module Data.HFunctor.Chain.Internal (
    Chain1(..)
  , foldChain1, unfoldChain1
  , toChain1, injectChain1
  , matchChain1
  , Chain(..)
  , foldChain, unfoldChain
  , splittingChain, unconsChain
  , DayChain1(..)
  , DayChain(..)
  , NightChain(..)
  , NightChain1(..)
  ) where

import           Control.Natural
import           Control.Natural.IsoF
import           Data.Functor.Classes
import           Data.Functor.Contravariant
import           Data.Functor.Identity
import           Data.Functor.Invariant
import           Data.HBifunctor
import           Data.HFunctor
import           Data.Kind
import           Data.Typeable
import           Data.Void
import           GHC.Generics
import qualified Data.Functor.Invariant.Day   as ID
import qualified Data.Functor.Invariant.Night as IN


-- | A useful construction that works like a "non-empty linked list" of @t
-- f@ applied to itself multiple times.  That is, it contains @t f f@, @t
-- f (t f f)@, @t f (t f (t f f))@, etc, with @f@ occuring /one or more/
-- times.  It is meant to be the same as @'NonEmptyBy' t@.
--
-- A @'Chain1' t f a@ is explicitly one of:
--
-- *  @f a@
-- *  @t f f a@
-- *  @t f (t f f) a@
-- *  @t f (t f (t f f)) a@
-- *  .. etc
--
-- Note that this is exactly the description of @'NonEmptyBy' t@.  And that's "the
-- point": for all instances of 'Associative', @'Chain1' t@ is
-- isomorphic to @'NonEmptyBy' t@ (witnessed by 'unrollingNE').  That's big picture
-- of 'NonEmptyBy': it's supposed to be a type that consists of all possible
-- self-applications of @f@ to @t@.
--
-- 'Chain1' gives you a way to work with all @'NonEmptyBy' t@ in a uniform way.
-- Unlike for @'NonEmptyBy' t f@ in general, you can always explicitly /pattern
-- match/ on a 'Chain1' (with its two constructors) and do what you please
-- with it.  You can also /construct/ 'Chain1' using normal constructors
-- and functions.
--
-- You can convert in between @'NonEmptyBy' t f@ and @'Chain1' t f@ with 'unrollNE'
-- and 'rerollNE'.  You can fully "collapse" a @'Chain1' t f@ into an @f@
-- with 'retract', if you have @'SemigroupIn' t f@; this could be considered
-- a fundamental property of semigroup-ness.
--
-- See 'Chain' for a version that has an "empty" value.
--
-- Another way of thinking of this is that @'Chain1' t@ is the "free
-- @'SemigroupIn' t@".  Given any functor @f@, @'Chain1' t f@ is
-- a semigroup in the semigroupoidal category of endofunctors enriched by
-- @t@.  So, @'Chain1' 'Control.Monad.Freer.Church.Comp'@ is the "free
-- 'Data.Functor.Bind.Bind'", @'Chain1' 'Day'@ is the "free
-- 'Data.Functor.Apply.Apply'", etc. You "lift" from @f a@ to @'Chain1'
-- t f a@ using 'inject'.
--
-- Note: this instance doesn't exist directly because of restrictions in
-- typeclasses, but is implemented as
--
-- @
-- 'Associative' t => 'SemigroupIn' ('WrapHBF' t) ('Chain1' t f)
-- @
--
-- where 'biretract' is 'appendChain1'.
--
-- You can fully "collapse" a @'Chain' t i f@ into an @f@ with
-- 'retract', if you have @'MonoidIn' t i f@; this could be considered
-- a fundamental property of monoid-ness.
--
--
-- This construction is inspired by iteratees and machines.
data Chain1 t f a = Done1 (f a)
                  | More1 (t f (Chain1 t f) a)
  deriving (Typeable, Generic)

deriving instance (Eq (f a), Eq (t f (Chain1 t f) a)) => Eq (Chain1 t f a)
deriving instance (Ord (f a), Ord (t f (Chain1 t f) a)) => Ord (Chain1 t f a)
deriving instance (Show (f a), Show (t f (Chain1 t f) a)) => Show (Chain1 t f a)
deriving instance (Read (f a), Read (t f (Chain1 t f) a)) => Read (Chain1 t f a)
deriving instance (Functor f, Functor (t f (Chain1 t f))) => Functor (Chain1 t f)
deriving instance (Foldable f, Foldable (t f (Chain1 t f))) => Foldable (Chain1 t f)
deriving instance (Traversable f, Traversable (t f (Chain1 t f))) => Traversable (Chain1 t f)

instance (Eq1 f, Eq1 (t f (Chain1 t f))) => Eq1 (Chain1 t f) where
    liftEq eq = \case
      Done1 x -> \case
        Done1 y -> liftEq eq x y
        More1 _ -> False
      More1 x -> \case
        Done1 _ -> False
        More1 y -> liftEq eq x y

