Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Extensions |
|
Synopsis
- data Arr f a b where
- arrArr :: (b -> c) -> Arr f b c
- liftArr :: f a b -> Arr f a b
- mapArr :: f b c -> Arr f a b -> Arr f a c
- foldArr :: forall f arr a b. Arrow arr => (forall x y. f x y -> arr x y) -> Arr f a b -> arr a b
- newtype A f a b = A {}
- fromA :: A f a b -> Arr f a b
- toA :: Arr f a b -> A f a b
- class FreeAlgebra2 (m :: (k -> k -> Type) -> k -> k -> Type) where
- liftFree2 :: forall f (a :: k) (b :: k). AlgebraType0 m f => f a b -> m f a b
- foldNatFree2 :: forall d f (a :: k) (b :: k). (AlgebraType m d, AlgebraType0 m f) => (forall (x :: k) (y :: k). f x y -> d x y) -> m f a b -> d a b
- codom2 :: forall (f :: k -> k -> Type). AlgebraType0 m f => Proof (AlgebraType m (m f)) (m f)
- forget2 :: forall (f :: k -> k -> Type). AlgebraType m f => Proof (AlgebraType0 m f) (m f)
- wrapFree2 :: (AlgebraType0 m f, FreeAlgebra2 m, Monad (m f a)) => f a (m f a b) -> m f a b
- foldFree2 :: forall k m f (a :: k) (b :: k). (FreeAlgebra2 m, AlgebraType m f) => m f a b -> f a b
- hoistFree2 :: forall k m f g (a :: k) (b :: k). (FreeAlgebra2 m, AlgebraType0 m g, AlgebraType0 m f) => (forall (x :: k) (y :: k). f x y -> g x y) -> m f a b -> m g a b
- joinFree2 :: forall k m (f :: k -> k -> Type) (a :: k) (b :: k). (FreeAlgebra2 m, AlgebraType0 m f) => m (m f) a b -> m f a b
- bindFree2 :: forall {k} m f (g :: k -> k -> Type) (a :: k) (b :: k). (FreeAlgebra2 m, AlgebraType0 m g, AlgebraType0 m f) => m f a b -> (forall (x :: k) (y :: k). f x y -> m g x y) -> m g a b
- data Choice f a b where
- liftArrChoice :: f a b -> ArrChoice f a b
- foldArrChoice :: forall f arr a b. ArrowChoice arr => (forall x y. f x y -> arr x y) -> ArrChoice f a b -> arr a b
Free arrow
Id :: Arr f a a | |
Cons :: f b c -> Queue (Arr f) a b -> Arr f a c | |
Arr :: (b -> c) -> Arr f a b -> Arr f a c | |
Prod :: Arr f a b -> Arr f a c -> Arr f a (b, c) |
Instances
foldArr :: forall f arr a b. Arrow arr => (forall x y. f x y -> arr x y) -> Arr f a b -> arr a b Source #
Free arrow (CPS style)
Free arrow using CPS style.
Instances
Arrow (A f) Source # | |
FreeAlgebra2 A Source # | |
Defined in Control.Arrow.Free liftFree2 :: forall f (a :: k) (b :: k). AlgebraType0 A f => f a b -> A f a b # foldNatFree2 :: forall d f (a :: k) (b :: k). (AlgebraType A d, AlgebraType0 A f) => (forall (x :: k) (y :: k). f x y -> d x y) -> A f a b -> d a b # codom2 :: forall (f :: k -> k -> Type). AlgebraType0 A f => Proof (AlgebraType A (A f)) (A f) # forget2 :: forall (f :: k -> k -> Type). AlgebraType A f => Proof (AlgebraType0 A f) (A f) # | |
Category (A f :: TYPE LiftedRep -> TYPE LiftedRep -> TYPE LiftedRep) Source # | |
Monoid (A f o o) Source # | |
Semigroup (A f o o) Source # | |
type AlgebraType0 A (f :: l) Source # | |
Defined in Control.Arrow.Free | |
type AlgebraType A (c :: TYPE LiftedRep -> TYPE LiftedRep -> Type) Source # | |
Defined in Control.Arrow.Free |
fromA :: A f a b -> Arr f a b Source #
Inverse of
, which also is a specialisation of fromA
.hoistFreeH2
toA :: Arr f a b -> A f a b Source #
Isomorphism from
to Arr
, which is a specialisation of
A
.hoistFreeH2
Free interface re-exports
class FreeAlgebra2 (m :: (k -> k -> Type) -> k -> k -> Type) where #
Free algebra class similar to
and FreeAlgebra1
, but
for types of kind FreeAlgebra
k -> k -> Type
.
liftFree2 :: forall f (a :: k) (b :: k). AlgebraType0 m f => f a b -> m f a b #
Lift a graph f
satisfying the constraint
to a free
its object AlgebraType0
m f
.
