{-# LANGUAGE ScopedTypeVariables #-}
module Control.Algebra.Free2
( FreeAlgebra2 (..)
, Proof (..)
, proof
, AlgebraType0
, AlgebraType
, wrapFree2
, foldFree2
, unFoldNatFree2
, hoistFree2
, hoistFreeH2
, joinFree2
, bindFree2
, assocFree2
) where
import Control.Monad (join)
import Data.Constraint (Dict (..))
import Data.Kind (Type)
import Data.Algebra.Free (AlgebraType, AlgebraType0, Proof (..), proof)
class FreeAlgebra2 (m :: (k -> k -> Type) -> k -> k -> Type) where
liftFree2 :: AlgebraType0 m f => f a b -> m f a b
foldNatFree2 :: forall (d :: k -> k -> Type) (f :: k -> k -> Type) a b .
( AlgebraType m d
, AlgebraType0 m f
)
=> (forall x y. f x y -> d x y)
-> (m f a b -> d a b)
codom2 :: forall (f :: k -> k -> Type). AlgebraType0 m f => Proof (AlgebraType m (m f)) (m f)
forget2 :: forall (f :: k -> k -> Type). AlgebraType m f => Proof (AlgebraType0 m f) (m f)
wrapFree2 :: forall (m :: (Type -> Type -> Type) -> Type -> Type -> Type) (f :: Type -> Type -> Type) a b .
( AlgebraType0 m f
, FreeAlgebra2 m
, Monad (m f a)
)
=> f a (m f a b)
-> m f a b
wrapFree2 = join . liftFree2
{-# INLINE wrapFree2 #-}
foldFree2 :: forall (m :: (k -> k -> Type) -> k -> k -> Type)
(f :: k -> k -> Type)
a b .
( FreeAlgebra2 m
, AlgebraType m f
)
=> m f a b
-> f a b
foldFree2 = case forget2 :: Proof (AlgebraType0 m f) (m f) of
Proof Dict -> foldNatFree2 id
{-# INLINE foldFree2 #-}
unFoldNatFree2
:: forall (m :: (k -> k -> Type) -> k -> k -> Type)
(f :: k -> k -> Type)
d a b.
( FreeAlgebra2 m
, AlgebraType0 m f
)
=> (forall x y. m f x y -> d x y)
-> f a b -> d a b
unFoldNatFree2 nat = nat . liftFree2
{-# INLINE unFoldNatFree2 #-}
hoistFree2 :: forall (m :: (k -> k -> Type) -> k -> k -> Type)
(f :: k -> k -> Type)
g a b .
( FreeAlgebra2 m
, AlgebraType0 m g
, AlgebraType0 m f
)
=> (forall x y. f x y -> g x y)
-> m f a b
-> m g a b
hoistFree2 nat = case codom2 :: Proof (AlgebraType m (m g)) (m g) of
Proof Dict -> foldNatFree2 (liftFree2 . nat)
{-# INLINE hoistFree2 #-}
hoistFreeH2 :: forall m n f a b .
( FreeAlgebra2 m
, FreeAlgebra2 n
, AlgebraType0 m f
, AlgebraType0 n f
, AlgebraType m (n f)
)
=> m f a b
-> n f a b
hoistFreeH2 = foldNatFree2 liftFree2
{-# INLINE hoistFreeH2 #-}
joinFree2 :: forall (m :: (k -> k -> Type) -> k -> k -> Type)
(f :: k -> k -> Type)
a b .
( FreeAlgebra2 m
, AlgebraType0 m f
)
=> m (m f) a b
-> m f a b
joinFree2 = case codom2 :: Proof (AlgebraType m (m f)) (m f) of
Proof Dict -> case forget2 :: Proof (AlgebraType0 m (m f)) (m (m f)) of
Proof Dict -> foldFree2
{-# INLINE joinFree2 #-}
bindFree2 :: forall m f g a b .
( FreeAlgebra2 m
, AlgebraType0 m g
, AlgebraType0 m f
)
=> m f a b
-> (forall x y . f x y -> m g x y)
-> m g a b
bindFree2 mfa nat = case codom2 :: Proof (AlgebraType m (m g)) (m g) of
Proof Dict -> foldNatFree2 nat mfa
{-# INLINE bindFree2 #-}
assocFree2 :: forall (m :: (Type -> Type -> Type) -> Type -> Type -> Type)
(f :: Type -> Type -> Type)
a b .
( FreeAlgebra2 m
, AlgebraType m f
, Functor (m (m f) a)
)
=> m f a (m f a b)
-> m (m f) a (f a b)
assocFree2 = case forget2 :: Proof (AlgebraType0 m f) (m f) of
Proof Dict -> case codom2 :: Proof (AlgebraType m (m f)) (m f) of
Proof Dict -> case forget2 :: Proof (AlgebraType0 m (m f)) (m (m f)) of
Proof Dict -> case codom2 :: Proof (AlgebraType m (m (m f))) (m (m f)) of
Proof Dict -> fmap foldFree2 <$> foldNatFree2 (hoistFree2 liftFree2 . liftFree2)
{-# INLINE assocFree2 #-}