instance (Ord1 f, Ord1 (t f (Chain1 t f))) => Ord1 (Chain1 t f) where
    liftCompare c = \case
      Done1 x -> \case
        Done1 y -> liftCompare c x y
        More1 _ -> LT
      More1 x -> \case
        Done1 _ -> GT
        More1 y -> liftCompare c x y

instance (Show1 (t f (Chain1 t f)), Show1 f) => Show1 (Chain1 t f) where
    liftShowsPrec sp sl d = \case
        Done1 x  -> showsUnaryWith (liftShowsPrec sp sl) "Done1" d x
        More1 xs -> showsUnaryWith (liftShowsPrec sp sl) "More1" d xs

instance (Functor f, Read1 (t f (Chain1 t f)), Read1 f) => Read1 (Chain1 t f) where
    liftReadsPrec rp rl = readsData $
            readsUnaryWith (liftReadsPrec rp rl) "Done1" Done1
         <> readsUnaryWith (liftReadsPrec rp rl) "More1" More1

-- | @since 0.3.0.0
instance (Contravariant f, Contravariant (t f (Chain1 t f))) => Contravariant (Chain1 t f) where
    contramap f = \case
      Done1 x  -> Done1 (contramap f x )
      More1 xs -> More1 (contramap f xs)

-- | @since 0.3.0.0
instance (Invariant f, Invariant (t f (Chain1 t f))) => Invariant (Chain1 t f) where
    invmap f g = \case
      Done1 x  -> Done1 (invmap f g x )
      More1 xs -> More1 (invmap f g xs)

instance HBifunctor t => HFunctor (Chain1 t) where
    hmap f = foldChain1 (Done1 . f) (More1 . hleft f)

instance HBifunctor t => Inject (Chain1 t) where
    inject  = injectChain1

-- | Recursively fold down a 'Chain1'.  Provide a function on how to handle
-- the "single @f@ case" ('inject'), and how to handle the "combined @t
-- f g@ case", and this will fold the entire @'Chain1' t f@ into a single
-- @g@.
--
-- This is a catamorphism.
foldChain1
    :: forall t f g. HBifunctor t
    => f ~> g                   -- ^ handle 'Done1'
    -> t f g ~> g               -- ^ handle 'More1'
    -> Chain1 t f ~> g
foldChain1 f g = go
  where
    go :: Chain1 t f ~> g
    go = \case
      Done1 x  -> f x
      More1 xs -> g (hright go xs)

-- | Recursively build up a 'Chain1'.  Provide a function that takes some
-- starting seed @g@ and returns either "done" (@f@) or "continue further"
-- (@t f g@), and it will create a @'Chain1' t f@ from a @g@.
--
-- This is an anamorphism.
unfoldChain1
    :: forall t f (g :: Type -> Type). HBifunctor t
    => (g ~> f :+: t f g)
    -> g ~> Chain1 t f
unfoldChain1 f = go
  where
    go :: g ~> Chain1 t f
    go = (\case L1 x -> Done1 x; R1 y -> More1 (hright go y)) . f

-- | Convert a tensor value pairing two @f@s into a two-item 'Chain1'.  An
-- analogue of 'toNonEmptyBy'.
--
-- @since 0.3.1.0
toChain1 :: HBifunctor t => t f f ~> Chain1 t f
toChain1 = More1 . hright Done1

-- | Create a singleton 'Chain1'.
--
-- @since 0.3.0.0
injectChain1 :: f ~> Chain1 t f
injectChain1 = Done1

-- | For completeness, an isomorphism between 'Chain1' and its two
-- constructors, to match 'matchNE'.
--
-- @since 0.3.0.0
matchChain1 :: Chain1 t f ~> (f :+: t f (Chain1 t f))
matchChain1 = \case
    Done1 x  -> L1 x
    More1 xs -> R1 xs

