappedDivisible f b)
$cmapM :: forall (f :: * -> *) (m :: * -> *) a b.
(Traversable f, Monad m) =>
(a -> m b) -> WrappedDivisible f a -> m (WrappedDivisible f b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
WrappedDivisible f (f a) -> f (WrappedDivisible f a)
$csequenceA :: forall (f :: * -> *) (f :: * -> *) a.
(Traversable f, Applicative f) =>
WrappedDivisible f (f a) -> f (WrappedDivisible f a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> WrappedDivisible f a -> f (WrappedDivisible f b)
$ctraverse :: forall (f :: * -> *) (f :: * -> *) a b.
(Traversable f, Applicative f) =>
(a -> f b) -> WrappedDivisible f a -> f (WrappedDivisible f b)
Traversable)
deriving newtype (forall a. WrappedDivisible f a
forall a b c.
(a -> (b, c))
-> WrappedDivisible f b
-> WrappedDivisible f c
-> WrappedDivisible f a
forall (f :: * -> *).
Contravariant f
-> (forall a b c. (a -> (b, c)) -> f b -> f c -> f a)
-> (forall a. f a)
-> Divisible f
forall {f :: * -> *}.
Divisible f =>
Contravariant (WrappedDivisible f)
forall (f :: * -> *) a. Divisible f => WrappedDivisible f a
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c))
-> WrappedDivisible f b
-> WrappedDivisible f c
-> WrappedDivisible f a
conquer :: forall a. WrappedDivisible f a
$cconquer :: forall (f :: * -> *) a. Divisible f => WrappedDivisible f a
divide :: forall a b c.
(a -> (b, c))
-> WrappedDivisible f b
-> WrappedDivisible f c
-> WrappedDivisible f a
$cdivide :: forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c))
-> WrappedDivisible f b
-> WrappedDivisible f c
-> WrappedDivisible f a
Divisible, forall b a. b -> WrappedDivisible f b -> WrappedDivisible f a
forall a' a.
(a' -> a) -> WrappedDivisible f a -> WrappedDivisible f a'
forall (f :: * -> *) b a.
Contravariant f =>
b -> WrappedDivisible f b -> WrappedDivisible f a
forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> WrappedDivisible f a -> WrappedDivisible f a'
forall (f :: * -> *).
(forall a' a. (a' -> a) -> f a -> f a')
-> (forall b a. b -> f b -> f a) -> Contravariant f
>$ :: forall b a. b -> WrappedDivisible f b -> WrappedDivisible f a
$c>$ :: forall (f :: * -> *) b a.
Contravariant f =>
b -> WrappedDivisible f b -> WrappedDivisible f a
contramap :: forall a' a.
(a' -> a) -> WrappedDivisible f a -> WrappedDivisible f a'
$ccontramap :: forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> WrappedDivisible f a -> WrappedDivisible f a'
Contravariant)
deriveShow1 ''WrappedDivisible
deriveRead1 ''WrappedDivisible
deriveEq1 ''WrappedDivisible
deriveOrd1 ''WrappedDivisible
instance Contravariant f => Invariant (WrappedDivisible f) where
invmap :: forall a b.
(a -> b)
-> (b -> a) -> WrappedDivisible f a -> WrappedDivisible f b
invmap a -> b
_ b -> a
g (WrapDivisible f a
x) = forall {k} (f :: k -> *) (a :: k). f a -> WrappedDivisible f a
WrapDivisible (forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> f a -> f a'
contramap b -> a
g f a
x)
instance Divisible f => Divise (WrappedDivisible f) where
divise :: forall a b c.
