{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Data.Semigroup.SemiLattice
( FreeSemiLattice
, fromNonEmpty
, toNonEmpty
) where
import Data.List.NonEmpty (NonEmpty (..))
import qualified Data.List.NonEmpty as NE
import Data.IntSet (IntSet)
import Data.Semigroup (All, Any, Semigroup, sconcat)
import Data.Set (Set)
import qualified Data.Set as Set
import Data.Void (Void)
import Data.Algebra.Free
( AlgebraType
, AlgebraType0
, FreeAlgebra (..)
, proof
)
import Data.Semigroup.Abelian (AbelianSemigroup)
class AbelianSemigroup m => SemiLattice m
instance SemiLattice Void
instance SemiLattice ()
instance SemiLattice All
instance SemiLattice Any
instance Ord a => SemiLattice (Set a)
instance SemiLattice IntSet
newtype FreeSemiLattice a = FreeSemiLattice (Set a)
deriving (Ord, Eq, Show, Semigroup)
instance Ord a => AbelianSemigroup (FreeSemiLattice a)
instance Ord a => SemiLattice (FreeSemiLattice a)
fromNonEmpty :: Ord a => NonEmpty a -> FreeSemiLattice a
fromNonEmpty = FreeSemiLattice . Set.fromList . NE.toList
toNonEmpty :: FreeSemiLattice a -> NonEmpty a
toNonEmpty (FreeSemiLattice as) = NE.fromList $ Set.toList as
type instance AlgebraType0 FreeSemiLattice a = Ord a
type instance AlgebraType FreeSemiLattice a = (Ord a, SemiLattice a)
instance FreeAlgebra FreeSemiLattice where
returnFree a = FreeSemiLattice $ Set.singleton a
foldMapFree f (FreeSemiLattice as) = sconcat $ fmap f $ NE.fromList $ Set.toList as
codom = proof
forget = proof