-- | A useful construction that works like a "linked list" of @t f@ applied
-- to itself multiple times.  That is, it contains @t f f@, @t f (t f f)@,
-- @t f (t f (t f f))@, etc, with @f@ occuring /zero or more/ times.  It is
-- meant to be the same as @'ListBy' t@.
--
-- If @t@ is 'Tensor', then it means we can "collapse" this linked list
-- into some final type @'ListBy' t@ ('reroll'), and also extract it back
-- into a linked list ('unroll').
--
-- So, a value of type @'Chain' t i f a@ is one of either:
--
-- *  @i a@
-- *  @f a@
-- *  @t f f a@
-- *  @t f (t f f) a@
-- *  @t f (t f (t f f)) a@
-- *  .. etc.
--
-- Note that this is /exactly/ what an @'ListBy' t@ is supposed to be.  Using
-- 'Chain' allows us to work with all @'ListBy' t@s in a uniform way, with
-- normal pattern matching and normal constructors.
--
-- You can fully "collapse" a @'Chain' t i f@ into an @f@ with
-- 'retract', if you have @'MonoidIn' t i f@; this could be considered
-- a fundamental property of monoid-ness.
--
-- Another way of thinking of this is that @'Chain' t i@ is the "free
-- @'MonoidIn' t i@".  Given any functor @f@, @'Chain' t i f@ is a monoid
-- in the monoidal category of endofunctors enriched by @t@.  So, @'Chain'
-- 'Control.Monad.Freer.Church.Comp' 'Data.Functor.Identity.Identity'@ is
-- the "free 'Monad'", @'Chain' 'Data.Functor.Day.Day'
-- 'Data.Functor.Identity.Identity'@ is the "free 'Applicative'", etc.  You
-- "lift" from @f a@ to @'Chain' t i f a@ using 'inject'.
--
-- Note: this instance doesn't exist directly because of restrictions in
-- typeclasses, but is implemented as
--
-- @
-- 'Tensor' t i => 'MonoidIn' ('WrapHBF' t) ('WrapF' i) ('Chain' t i f)
-- @
--
-- where 'pureT' is 'Done' and 'biretract' is 'appendChain'.
--
-- This construction is inspired by
-- <http://oleg.fi/gists/posts/2018-02-21-single-free.html>
data Chain t i f a = Done (i a)
                   | More (t f (Chain t i f) a)

deriving instance (Eq (i a), Eq (t f (Chain t i f) a)) => Eq (Chain t i f a)
deriving instance (Ord (i a), Ord (t f (Chain t i f) a)) => Ord (Chain t i f a)
deriving instance (Show (i a), Show (t f (Chain t i f) a)) => Show (Chain t i f a)
deriving instance (Read (i a), Read (t f (Chain t i f) a)) => Read (Chain t i f a)
deriving instance (Functor i, Functor (t f (Chain t i f))) => Functor (Chain t i f)
deriving instance (Foldable i, Foldable (t f (Chain t i f))) => Foldable (Chain t i f)
deriving instance (Traversable i, Traversable (t f (Chain t i f))) => Traversable (Chain t i f)

instance (Eq1 i, Eq1 (t f (Chain t i f))) => Eq1 (Chain t i f) where
    liftEq eq = \case
      Done x -> \case
        Done y -> liftEq eq x y
        More _ -> False
      More x -> \case
        Done _ -> False
        More y -> liftEq eq x y

instance (Ord1 i, Ord1 (t f (Chain t i f))) => Ord1 (Chain t i f) where
    liftCompare c = \case
      Done x -> \case
        Done y -> liftCompare c x y
        More _ -> LT
      More x -> \case
        Done _ -> GT
        More y -> liftCompare c x y

instance (Show1 (t f (Chain t i f)), Show1 i) => Show1 (Chain t i f) where
    liftShowsPrec sp sl d = \case
        Done x  -> showsUnaryWith (liftShowsPrec sp sl) "Done" d x
        More xs -> showsUnaryWith (liftShowsPrec sp sl) "More" d xs

instance (Functor i, Read1 (t f (Chain t i f)), Read1 i) => Read1 (Chain t i f) where
    liftReadsPrec rp rl = readsData $
            readsUnaryWith (liftReadsPrec rp rl) "Done" Done
         <> readsUnaryWith (liftReadsPrec rp rl) "More" More

instance (Contravariant i, Contravariant (t f (Chain t i f))) => Contravariant (Chain t i f) where
    contramap f = \case
      Done x  -> Done (contramap f x )
      More xs -> More (contramap f xs)

instance (Invariant i, Invariant (t f (Chain t i f))) => Invariant (Chain t i f) where
    invmap f g = \case
      Done x  -> Done (invmap f g x )
      More xs -> More (invmap f g xs)

instance HBifunctor t => HFunctor (Chain t i) where
    hmap f = foldChain Done (More . hleft f)

-- | Recursively fold down a 'Chain'.  Provide a function on how to handle
-- the "single @f@ case" ('nilLB'), and how to handle the "combined @t f g@
-- case", and this will fold the entire @'Chain' t i) f@ into a single @g@.
--
-- This is a catamorphism.
foldChain
    :: forall t i f g. HBifunctor t
    => (i ~> g)             -- ^ Handle 'Done'
    -> (t f g ~> g)         -- ^ Handle 'More'
    -> Chain t i f ~> g
foldChain f g = go
  where
    go :: Chain t i f ~> g
    go = \case
      Done x  -> f x
      More xs -> g (hright go xs)