(a -> (b, c))
-> WrappedDivisible f b
-> WrappedDivisible f c
-> WrappedDivisible f a
divise a -> (b, c)
f (WrapDivisible f b
x) (WrapDivisible f c
y) = forall {k} (f :: k -> *) (a :: k). f a -> WrappedDivisible f a
WrapDivisible (forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f f b
x f c
y)
#if MIN_VERSION_base(4,9,0)
instance Semigroup r => Divise (Op r) where
divise :: forall a b c. (a -> (b, c)) -> Op r b -> Op r c -> Op r a
divise a -> (b, c)
f (Op b -> r
g) (Op c -> r
h) = forall a b. (b -> a) -> Op a b
Op forall a b. (a -> b) -> a -> b
$ \a
a -> case a -> (b, c)
f a
a of
(b
b, c
c) -> b -> r
g b
b forall a. Semigroup a => a -> a -> a
<> c -> r
h c
c
instance Semigroup m => Divise (Const m) where
divise :: forall a b c. (a -> (b, c)) -> Const m b -> Const m c -> Const m a
divise a -> (b, c)
_ (Const m
a) (Const m
b) = forall {k} a (b :: k). a -> Const a b
Const (m
a forall a. Semigroup a => a -> a -> a
<> m
b)
instance Semigroup m => Divise (Constant m) where
divise :: forall a b c.
(a -> (b, c)) -> Constant m b -> Constant m c -> Constant m a
divise a -> (b, c)
_ (Constant m
a) (Constant m
b) = forall {k} a (b :: k). a -> Constant a b
Constant (m
a forall a. Semigroup a => a -> a -> a
<> m
b)
#else
instance Monoid r => Divise (Op r) where divise = divide
instance Monoid m => Divise (Const m) where divise = divide
instance Monoid m => Divise (Constant m) where divise = divide
#endif
instance Divise Comparison where divise :: forall a b c.
(a -> (b, c)) -> Comparison b -> Comparison c -> Comparison a
divise = forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
instance Divise Equivalence where divise :: forall a b c.
(a -> (b, c)) -> Equivalence b -> Equivalence c -> Equivalence a
divise = forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
instance Divise Predicate where divise :: forall a b c.
(a -> (b, c)) -> Predicate b -> Predicate c -> Predicate a
divise = forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
#if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged)
instance Divise Proxy where divise :: forall a b c. (a -> (b, c)) -> Proxy b -> Proxy c -> Proxy a
divise = forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
#endif
#ifdef MIN_VERSION_StateVar
instance Divise SettableStateVar where divise :: forall a b c.
(a -> (b, c))
-> SettableStateVar b -> SettableStateVar c -> SettableStateVar a
divise = forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
#endif
#if MIN_VERSION_base(4,8,0)
instance Divise f => Divise (Alt f) where
divise :: forall a b c. (a -> (b, c)) -> Alt f b -> Alt f c -> Alt f a
divise a -> (b, c)
f (Alt f b
l) (Alt f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> Alt f a
Alt forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
#endif
#ifdef GHC_GENERICS
instance Divise U1 where divise :: forall a b c. (a -> (b, c)) -> U1 b -> U1 c -> U1 a
divise = forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
instance Divise V1 where divise :: forall a b c. (a -> (b, c)) -> V1 b -> V1 c -> V1 a
divise a -> (b, c)
_ = \case {}
instance Divise f => Divise (Rec1 f) where
divise :: forall a b c. (a -> (b, c)) -> Rec1 f b -> Rec1 f c -> Rec1 f a
divise a -> (b, c)
f (Rec1 f b
l) (Rec1 f c
r) = forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
instance Divise f => Divise (M1 i c f) where
divise :: forall a b c.
(a -> (b, c)) -> M1 i c f b -> M1 i c f c -> M1 i c f a
divise a -> (b, c)
f (M1 f b
l) (M1 f c
r) = forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
instance (Divise f, Divise g) => Divise (f :*: g) where
divise :: forall a b c.
(a -> (b, c)) -> (:*:) f g b -> (:*:) f g c -> (:*:) f g a
divise a -> (b, c)
f (f b
l1 :*: g b
r1) (f c
l2 :*: g c
r2) = forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l1 f c
l2 forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f g b
r1 g c
r2
instance (Apply f, Divise g) => Divise (f :.: g) where
divise :: forall a b c.