foldNatFree2 :: forall d f (a :: k) (b :: k). (AlgebraType m d, AlgebraType0 m f) => (forall (x :: k) (y :: k). f x y -> d x y) -> m f a b -> d a b #
This represents the theorem that m f
is indeed free object (as
in propositions as types). The types of kind k -> k -> Type
form
a category, where an arrow from f :: k -> k -> Type
to d :: k ->
k -> Type
is represented by type forall x y. f x y -> d x y
.
foldNatFree2
states that whenever we have such a morphism and d
satisfies the constraint AlgebraType m d
then we can construct
a morphism from m f
to d
.
foldNatFree2 nat (liftFree2 tr) = nat tr
foldNatFree2 nat . foldNatFree2 nat' = foldNatFree2 (foldNatFree2 nat . nat')
codom2 :: forall (f :: k -> k -> Type). AlgebraType0 m f => Proof (AlgebraType m (m f)) (m f) #
A proof that for each f
satisfying AlgebraType0 m f
, m f
satisfies AlgebraType m (m f)
constraint. This means that m
is
a well defined functor from the full sub-category of types of kind k
-> k -> Type
which satisfy the AlgebraType0 m
constraint to the full
subcategory of types of the same kind which satisfy the constraint
AlgebraType m
.
forget2 :: forall (f :: k -> k -> Type). AlgebraType m f => Proof (AlgebraType0 m f) (m f) #
A proof that each type f :: k -> k -> Type
satisfying the Algebra
m f
constraint also satisfies AlgebraType0 m f
. This states that
there is a well defined forgetful functor from the category of types
of kind k -> k -> Type
which satisfy the AlgebraType m
to the
category of types of the same kind which satisfy the AlgebraType0 m
constraint.
Instances
FreeAlgebra2 (C :: (k -> k -> Type) -> k -> k -> TYPE LiftedRep) Source # | |
Defined in Control.Category.Free liftFree2 :: forall f (a :: k0) (b :: k0). AlgebraType0 C f => f a b -> C f a b # foldNatFree2 :: forall d f (a :: k0) (b :: k0). (AlgebraType C d, AlgebraType0 C f) => (forall (x :: k0) (y :: k0). f x y -> d x y) -> C f a b -> d a b # codom2 :: forall (f :: k0 -> k0 -> Type). AlgebraType0 C f => Proof (AlgebraType C (C f)) (C f) # forget2 :: forall (f :: k0 -> k0 -> Type). AlgebraType C f => Proof (AlgebraType0 C f) (C f) # | |
FreeAlgebra2 (ListTr :: (k -> k -> Type) -> k -> k -> Type) Source # | |
Defined in Control.Category.Free.Internal liftFree2 :: forall f (a :: k0) (b :: k0). AlgebraType0 ListTr f => f a b -> ListTr f a b # foldNatFree2 :: forall d f (a :: k0) (b :: k0). (AlgebraType ListTr d, AlgebraType0 ListTr f) => (forall (x :: k0) (y :: k0). f x y -> d x y) -> ListTr f a b -> d a b # codom2 :: forall (f :: k0 -> k0 -> Type). AlgebraType0 ListTr f => Proof (AlgebraType ListTr (ListTr f)) (ListTr f) # forget2 :: forall (f :: k0 -> k0 -> Type). AlgebraType ListTr f => Proof (AlgebraType0 ListTr f) (ListTr f) # | |
FreeAlgebra2 (Queue :: (k -> k -> Type) -> k -> k -> Type) Source # | |
Defined in Control.Category.Free.Internal liftFree2 :: forall f (a :: k0) (b :: k0). AlgebraType0 Queue f => f a b -> Queue f a b # foldNatFree2 :: forall d f (a :: k0) (b :: k0). (AlgebraType Queue d, AlgebraType0 Queue f) => (forall (x :: k0) (y :: k0). f x y -> d x y) -> Queue f a b -> d a b # codom2 :: forall (f :: k0 -> k0 -> Type). AlgebraType0 Queue f => Proof (AlgebraType Queue (Queue f)) (Queue f) # forget2 :: forall (f :: k0 -> k0 -> Type). AlgebraType Queue f => Proof (AlgebraType0 Queue f) (Queue f) # | |
Monad m => FreeAlgebra2 (EffCat m :: (k -> k -> Type) -> k -> k -> Type) Source # | |