-- | Recursively build up a 'Chain'.  Provide a function that takes some
-- starting seed @g@ and returns either "done" (@i@) or "continue further"
-- (@t f g@), and it will create a @'Chain' t i f@ from a @g@.
--
-- This is an anamorphism.
unfoldChain
    :: forall t f (g :: Type -> Type) i. HBifunctor t
    => (g ~> i :+: t f g)
    -> g ~> Chain t i f
unfoldChain f = go
  where
    go :: g a -> Chain t i f a
    go = (\case L1 x -> Done x; R1 y ->  More (hright go y)) . f

-- | For completeness, an isomorphism between 'Chain' and its two
-- constructors, to match 'splittingLB'.
--
-- @since 0.3.0.0
splittingChain :: Chain t i f <~> (i :+: t f (Chain t i f))
splittingChain = isoF unconsChain $ \case
      L1 x  -> Done x
      R1 xs -> More xs

-- | An analogue of 'unconsLB': match one of the two constructors of
-- a 'Chain'.
--
-- @since 0.3.0.0
unconsChain :: Chain t i f ~> i :+: t f (Chain t i f)
unconsChain = \case
    Done x  -> L1 x
    More xs -> R1 xs

-- | Instead of defining yet another separate free semigroup like
-- 'Data.Functor.Apply.Free.Ap1',
-- 'Data.Functor.Contravariant.Divisible.Free.Div1', or
-- 'Data.Functor.Contravariant.Divisible.Free.Dec1', we re-use 'Chain1'.
--
-- You can assemble values using the combinators in "Data.HFunctor.Chain",
-- and then tear them down/interpret them using 'runCoDayChain1' and
-- 'runContraDayChain1'.  There is no general invariant interpreter (and so no
-- 'SemigroupIn' instance for 'Day') because the typeclasses used to
-- express the target contexts are probably not worth defining given how
-- little the Haskell ecosystem uses invariant functors as an abstraction.
newtype DayChain1 f a = DayChain1_ { unDayChain1 :: Chain1 ID.Day f a }
  deriving (Invariant, HFunctor, Inject)

-- | Instead of defining yet another separate free monoid like
-- 'Control.Applicative.Free.Ap',
-- 'Data.Functor.Contravariant.Divisible.Free.Div', or
-- 'Data.Functor.Contravariant.Divisible.Free.Dec', we re-use 'Chain'.
--
-- You can assemble values using the combinators in "Data.HFunctor.Chain",
-- and then tear them down/interpret them using 'runCoDayChain' and
-- 'runContraDayChain'.  There is no general invariant interpreter (and so no
-- 'MonoidIn' instance for 'Day') because the typeclasses used to express
-- the target contexts are probably not worth defining given how little the
-- Haskell ecosystem uses invariant functors as an abstraction.
newtype DayChain f a = DayChain { unDayChain :: Chain ID.Day Identity f a }
  deriving (Invariant, HFunctor)

instance Inject DayChain where
    inject x = DayChain $ More (ID.Day x (Done (Identity ())) const (,()))

-- | Instead of defining yet another separate free semigroup like
-- 'Data.Functor.Apply.Free.Ap1',
-- 'Data.Functor.Contravariant.Divisible.Free.Div1', or
-- 'Data.Functor.Contravariant.Divisible.Free.Dec1', we re-use 'Chain1'.
--
-- You can assemble values using the combinators in "Data.HFunctor.Chain",
-- and then tear them down/interpret them using 'runCoNightChain1' and
-- 'runContraNightChain1'.  There is no general invariant interpreter (and so no
-- 'SemigroupIn' instance for 'Night') because the typeclasses used to
-- express the target contexts are probably not worth defining given how
-- little the Haskell ecosystem uses invariant functors as an abstraction.
newtype NightChain1 f a = NightChain1_ { unNightChain1 :: Chain1 IN.Night f a }
  deriving (Invariant, HFunctor, Inject)

-- | Instead of defining yet another separate free monoid like
-- 'Control.Applicative.Free.Ap',
-- 'Data.Functor.Contravariant.Divisible.Free.Div', or
-- 'Data.Functor.Contravariant.Divisible.Free.Dec', we re-use 'Chain'.
--
-- You can assemble values using the combinators in "Data.HFunctor.Chain",
-- and then tear them down/interpret them using 'runCoNightChain' and
-- 'runContraNightChain'.  There is no general invariant interpreter (and so no
-- 'MonoidIn' instance for 'Night') because the typeclasses used to express
-- the target contexts are probably not worth defining given how little the
-- Haskell ecosystem uses invariant functors as an abstraction.
newtype NightChain f a = NightChain { unNightChain :: Chain IN.Night IN.Not f a }
  deriving (Invariant, HFunctor)

instance Inject NightChain where
    inject x = NightChain $ More (IN.Night x (Done IN.refuted) Left id absurd)