(a -> (b, c)) -> (:.:) f g b -> (:.:) f g c -> (:.:) f g a
divise a -> (b, c)
f (Comp1 f (g b)
l) (Comp1 f (g c)
r) = forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 (forall (f :: * -> *) a b c.
Apply f =>
(a -> b -> c) -> f a -> f b -> f c
liftF2 (forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f) f (g b)
l f (g c)
r)
#endif
instance Divise f => Divise (Backwards f) where
divise :: forall a b c.
(a -> (b, c)) -> Backwards f b -> Backwards f c -> Backwards f a
divise a -> (b, c)
f (Backwards f b
l) (Backwards f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
instance Divise m => Divise (ErrorT e m) where
divise :: forall a b c.
(a -> (b, c)) -> ErrorT e m b -> ErrorT e m c -> ErrorT e m a
divise a -> (b, c)
f (ErrorT m (Either e b)
l) (ErrorT m (Either e c)
r) = forall e (m :: * -> *) a. m (Either e a) -> ErrorT e m a
ErrorT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> (b, c)
f) m (Either e b)
l m (Either e c)
r
instance Divise m => Divise (ExceptT e m) where
divise :: forall a b c.
(a -> (b, c)) -> ExceptT e m b -> ExceptT e m c -> ExceptT e m a
divise a -> (b, c)
f (ExceptT m (Either e b)
l) (ExceptT m (Either e c)
r) = forall e (m :: * -> *) a. m (Either e a) -> ExceptT e m a
ExceptT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> (b, c)
f) m (Either e b)
l m (Either e c)
r
instance Divise f => Divise (IdentityT f) where
divise :: forall a b c.
(a -> (b, c)) -> IdentityT f b -> IdentityT f c -> IdentityT f a
divise a -> (b, c)
f (IdentityT f b
l) (IdentityT f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
instance Divise m => Divise (ListT m) where
divise :: forall a b c. (a -> (b, c)) -> ListT m b -> ListT m c -> ListT m a
divise a -> (b, c)
f (ListT m [b]
l) (ListT m [c]
r) = forall (m :: * -> *) a. m [a] -> ListT m a
ListT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map a -> (b, c)
f) m [b]
l m [c]
r
instance Divise m => Divise (MaybeT m) where
divise :: forall a b c.
(a -> (b, c)) -> MaybeT m b -> MaybeT m c -> MaybeT m a
divise a -> (b, c)
f (MaybeT m (Maybe b)
l) (MaybeT m (Maybe c)
r) = forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> (b, c)
f) m (Maybe b)
l m (Maybe c)
r
instance Divise m => Divise (ReaderT r m) where
divise :: forall a b c.
(a -> (b, c)) -> ReaderT r m b -> ReaderT r m c -> ReaderT r m a
divise a -> (b, c)
abc (ReaderT r -> m b
rmb) (ReaderT r -> m c
rmc) = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT forall a b. (a -> b) -> a -> b
$ \r
r -> forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
abc (r -> m b
rmb r
r) (r -> m c
rmc r
r)
instance Divise m => Divise (Lazy.RWST r w s m) where
divise :: forall a b c.
(a -> (b, c)) -> RWST r w s m b -> RWST r w s m c -> RWST r w s m a
divise a -> (b, c)
abc (Lazy.RWST r -> s -> m (b, s, w)
rsmb) (Lazy.RWST r -> s -> m (c, s, w)
rsmc) = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Lazy.RWST forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (\ ~(a
a, s
s', w
w) -> case a -> (b, c)
abc a
a of
~(b
b, c
c) -> ((b
b, s
s', w
w), (c
c, s
s', w
w)))
(r -> s -> m (b, s, w)
rsmb r
r s
s) (r -> s -> m (c, s, w)
rsmc r
r s
s)
instance Divise m => Divise (Strict.RWST r w s m) where
divise :: forall a b c.