Defined in Control.Category.FreeEffect liftFree2 :: forall f (a :: k0) (b :: k0). AlgebraType0 (EffCat m) f => f a b -> EffCat m f a b # foldNatFree2 :: forall d f (a :: k0) (b :: k0). (AlgebraType (EffCat m) d, AlgebraType0 (EffCat m) f) => (forall (x :: k0) (y :: k0). f x y -> d x y) -> EffCat m f a b -> d a b # codom2 :: forall (f :: k0 -> k0 -> Type). AlgebraType0 (EffCat m) f => Proof (AlgebraType (EffCat m) (EffCat m f)) (EffCat m f) # forget2 :: forall (f :: k0 -> k0 -> Type). AlgebraType (EffCat m) f => Proof (AlgebraType0 (EffCat m) f) (EffCat m f) # | |
FreeAlgebra2 A Source # | |
Defined in Control.Arrow.Free liftFree2 :: forall f (a :: k) (b :: k). AlgebraType0 A f => f a b -> A f a b # foldNatFree2 :: forall d f (a :: k) (b :: k). (AlgebraType A d, AlgebraType0 A f) => (forall (x :: k) (y :: k). f x y -> d x y) -> A f a b -> d a b # codom2 :: forall (f :: k -> k -> Type). AlgebraType0 A f => Proof (AlgebraType A (A f)) (A f) # forget2 :: forall (f :: k -> k -> Type). AlgebraType A f => Proof (AlgebraType0 A f) (A f) # | |
FreeAlgebra2 Arr Source # | |
Defined in Control.Arrow.Free liftFree2 :: forall f (a :: k) (b :: k). AlgebraType0 Arr f => f a b -> Arr f a b # foldNatFree2 :: forall d f (a :: k) (b :: k). (AlgebraType Arr d, AlgebraType0 Arr f) => (forall (x :: k) (y :: k). f x y -> d x y) -> Arr f a b -> d a b # codom2 :: forall (f :: k -> k -> Type). AlgebraType0 Arr f => Proof (AlgebraType Arr (Arr f)) (Arr f) # forget2 :: forall (f :: k -> k -> Type). AlgebraType Arr f => Proof (AlgebraType0 Arr f) (Arr f) # |
wrapFree2 :: (AlgebraType0 m f, FreeAlgebra2 m, Monad (m f a)) => f a (m f a b) -> m f a b #
Version of wrap
from free
package but for graphs.
foldFree2 :: forall k m f (a :: k) (b :: k). (FreeAlgebra2 m, AlgebraType m f) => m f a b -> f a b #
hoistFree2 :: forall k m f g (a :: k) (b :: k). (FreeAlgebra2 m, AlgebraType0 m g, AlgebraType0 m f) => (forall (x :: k) (y :: k). f x y -> g x y) -> m f a b -> m g a b #
Hoist the underlying graph in the free structure. This is a higher
version of a functor (analogous to
, which defined functor
instance for fmapFree
instances) and it satisfies the functor laws:FreeAlgebra
hoistFree2 id = id
hoistFree2 f . hoistFree2 g = hoistFree2 (f . g)
joinFree2 :: forall k m (f :: k -> k -> Type) (a :: k) (b :: k). (FreeAlgebra2 m, AlgebraType0 m f) => m (m f) a b -> m f a b #
FreeAlgebra2
m is a monad on some subcategory of graphs (types of kind
k -> k -> Type
@), joinFree
it is the join
of this monad.
foldNatFree2 nat . joinFree2 = foldNatFree2 (foldNatFree2 nat)
This property is analogous to foldMap f . concat = foldMap (foldMap f)
,
bindFree2 :: forall {k} m f (g :: k -> k -> Type) (a :: k) (b :: k). (FreeAlgebra2 m, AlgebraType0 m g, AlgebraType0 m f) => m f a b -> (forall (x :: k) (y :: k). f x y -> m g x y) -> m g a b #
bind
of the monad defined by m
on the subcategory of graphs (types of
kind k -> k -> Type
).
foldNatFree2 nat (bindFree mf nat') = foldNatFree2 (foldNatFree2 nat . nat') mf
Free ArrowChoice
data Choice f a b where Source #
NoChoice :: f a b -> Choice f a b | |
Choose :: ArrChoice f a c -> ArrChoice f b c -> Choice f (Either a b) c |
Instances
ArrowChoice (Arr (Choice f)) Source # | |
Defined in Control.Arrow.Free left :: Arr (Choice f) b c -> Arr (Choice f) (Either b d) (Either c d) # right :: Arr (Choice f) b c -> Arr (Choice f) (Either d b) (Either d c) # (+++) :: Arr (Choice f) b c -> Arr (Choice f) b' c' -> Arr (Choice f) (Either b b') (Either c c') # (|||) :: Arr (Choice f) b d -> Arr (Choice f) c d -> Arr (Choice f) (Either b c) d # |
liftArrChoice :: f a b -> ArrChoice f a b Source #
foldArrChoice :: forall f arr a b. ArrowChoice arr => (forall x y. f x y -> arr x y) -> ArrChoice f a b -> arr a b Source #