(a -> (b, c)) -> RWST r w s m b -> RWST r w s m c -> RWST r w s m a
divise a -> (b, c)
abc (Strict.RWST r -> s -> m (b, s, w)
rsmb) (Strict.RWST r -> s -> m (c, s, w)
rsmc) = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Strict.RWST forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (\(a
a, s
s', w
w) -> case a -> (b, c)
abc a
a of
(b
b, c
c) -> ((b
b, s
s', w
w), (c
c, s
s', w
w)))
(r -> s -> m (b, s, w)
rsmb r
r s
s) (r -> s -> m (c, s, w)
rsmc r
r s
s)
instance Divise m => Divise (Lazy.StateT s m) where
divise :: forall a b c.
(a -> (b, c)) -> StateT s m b -> StateT s m c -> StateT s m a
divise a -> (b, c)
f (Lazy.StateT s -> m (b, s)
l) (Lazy.StateT s -> m (c, s)
r) = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Lazy.StateT forall a b. (a -> b) -> a -> b
$ \s
s ->
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout a -> (b, c)
f) (s -> m (b, s)
l s
s) (s -> m (c, s)
r s
s)
instance Divise m => Divise (Strict.StateT s m) where
divise :: forall a b c.
(a -> (b, c)) -> StateT s m b -> StateT s m c -> StateT s m a
divise a -> (b, c)
f (Strict.StateT s -> m (b, s)
l) (Strict.StateT s -> m (c, s)
r) = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT forall a b. (a -> b) -> a -> b
$ \s
s ->
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout a -> (b, c)
f) (s -> m (b, s)
l s
s) (s -> m (c, s)
r s
s)
instance Divise m => Divise (Lazy.WriterT w m) where
divise :: forall a b c.
(a -> (b, c)) -> WriterT w m b -> WriterT w m c -> WriterT w m a
divise a -> (b, c)
f (Lazy.WriterT m (b, w)
l) (Lazy.WriterT m (c, w)
r) = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT forall a b. (a -> b) -> a -> b
$
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout a -> (b, c)
f) m (b, w)
l m (c, w)
r
instance Divise m => Divise (Strict.WriterT w m) where
divise :: forall a b c.
(a -> (b, c)) -> WriterT w m b -> WriterT w m c -> WriterT w m a
divise a -> (b, c)
f (Strict.WriterT m (b, w)
l) (Strict.WriterT m (c, w)
r) = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT forall a b. (a -> b) -> a -> b
$
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout a -> (b, c)
f) m (b, w)
l m (c, w)
r
instance (Apply f, Divise g) => Divise (Compose f g) where
divise :: forall a b c.
(a -> (b, c)) -> Compose f g b -> Compose f g c -> Compose f g a
divise a -> (b, c)
f (Compose f (g b)
l) (Compose f (g c)
r) = forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (forall (f :: * -> *) a b c.
Apply f =>
(a -> b -> c) -> f a -> f b -> f c
liftF2 (forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f) f (g b)
l f (g c)
r)
instance (Divise f, Divise g) => Divise (Product f g) where
divise :: forall a b c.
(a -> (b, c)) -> Product f g b -> Product f g c -> Product f g a
divise a -> (b, c)
f (Pair f b
l1 g b
r1) (Pair f c
l2 g c
r2) = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l1 f c
l2) (forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f g b
r1 g c
r2)
instance Divise f => Divise (Reverse f) where
divise :: forall a b c.
(a -> (b, c)) -> Reverse f b -> Reverse f c -> Reverse f a
divise a -> (b, c)
f (Reverse f b
l) (Reverse f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> Reverse f a
Reverse forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
lazyFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout :: forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout a -> (b, c)
f ~(a
a, s
s) = case a -> (b, c)
f a
a of
~(b
b, c
c) -> ((b
b, s
s), (c
c, s
s))
strictFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout :: forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout a -> (b, c)
f (a
a, s
s) = case a -> (b, c)
f a
a of
(b
b, c
c) -> ((b
b, s
s), (c
c, s
s))
funzip :: Functor f => f (a, b) -> (f a, f b)
funzip :: forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> a
fst forall (a :: * -> * -> *) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> b
snd